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Abstract: This work presents a dynamic modeling approach for analyzing the behavior of a bi-
material cantilever actuator structure, consisting of a strip of filter paper bonded to a strip of tape. The
actuator’s response is induced by a mismatch strain generated upon wetting, leading to the bending
of the cantilever. The study delves into a comprehensive exploration of the dynamic deflection
characteristics of the bilayer structure. It untangles the intricate connections among the saturation,
modulus, hygro-expansion strain, and deflection, while uniquely addressing the challenges stemming
from fluid–structure coupling. To solve the coupled fluid–solid differential equations, a combined
numerical method is employed. This involves the application of the Highly Simplified Marker
and Cell (HSMAC) technique for fluid flow analysis and the Finite Difference Method (FDM) for
response deflection computation. In terms of the capillary flow model, the Computational Fluid
Dynamics (CFD) simulations closely align with the classical Washburn relationship, depicting the
wetted front’s evolution over time. Furthermore, the numerical findings demonstrate that heightened
saturation levels trigger an increase in hygro-expansion strain, consequently leading to a rapid
rise in response deflection until a static equilibrium is achieved. This phenomenon underscores
the pivotal interplay among saturation, hygro-expansion strain, and deflection within the system.
Additionally, the actuator’s response sensitivity to material characteristics is highlighted. As the
mismatch strain evolving from paper hygro-expansion diminishes, a corresponding reduction in
the axial strain causes a decrease in response deflection. The dynamic parameter demonstrates that
the deflection response of the bilayer actuator diminishes as dynamic pressure decreases, reaching a
minimal level beyond which further changes are negligible. This intricate correlation underscores
the device’s responsiveness to specific material traits, offering prospects for precise behavior tuning.
The dependence of paper modulus on saturation levels is revealed to significantly influence bilayer
actuator deflection. With higher saturation content, the modulus decreases, resulting in amplified
deflection. Finally, strong concordance is observed among the present fluidically coupled model,
the static model, and empirical data—a testament to the accuracy of the numerical formulation and
results presented in this study.

Keywords: paper-based sensors; bilayer actuators; microfluidic assay; biosensing; hygro-expansion;
modulus of paper; dynamic curvature; couple fluid–structure model

1. Introduction

Bilayer cantilevers, particularly those consisting of two distinct materials, have come
to the forefront of scientific research due to their unique bending behaviors when exposed
to varying stimuli [1,2]. Historically, Christophersen et al. delved into the modeling of
PPy bilayer micro-actuators, bringing valuable insights into the realm of microfluidic
devices [3]. This research pathway found resonance with our contemporary work, in which
we presented an extensive study on a paper-based bi-material cantilever (B-MaC) valve and
innovated a lab-on-paper microfluidics platform using bi-material cantilever actuators [4,5].
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Environmental factors, such as temperature and humidity, can significantly influence the
curvature of these bilayer cantilevers [6,7]. Douezan et al. laid the foundational knowledge in
understanding this interaction by studying the hygro-mechanical bending response of paper
when it encounters water [8]. These studies were further augmented by Perez-Cruz et al., who
unveiled the intriguing curling instability introduced by swelling [9]. Reyssat and Mahade-
van’s exploration into the curling behavior of wet paper further enriched our understanding of
paper-based cantilevers, offering pivotal insights for microfluidic paper-based assays [10]. Ap-
plications in biosensing have found significant traction in the utilization of bilayer cantilevers.
Groundbreaking research by Wang et al. highlighted the scope of microcantilever sensors in
biochemical detection [11]. The versatility and immense potential of cantilever-based technolo-
gies have been underlined by studies spanning across lab-on-a-chip integrations to aptamers
targeting membrane proteins for diagnostics [12–14]. Significantly, the work of Kaigala et al.
accentuated the utility of microfluidics in enabling localized chemistry on biological interfaces,
potentially transforming diagnostic paradigms [15].

Recent advancements in this domain have emphasized the need for rigorous modeling.
This modeling aids in predicting the behavior of these bilayer cantilevers under multi-
faceted stimuli [16]. For instance, Rasid et al. conducted in-depth dynamic modeling of
micro-lens actuators, emphasizing the need for intricate modeling in designing cantilever-
based devices [17]. Yang et al.’s studies on the modeling and nonlinear dynamics of various
cantilever actuators offer perspectives on device behavior under different scenarios, paving
the way for design optimization [18]. Lee et al. emphasized the critical role of material
properties in cantilever-based devices by employing a quasi-static theoretical framework
and corroborating their model through quantitative experimental data [19].

In the realm of paper-based cantilevers, understanding the intricacies of fluid flow is of
paramount importance, especially when aiming for the precise control and prediction of the
cantilever’s response. The Navier–Stokes equations, which govern the motion of viscous
fluid substances, have been invaluable in depicting the nuances of fluid mechanics within
such structures. The computational modeling landscape for fluid dynamics has notably
been enriched by advancements in Computational Fluid Dynamics (CFD). Albadawi et al.
took strides in examining the influence of surface tension within the Volume of Fluid
(VOF) models and their hybrid applications alongside the Level Set methods, laying a
foundation for better understanding bubble dynamics within fluid structures [20]. The
continuum method by Brackbill et al. also delved deep into modeling surface tension,
a critical parameter for the behavior of fluids within the microstructures of paper-based
cantilevers [21]. Furthermore, the relevance of flows, as expounded by Kajishima, plays a
significant role in comprehending the often-complex fluid behaviors in these bi-material
devices, underscoring the need for holistic modeling approaches [22]. Together, these
advancements in fluid modeling, epitomized by Navier–Stokes formulations and CFD
methodologies, provide a comprehensive lens to unravel the dynamic behaviors of paper-
based cantilevers when interacting with fluids.

Despite the plethora of research available, with studies ranging from organ-on-chip
technologies to diverse applications beyond biology [23], the central theme remains, un-
derstanding the dynamic interactions between fluid and structure in these bi-material
cantilevers, particularly paper-based ones. This understanding, centered around the dy-
namic coupled fluid–structure model for response deflection, is imperative to harness the
full potential of bi-material cantilevers (B-MaCs) in microfluidic paper-based assays for
biosensing and other applications. This manuscript seeks to address this niche, focusing
specifically on the dynamic coupling of fluid and structural models in understanding
deflection responses.

Our previous studies [1,2,4,5,24] were geared towards the creation of a quasi-static
model to scrutinize both the deflection response and fluidic behavior of B-MaCs under static
conditions, accounting for parametric variations induced by saturation. As can be seen from
the referenced literature [6–10,19], very few studies have focused on dynamic modeling,
primarily concentrating instead on static formulations for bilayer cantilevers with constant
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parameters. Notable investigations, such as those detailed in [25–27], delve into various
facets of dynamic responses, ranging from nonlinear bending behaviors in piezoelectric
actuators to hydrodynamic interactions in microcantilevers. These comparative studies
accentuate the importance of a holistic approach in understanding the dynamic behaviors
of bi-material cantilevers, spotlighting the intricate interplay between material properties,
external stimuli, and the resulting responses.

The incentive of this work is to further develop the dynamic model for response
deflection of a coupled fluid and structure bilayer system. This dynamic approach has been
realized through an intricate coupling of fluid mechanics, governed by the Navier–Stokes
equations, with the mechanical properties of bilayer cantilevers. This study significantly
advances the field by incorporating hygro-expansive behavior and variable material prop-
erties into a comprehensive model. This enables far more accurate predictions and provides
deeper insights into the complex interactions within the system under fluid loading. Ad-
ditionally, our adopted methodology shows great versatility, accommodating various
material types and levels of saturation. This research offers a notable advantage by inte-
grating dynamic methodologies with variable properties, providing a more comprehensive
perspective than traditional approaches. This enhances its relevance for a multitude of
applications, from biosensors to material testing procedures. The approach surpasses
traditional methods by facilitating numerical solutions for intricate systems where closed-
form solutions are not feasible. It marks a pivotal advancement, integrating sophisticated
numerical methods like the Highly Simplified Marker and Cell (HSMAC) approach and
the Finite Difference Method (FDM) to solve complex fluid–structure interaction problems
with broader applicability.

2. Methods

To effectively understand the behavior of bi-material cantilever (B-MaC) subjected
to fluid flow, there is an inherent need to couple fluid–structure models. This not only
provides a comprehensive view of the mechanisms but also allows for the creation of
nuanced and precise predictive tools. This section outlines our approach towards creating
such a coupled model.

2.1. Response Deflection

In our investigation of flow dynamics within the B-MaC, several critical assumptions
rooted in the theory are applied. Initially, B-MaC structures are presumed straight, with
subsequent curvatures introduced purely due to fluid loading. These structures maintain
that cross-sections remain planar even after bending. Emphasizing the material properties,
B-MaC adheres to a linear elastic behavior, implying compliance with Hooke’s law, while
also being isotropic and homogenous in nature. This ensures consistent stress–strain
dynamics throughout the structure, regardless of direction or location. It is important
to note that the bonding in our bilayer system, primarily contributed by the adhesive
layer of the Scotch tape, ensures cohesive interactions between the layers. This adhesive
layer’s nuances, although not separately analyzed, are inherently incorporated within the
combined behavior of our bilayer structure. While the B-MaC may undergo moderate
deflections from fluid interactions, rotations are assumed minimal. Moreover, any shear
deformation due to these interactions is considered negligible, focusing our attention
primarily on bending deformations. Lastly, if any prestress is imposed on the B-MaC, it
is uniformly distributed, ensuring each point within a cross-section experiences identical
stress magnitudes inducing curvatures. Recognizing and considering these assumptions is
paramount as we navigate our analytical framework and interpret subsequent results.

For slender beams experiencing moderate deflections, the dynamic beam differen-
tial equation provides a robust model to characterize structural behavior. The equation
considering the beam under the effects of prestress upon dynamic loading, given below,
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inherently considers the linear variation of strain across the cross-section and offers an
accurate representation for moderate deflections [28].

∂4w
∂x4 − ζ

∂2w
∂x2 + η

∂2w
∂t2 = q(x, t) (1)

The presented equation delineates the dynamic behavior of the B-MaC under various
influences. Here, w(x, t) signifies the dynamic deflection of the B-MaC, indicating how
the actuator responds over time, t, and along its length, x. The above equation is written
in the non-dimensional form of Equation (A4), as found in Appendix A, utilizing the
parameter x represented as x

L , where L stands for the total length of the bilayer cantilever.
This formulation allows for a universal representation, independent of specific system
dimensions. The axial loading parameter, ζ, quantifies the influence of the axial load on
the system, determining how it might cause or influence deflections, and η provides a
measure of the mass per unit length, capturing the inherent inertia of the B-MaC element.
Lastly, q(x, t) represents the fluidic loading at any given time and position, factoring in fluid
mass as an external force acting transverse to the B-MaC’s length. In Table 1, we present a
comprehensive breakdown of the non-dimensional parameters utilized in our governing
equation. Each of these parameters is pivotal in characterizing the interplay of forces and
responses, shedding light on the B-MaC’s dynamic behaviors under diverse conditions.

Table 1. Parameters for modeling the response deflection of B-MaC.

Parameters Expression Description

ζ
(

rAεo
rF

)
L2 Hygro-expansion loading

η
(

m
rF

)
L4 Mass element

q
(

ρ f gAp
rF

)
L4 Fluidic loading

In a bilayer cantilever system with perfectly bonded conditions, the mechanical prop-
erties of both layers can be combined to analyze the overall behavior. The flexural rigidity
rF, axial rigidity rA, and mass density m, take into account the contribution of both lay-
ers [29,30]. When transitioning from a monolayer to a bilayer system, certain modifications
are imperative. For a bilayer setup, in a perfectly bonded condition rF, rA, and m, are
given by ∑ Ei Ii, ∑ Ei Ai and ∑ ρi Ai respectively, for ith layer. Given that our B-MaC has a
rectangular cross-section as shown in Figure 1, its area can be represented as Ai = b× hi,
where b and h are respective width and heights. Consequently, for such a rectangular
cross-section, the corresponding moment of inertia, can be calculated using the formula

Ii =
bhi

3

12 for ith layer. These modifications highlight the distinct behaviors of monolayer
versus bilayer systems and underscore the significance of each parameter in our model.
Additionally, εo stands for the effective strain due to bending and hygro-expansion inherent
to the bilayer system obtained via misfit stain [24], and ρ f designates the density of the
loaded fluid.

2.2. Fluid Flow

Fluid dynamics in the B-MaC system are profoundly governed by the Navier–Stokes
equations, shedding light on the fluid’s momentum and continuity. These equations, while
intricate, are pivotal for understanding the nuanced flow patterns and how they interact
with B-MaC’s structural elements. A significant aspect of fluid dynamics in this system
is the fluid imbibition in paper-like materials, primarily driven by capillary action, often
referred to as pore-level transport at the microscale. In our pursuit to deeply understand
fluid imbibition in B-MaC, we prioritize modeling fluid flow in the filter paper layer,
approaching it as a porous entity influenced by capillary dynamics. Our research draws
heavily on the Capillary Model, harmonizing with the Lucas–Washburn relationship, for a
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more coherent representation of fluid movement in the filter paper. Building on our prior
studies and experimental findings [1,4,24], this manuscript presents a refined modeling
approach for fluid flow. Specifically, we delve into the Lucas–Washburn flow within the
paper, adopting the reduced One-Dimensional Navier–Stokes equation. This method
particularly emphasizes flow capillarity, factoring in the influential roles of surface tension
and drag forces by the set of equations given below.

L

hp

b
ht

Paper ( ,  ,    )Ep I p ρp

Et I t ρ tTape (   ,    ,    )

Figure 1. Bi-material cantilever (B-MaC) actuator utilized for modeling, fabricated via layer of
Whatman Grade 41 filter paper and Scotch tape.

The 1-D N-S equation for VOF is the momentum conservation equation [20] as follows:

∂u
∂t

+ u
∂u
∂x

= −1
ρ

∂P
∂x

+ v
∂2u
∂x2 +

(
σ

ρr

)
∂a
∂x
−
(v

k

)
u (2)

Continuity Equation
∂u
∂x

= 0 (3)

Properties
ρ = (a)ρ f + (1− a) ρa (4)

v = (a)v f + (1− a) va (5)

The One-Dimensional N-S equation embodies the conservation of momentum within
the fluid, factoring in the influences of advection, pressure gradients, viscous forces, surface
tension, and drag forces. In the context of flows far from solid boundaries, drag forces are
typically dominating, and the velocity gradients are not at their highest. In these regions,
referred to as potential flow regions, viscous effects are negligible compared to the drag
forces, and the term representing viscous force per unit mass v ∂2u

∂x2 , can be ignored. This
modification emphasizes that the drag forces are the primary concern. By utilizing this in
conjunction with the continuity equation for incompressible flow ∂u

∂x = 0, we can model
one-dimensional fluid flow according to the VOF model for capillary flow. Please see



Micro 2023, 3 790

Figure 2 for details. This approach mirrors the Lucas–Washburn flow model, leading to the
modification of Equation (2) for the wet region (a = 1) as follows:

∂u
∂t

= − 1
ρ f

∂P
∂x

+

(
σ

ρ f r

)
∂a
∂x
− u

(v f

k

)
(6)

where
[(

σ
ρ f r

)
∂a
∂x

]
is due to the surface tension defined by the Continuum Surface Force

(CSF) model [21]. The corrected Continuous Surface Force (C-CSF) methodology provides
an interpretation of surface tension [31]. Notably, within the scope of our research, the term
σcosθ becomes simply σ for filter paper. This is because θ representing the contact angle
is small, leading to cosθ ∼ 1. This characteristic highlights the pronounced hydrophilic
nature of the filter paper in contact with water. The term

[
u
( v

k
)]

is the drag term as per
Darcy’s Law [32], u is the velocity of fluid flow, ∂P

∂x is the pressure gradient, σ corresponds
to the surface tension of fluid, ρ f is the density of fluid, r is the radius of the curvature
of fluid interface in micro-capillary, ρa and va are the density and kinematic viscosity of
air, respectively, ρ f and v f are the density and kinematic viscosity of water, respectively,
k is the permeability paper, and a is the saturation level. The above Equation (6) will be
subsequently solved numerically to obtain the solution for fluid flow with parameters
C = σ

r and D = 1
k .
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2.3. Coupled Fluid–Structure Model

Fluid flow in a bilayer structure is a complex phenomenon, particularly in the context
of a composite beam made up of disparate materials. The coupled model developed in
this study considers the fluid flow as a moving load, influencing both the internal forces
through hygro-expansion and the external forces via transverse loading on the bilayer
beam. To facilitate a tractable solution to this inherently dynamic problem, a new coordinate
system is adapted for effectively rendering the dynamic problem into a static one. While
various parameters of the beam altered due to fluidic loading are considered constant in the
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dynamic phase, more significant variables such as modulus and strain become dependent
on the saturation level. These are incorporated as key variables in the coupled model,
allowing for a nuanced understanding of the interactions within the system.

The new coordinate system is adapted such that
(
x1 = x− ut

)
and (w1 = w) where x1

and w1 represent the new location of the load, and u is the velocity of fluid flow obtained
from the N-S equation. This transformation modifies Equation (1), leading to the revised
expression, given as follows:

d4w1

dx14 + (ηu2 − ζ)
d2w1

dx12 = qoδ(x1) (7)

where the RHS of Equation (7) signifies the static load (qo = q) acting at x1.
The adapted coordinate system simplifies the problem by converting the moving load’s

dynamics into a static frame, making it solvable. Without this transformation, the equation
does not have a closed-form solution and requires further simplification. Consequently, we
will adopt numerical methods to approach the given problem, which allows us to model the
complex interactions between the fluid flow and the bilayer beam. Detailed explanations
and the numerical solution strategy will be presented in the subsequent sections.

By describing the entire problem inclusive of the boundary conditions for the cantilever
beam, at fixed end: w(0) = 0 and w′(0) = 0, at free end: w′′(1) = 0 and w′′′ (1) = 0,
and introducing λ2

n =
(

ηun2 − ζ
)

, the following formulation is obtained for a given
n-coordinate system:

wn′′′′ + λ2
nwn′′ = qoδ(xn) (8)

There are numerous tools and methodologies available for solving complex prob-
lems, such as the Fluid–Structure Interaction (FSI) technique. However, employing the
FSI technique for our specific problem would be excessively intricate due to its inherent
complexity and computational demands, particularly when modeling the intricate interac-
tion between hydrophilic and hydrophobic materials in a bilayer structure. Instead, we
have opted to utilize a combination of Computational Fluid Dynamics (CFD) coupled
with the Finite Difference Method (FDM). This approach aligns more suitably with our
problem’s characteristics and constraints, offering a more efficient and accurate solution.
The details of this chosen method and the presentation of results will be articulated in the
subsequent sections.

2.4. Dependency of Bilayer Cantilever Material Properties on Fluid Loading

The behavior of a bilayer cantilever, especially when comprised of hygroscopic ma-
terials like paper, is notably influenced by its surrounding environment. When such a
cantilever is exposed to fluid loading, it experiences variations in its saturation level (a),
leading to alterations in its inherent material properties. This phenomenon is even more
pronounced in materials like paper, which has a pronounced affinity for moisture, and the
adhesive nature of tape, which might act as a barrier or a conduit for moisture ingress,
depending on the B-MaC fabrication. Understanding this dependency is pivotal, as it
directly impacts the mechanical performance and reliability of the bilayer system. In this
section, we delve into the intricate interplay between fluid loading and the consequent
changes in the material properties of the paper–tape bilayer cantilever.

The B-MaC demonstrates a notable hygro-expansion when introduced to fluid envi-
ronments, leading to the actuation of the cantilever. This hygro-expansion is primarily
attributed to the expansion or swelling of the fibers in the filter paper as they imbibe the
fluid. This process instigates the development of the internal strain within the structure.
Figure 3 shows the hygro-expansive or actuation strain in the filter paper is represented as
εhMAX the peak strain observed at saturation. The hygro-expansive strain can be described
by the following equation:

εh = εhMAX a(A) (9)
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where εhMAX is the hygro-expansive strain at saturation and A is the strain rate.
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The material properties of B-MaC demonstrate significant variance upon wetting,
particularly in the Young’s Modulus of its paper component, as uncovered in our prior
research. While empirical findings highlighted the change in modulus for wetted paper,
shown in Figure 4, the tape’s modulus remained unchanged. Drawing from these ob-
servations, this study presents the relation aligned with the empirically observed trends,
providing a nuanced understanding of the B-MaC system’s mechanical response.

Ep = EpDRY e(−Ba) (10)

where EpDRY is the modulus of dry paper and the B is referred to as relaxation constant.
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In our previous study, empirical data for the Whatman Grade 41 wetted filter paper’s
modulus and hygro-expansion strain were meticulously gathered [24]. Drawing insights
from these findings, these expressions align with the observed trends. These expressions of-
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fer a robust foundation for modeling the bilayer system’s mechanical properties, especially
when one layer undergoes drastic property changes upon moisture exposure.

2.5. Numerical Methods

Solving the presented formulation analytically is a complex task, as it involves a non-
homogeneous equation with the velocity governed by the Navier–Stokes (NS) equations
based on capillary flow. To address this, we must discretize the equations for both fluid flow
and bilayer actuator to obtain the coupled solution. This section will focus on the Highly
Simplified Marker and Cell (HSMAC) method to determine the solution for the fluid flow
within the bilayer beam. Furthermore, the velocity profile coupled with the beam equation
will be used to derive the deflection via the Finite Difference Method (FDM). Subsequent
subsections will elucidate the specifics of these methods and the associated boundary
conditions, providing a comprehensive approach to solving the described problem.

2.5.1. Velocity Analysis Using HSMAC Method

The velocity is of prime importance in this analysis, and the loading of the beam is
fundamentally governed by the nature of the flow. While the analytical approach provided
earlier offers a theoretical foundation, it relies on specific assumptions that may not hold
true for all cases. To obtain a more accurate description of the fluid flow velocity within the
domain, we will be employing the Highly Simplified Marker and Cell (HSMAC) method.

The HSMAC method can be articulated in a series of equations that adapt to our
problem’s specific requirements [33]. These equations capture the detailed fluid dynamics
that significantly influence the behavior of the bilayer beam. By delineating the intermediate
velocity u∗, the SMAC (Simplified Marker-and-Cell) method bifurcates the Navier–Stokes
Equation (6) into two distinct stages, described as follows:

u∗ = un + ∆t
(
−GPn

ρ
+ Fn

)
(11)

un+1 = u∗ − ∆t
G(Pn)

ρ
(12)

Pn+1 = Pn + δPn+1 (13)

where F and G denote the forces and gradient, respectively, and the divergence, D, of this
intermediate velocity field is computed as follows:

Dun+1 = Du∗ − ∆t
ρ

D(GPn) (14)

At this stage in the SMAC method, we evaluate Dn+1 = 0 and solve the Poisson
equation for pressure. However, in the HSMAC method, we will utilize Newton’s method
with Dn+1(Pn+1) = 0 to satisfy the pressure constraint. This approach circumvents the
need to solve the Poisson equation for pressure. As per Newtons method, the pressure is
updated as follows:

Pn+1 = Pn − Dn+1(un+1)
∂Dn+1(un+1)

∂Pn+1

(15)

To evaluate ∂Dun+1

∂Pn+1 , we substitute the value of Dun+1 from Equation (12) to obtain
the following:

∂Dn+1(un+1)

∂Pn+1 =
2∆t

ρ∆x2 (16)
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Combining Equations (12), (14) and (15) we obtain

δPn+1
i = −ω

Dn+1un+1

2∆t
ρ∆x2

(17)

where ω is the converge acceleration coefficient and δP represents the correction to the
pressure. However, it is crucial to emphasize that when updating the pressure, the flow
rate must also be correspondingly adjusted. Both elements require simultaneous updating.
The methods for flow updates using Taylor expansion and pressure updates are detailed
as follows:

un+1
i+1 = un+1

i+1 +
∆t

ρ∆x
δPn+1

i (18)

un+1
i = un+1

i − ∆t
ρ∆x

δPn+1
i (19)

Pn+1
i = Pn+1

i + δPn+1
i (20)

The detailed analysis of the HSMAC method is provided in Appendix A; please refer
to it for further information.

2.5.2. Response Deflection Analysis Using FDM

Having obtained flow velocity un, the next step is to calculate the response deflection of
the beam, coupled with fluid loading. In a manner like the previous approach, the domain is
discretized, and the corresponding velocity for the coordinate is used to predict the loading
within a static frame by utilizing the n coordinate system. The Finite Difference Method
(FDM) [22] will be employed, enabling us to rewrite the Equation (8) in a discretized form
as outlined in the following equations:

Using Taylor Expansion:
Forward Difference for cells at i = 1 and i = 2,[

w0 − 4w1 + 6w2 − 4w3 + w4

(∆x)4

]
+ λ2

1

[
w0 − 2w1 + w2

(∆x)2

]
= qo (21)

[
w0 − 4w1 + 6w2 − 4w3 + w4

(∆x)4

]
+ λ2

2

[
w1 − 2w2 + w3

(∆x)2

]
= qo (22)

Central Difference for cells 3 ≤ i ≤ (n− 2),[
wi−2 − 4wi−1 + 6wi − 4wi+1 + wi+2

(∆x)4

]
+ λ2

i

[
wi−1 − 2wi + wi+1

(∆x)2

]
= qo (23)

Backward Difference for cells at i = n− 1 and i = n,[
wn−4 − 4wn−3 + 6wn−2 − 4wn−1 + wn

(∆x)4

]
+ λ2

n−1

[
wn−2 − 2wn−1 + wn

(∆x)2

]
= qo (24)

[
−3wn−4 + 76wn−3 − 210wn−2 + 204wn−1 − 67wn

101(∆x)4

]
+ λ2

n

[
−wn−3 + 4wn−2 − 5wn−1 + 2wn

(∆x)2

]
= qo (25)

The solution for the response deflection can be obtained from the above expression, in
conjunction with the specified boundary conditions. While the expression has been simplified
for ease of understanding, the solution will be derived by solving a system of n equations
simultaneously using the Gauss elimination method via Row Echelon Form (REF).
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The boundary conditions for our specific case are defined for a bilayer cantilever by
utilizing an imaginary grid point, as depicted in Figure 5.
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Fixed end (i = 1)
w1 = 0 (26)

w0−w2

2∆x
= 0 (27)

Free end (i = n)
wn−2 − 2wn−1 + wn

(∆x)2 = 0 (28)

wn−3 − 3wn−2 + 3wn−1−wn

(∆x)3 = 0 (29)

The complete set of Equations (21)–(25) with the use of Equation (27) is given below in
matrix form:

[A][W] = [Q] (30)

[A] = n×n



(
−9A1 + A2 +

3
2 A3

)
(17A1 + 4A2 + A3 )

(
−3A1 + A2 +

1
2 A3

)
A1 0 . . . . . . .

A2 (A1 + A3 ) A2 A1 0 . . . . . 0 .

A1 A2 A3 A2 A1 0 . . . . . .

0 .

. . . . . . . . . . . .

. . . . . . . A1 A2 A3 A2 A1

. 0 . . . . . A1

(
−3A1 + A2 +

1
2 A3

)
(12A1 + 3A2 + A3 )

(
−9A1 + A2 +

3
2 A3

)
(5A1 + A2 )

. . . . . . .
(
− 3

101 A1
) (

− 126
101 A1 + A2 + A3

) ( 598
101 A1 − 4A2 − 4A3

) (
− 806

101 A1 + 5A2 + 5A3
) ( 337

101 A1 − 2A2 − 2A3
)



(31)

[W] = n×1


w1

.

.

.
wn

 and [Q] = n×1


qo∆x4

.

.

.
qo∆x4

 (32)

where [A] is the coefficient matrix, [W] is the variable matrix for discretized response
deflection, and [Q] is the loading matrix.

A1 = 1 (33)
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A2= (λ2
n∆x2 − 4) (34)

A3= (6− 2λ2
n∆x2) (35)

In the numerical analysis of a bilayer cantilever beam, the utilization of the imaginary
grid point plays a vital role in enforcing specific boundary conditions, particularly at the
fixed end where both deflection and slope must be zero. The imaginary grid point method
facilitates the discretization process, allowing for the application of Finite Difference Meth-
ods such as forward difference approximation for calculating the slope. This approach not
only aligns with the physical behavior of the structure but also enhances the computational
stability and accuracy of the numerical solution. The method is integrated into the model
for the bilayer cantilever, ensuring that the boundary conditions are met, and that the
resulting numerical solution faithfully represents the coupled fluid–structure interaction
problem at hand.

3. Results

The numerical methods employed in this study, encompassing the Highly Simplified
Marker and Cell (HSMAC) method for fluid flow analysis and the Finite Difference Method
(FDM) for beam deflection, serve as the cornerstone of our results. These methods were
judiciously selected and adapted to tackle the intricacies of modeling a bilayer cantilever
beam in the presence of fluid loading, ultimately leading to a coupled fluid–structure
interaction problem. In the subsequent sections, the results are presented in a structured
manner: first, the findings from the fluid flow method are detailed, shedding light on the
underlying mechanics of flow within the bilayer beam; second, the response deflection anal-
ysis for the dynamic model is explored, enhancing our understanding of the loading effects
within a static frame; third, we offer the comprehensive analysis of the fluidically coupled
dynamic system (HSMAC coupled with FDM model) for the bilayer, with particular focus
on varying properties such as modulus and hygro-expansive strain. The results derived
from this numerical approach not only reaffirm the theoretical insights but also reveal
several nuances specific to the characteristics of the B-MaC, providing new perspectives on
the behavior of paper-based cantilevers under fluidic loading.

3.1. Fluid Flow: Numerical Solution

The bilayer actuator under consideration, with a length and width of 20 mm and 4 mm,
is composed of two distinct layers: paper, specifically Whatman grade 41 and Scotch tape.
The bottom surface of the paper layer is laminated with the tape, creating a bi-material
cantilever (B-MaC) actuator. In this system, the tape layer provides the foundation for the
fluid flow to proceed without losses. For the purposes of our analysis, the fluid flow is
simulated within a one-dimensional framework. The details of the interactions between the
fluid and the solid structure will be discussed in further sections. These numerical results
allow a detailed examination of the flow dynamics within the bilayer actuator, matching
the capillary fluid flow as described by the Lucas–Washburn equation. This equation serves
as the basis of the flow mechanism in our bilayer system and provides insights essential for
understanding the overall behavior of the system.

Figure 6 depicts the numerical solution obtained via CFD using the HSMAC method.
The plot illustrates the fluid flow profile at times 8 s, 24 s, 32 s, and 48 s. The plot depicts
the pressure profiles in both dry and wet regions, capturing the wet–dry interface at the
specified time. The model addresses two fluids: water and air, and the adapted Volume
of Fluid (VOF) model confines the values of a to either 0 or 1. Here, 0 signifies a region
that is not wet or where the fluid level has not yet been reached, while 1 indicates a wet
region. Since the capillary flow model is utilized and the Lucas–Washburn (LW) equation
assumes the wetted length to be 100 percent saturated, the saturation value can only be 0
or 1. The pressure profile delineates the pressure drop across the interface, a linear drop
can be identified within the flow in the wet region. In contrast, the dry region exhibits
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no pressure drop and remains at atmospheric pressure. Obtaining this pressure profile is
crucial for verifying the suitability of our model tailored for capillary flow.
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The assessment is more clearly illustrated in Figure 7, showcasing a comparison
between the LW (Lucas–Washburn) fluid flow model, CFD results, and empirical values
documented in the previous study [24]. Figure 7 plots the wetted length lw against time t.
The empirical results, meticulously obtained, are juxtaposed with the model adopted in this
study. Using the parameter ψ defined in [24] and C

D , the values derived for the LW model
and CFD model are 8.344 and 9, respectively. These values are sufficiently close to confirm
that this comparison highlights how the adapted model closely emulates the capillary
action, a significant factor in the fluid flow within bilayer actuators in our investigation.

3.2. Dynamic Response Deflection: Numerical Solution

The dynamic response deflection analysis of the bilayer actuator assembly was con-
ducted, and the variables are defined in Table 2. This analysis focuses specifically on the
one-dimensional beam deflection to understand the response of the bilayer system. In the
methodology adopted in a previous study [24], an uncoupled fluid flow as per L-W and
beam dynamic deflection was presented. This uncoupled approach serves as a benchmark,
aiding in the validation of the dynamically coupled fluidic response of the bilayer actuator
assembly. The numerical response is obtained using the Finite Difference Method (FDM),
with careful consideration given to the appropriate boundary conditions pertinent to the
cantilever system. This method enables the precise calculation of the response deflection,
reflecting the interactions within the system.
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Table 2. Variable for response deflection of B-MaC.

Variable Value Description/Reference

l 20× 10−3 m Length of bilayer actuator
b 4× 10−3 m Width of bilayer actuator
ht 58× 10−6 m Height of tape layer
hp 220× 10−6 m Height of paper layer
Et 300 MPa Modulus of tape [24]
Ep 20 MPa Modulus of wet paper [24]
ρ f 1000 kg/m3 Density of fluid
ρt 1.44× 10−3 kg/m3 Density of tape
ρp 85× 10−3 kg/m3 Density of paper
εo 2.5× 10−6 Effective strain of bilayer [24]

Figure 8 illustrates the dynamic response deflection of the bilayer actuator for different
wetted lengths, corresponding to various time instants. The wetted lengths and corre-
sponding deflections are obtained for the coupled fluid–structure model and the response
deflection is presented for each combination of wet and dry portions of the B-MaC system.

3.3. Coupled Fluid Structure Model: Numerical Solution

This section focuses on the coupled fluid–structure model numerical solution. Until
now, we have explored individual aspects of the system, specifically the fluid flow CFD
model compared to the Lucas–Washburn (LW) equation, and the dynamic response de-
flection of the bilayer actuator corresponding to the wetted length. In this part of our
analysis, we will present the results from a fluidically coupled flow and response deflection
of the bilayer system. The fluid flow is calculated using the Highly Simplified Marker and
Cell (HSMAC) method at any given time, which leads to changes in the properties of the
bilayer materials. This, in turn, results in a response deflection that is iteratively obtained
by employing Equation (30) for the coupled system. The following discussion elucidates
the integrated approach and the insights derived from this comprehensive modeling of the
bilayer actuator.
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Figure 8. Dynamic response deflection: response deflection is plotted for different wetted lengths
obtained via the Lucas–Washburn (LW) relation. The solid line represents the wetted length, while
the dashed line signifies the dry length on the bi-material cantilever (B-MaC).

Figure 9a illustrates the response deflection vs. the length and width of the bilayer
cantilever, showcasing the dynamic deflection of the B-MaC as the flow progresses from the
fixed end to the free end of the cantilever. This 3D plot for the bilayer actuator at various
wetted lengths is solved by utilizing a new coordinate approach, obtaining the velocity
for each discretized cell, and iteratively solving for the dynamic response deflection of the
bilayer actuator. Figure 9b presents a continuous 3D plot for the bilayer actuator under
fluidic loading, representing the continuous plot and displaying the overall profile of the
1D beam over the period of loading.
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Figure 9. Numerical solution 3D plot of response deflection for fluidically coupled model: (a) 3D 
plot for bilayer actuator at various wetted lengths obtained via CFD; (b) continuous 3D plot for 
bilayer actuator under fluidic loading. 

3.4. Parametric Plots 
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3.4. Parametric Plots

This section introduces parametric plotting to provide a nuanced visual represen-
tation of our findings. This approach enhances our comprehension of the underlying
dynamics and offers a more comprehensive perspective on the behavior of the bilayer
actuator assembly.

3.4.1. Strain Loading Parameter (ζ)

The strain loading resulting from the hygro-expansion of paper is treated as an internal
loading mechanism within the bilayer actuator. Figure 10 displays the response deflection
of the B-MaC under varying strain loading parameters, explored within a specified range.
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Figure 10 illustrates the variations in response deflection of the bilayer actuator due to
strain loading. In this plot, strain loadings of 0, 0.2ζ, 0.4ζ, 0.6ζ, 0.8ζ, and ζ are used, with
ζ representing the case for our study. The plot provides insight into the behavior of the
bilayer actuator; as the strain loading decreases, the response deflection also diminishes due
to the reduction of axial strain. This phenomenon can also be understood by considering
the mismatch strain between the layers in the bilayer actuator. If the mismatch strain is less
due to the use of certain materials for the bilayer actuator, the resulting deflection will be
smaller. Conversely, the larger the mismatch strain, the more pronounced the deflection
will be. This relationship underscores the sensitivity of the bilayer actuator’s response to the
specific characteristics of the materials used and offers additional avenues for fine-tuning
the behavior of the device.

3.4.2. Dynamic Pressure (ηu2)

The dynamic pressure, which symbolizes the kinetic energy per unit volume within a
fluid flow, is commonly employed to articulate the forces exerted on a structure submerged
in a fluid. In the context of our model, dynamic pressure terms emerge due to the fluidic
loading of the system. Although these dynamic pressure terms are small in our specific
model, we are scaling the terms to explore their potential effects. This exploration may
be applicable to models involving higher density bilayers like tungsten or osmium as
well as engineered ceramics. Figure 11 illustrates the response deflection of the B-MaC
over a range of dynamic pressure values, shedding light on this intricate aspect of the
system’s behavior.
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Figure 11. Response deflection of bilayer actuator for different dynamic pressure.

Figure 11 displays the influence of dynamic loading on the deflection response of the
bilayer actuator. To facilitate a straightforward comparison, dynamic pressure values have
been normalized. The analysis covers dynamic pressure values ranging from 10−4 to 1,
illustrating a decrease in deflection response as the dynamic pressure diminishes. The
observed behavior can largely be attributed to the mass density of the bilayer cantilever, a
critical factor in the system’s dynamics. The graph indicates that the actuator’s response
reaches a minimal level at a converging value for dynamic pressure, beyond which further
reductions have a negligible impact on the deflection response. This emerges due to
the normalization of dynamic pressure, aiming to study its specific effect. As this value
decreases, it results in a scenario where the impact of dynamic pressure becomes notably
minor compared to the strain loading parameter ζ. The pronounced dominance of strain
loading as dynamic pressure further reduces can be corroborated by a complementary
analysis presented in Figure 10.

In our study, the parameter η is negligible, making it significantly smaller in com-
parison to ζ. As a result, the dynamic effects within the system are minimal, and the
model essentially reduces to its static formulation for any given case. This illustrates the
dominance of static behavior in the context of our study and provides further insight into
why the dynamic effects were found to be negligible in the results. This reinforces our
previous study’s findings, where we chose to adapt the quasi-static model. The minimal
dynamic effects observed in the current investigation further support the validity of using
a quasi-static approach in our context, aligning with the results presented in our earlier
work [5,24].

3.5. Variable Plots
3.5.1. Hygro-Expansive Strain (εh) as a Function of Saturation (a)

Figure 12 illustrates the response deflection of the bilayer actuator in relation to the
hygro-expansion strain, as described by Equation (9). The plot presents the response
deflection of the bilayer actuator for changes in hygro-expansion stain due to saturation
levels of 0, 0.2, 0.4, 0.6, 0.8, and 1. As the saturation level (a) increases, the hygro-expansion
strain value also increases, causing the response deflection to rise rapidly, and ultimately
reach a static state. This behavior underscores the vital interplay between saturation,
hygro-expansion strain, and deflection within the system.
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Figure 12. Bilayer actuator’s response deflection due to changes in saturation level on the hygro-
expansion strain.

The change in hygro-expansion due to varying saturation levels can be effectively
derived from the hygro-expansion strain and saturation level relation (Equation (9)). By
utilizing this relationship, we can acquire the response deflection through the fluidically
coupled model, where rapid moisture content changes in the paper due to fluid imbibition
generate a corresponding deflection. This challenging task is made attainable through our
model, which enables us to obtain the response deflection of the bilayer actuator at any
given saturation level. Moreover, the model provides a platform to explore the effects on
the actuator under various stimuli, given that these stimuli can be quantified.

3.5.2. Young’s Modulus (E) as a Function of Saturation (a)

Figure 13 illustrates the response deflection of the bilayer actuator in relation to the
modulus of the paper, as governed by Equation (10). The plot presents the response
deflection of the bilayer actuator for changes in the modulus due to saturation levels of 0,
0.2, 0.4, 0.6, 0.8, and 1. As the saturation level (a) increases, the modulus decreases, leading
to a reduction in the flexural rigidity of the bilayer, and consequently causing the response
deflection to increase.
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We emphasize the significant changes in the material properties of paper when wetted.
Specifically, the modulus of the paper drastically reduces upon fluid imbibition. By treating
the paper as isotropic and elastic under certain assumptions [5,24], we can explore the
dependency of the modulus of the paper on saturation levels, further detailing how this
affects the response deflection of the bilayer actuator. The plots present a greater response
deflection for higher saturation content, as the modulus continues to decrease with in-
creasing saturation level. This reduction leads to a decrease in the flexural rigidity of the
bilayer actuator. A system with lower flexural rigidity is prone to deform or deflect more
for a given amount of load. The results presented in Figure 13 are a clear illustration of
this behavior.

3.6. Limiting Cases

In the study at hand, one of the primary focuses has been to build upon and validate the
modeling approach through a comparison with previous research. The earlier work [2,5,24]
provided a foundational understanding of the response deflection of a bilayer actuator,
considering the static curvature. This static model was developed by considering the
material and geometrical properties of the layers, integral to the fabrication of the actuator.
The significance of the current fluidically coupled model becomes evident when observed
in its limiting case.

As the bilayer actuator reaches its maximum deflection, the behavior of this dynamic
system begins to resemble the static case, previously considered. To ensure the robustness
of the current approach, empirical data for the static response deflection of B-MaC were
also analyzed. These empirical findings served as a critical benchmark, offering tangible
metrics against which the numerical predictions could be evaluated.

In Figure 14, the close agreement between the limiting case of the present fluidically
coupled model, the static model, and the empirical data provided in Table 3, obtained by
experiment, is prominently showcased. The similarities underscore the compatibility and
coherence between different modeling approaches. Such validation does more than merely
affirm the accuracy of the current model. It highlights the continuity of understanding
across different studies, reinforcing the concept that the insights gleaned from static analysis
continue to hold relevance even in more complex, dynamic scenarios.
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Table 3. Empirical response deflection of B-MaC [24].

Wetted length (L) mm 0.0 1.0 2.0 2.8 3.8 4.7 5.7 6.6 7.6 8.5 9.6 10.5 11.5 12.4 13.4 14.3 15.3 16.2 17.2 18.1
Response deflection (w)
mm 0.0 0.0 −0.1 −0.2 −0.3 −0.6 −0.8 −1.0 −1.4 −1.7 −2.0 −2.4 −2.7 −3.2 −3.8 −4.3 −4.9 −5.5 −6.1 −6.6

This intricate comparison not only builds confidence in the current fluidically coupled
model but also opens the door for further exploration and refinement. The alignment with
previous studies ensures that the current research is anchored in established understanding
while providing a stepping stone towards more nuanced and detailed explorations in
the future.

4. Discussion

The present study delved into the dynamics of bilayer actuators utilizing an advanced
numerical approach, revealing intricate relationships between saturation, modulus, hygro-
expansion strain, and deflection. The investigation found that response deflection sharply
increases with saturation, eventually reaching a static state. This trend resonates with prior
research (5, 24). Unlike traditional studies, which achieved solutions for dynamic loading
without internal and external forces, our exploration confronted greater complexity due
to the presence of these elements. This added complexity made closed-form solutions
unfeasible. To overcome this challenge, we crafted a numerical method using the Highly
Simplified Marker and Cell (HSMAC) approach for fluid flow and the Finite Difference
Method (FDM) for response deflection, focusing on a fluidically coupled model of the
bilayer actuator. These innovative techniques successfully aligned our findings with
existing formulations for static cases and substantiated experimental data.

The fluid flow within a bilayer actuator is a complex process, inspired by our experi-
mental observations, and modeled using Washburn’s imbibition phenomenon. Comprising
a hydrophilic layer (Whatman Grade 41 filter paper) and a hydrophobic layer (Scotch tape),
the bilayer serves as a component of the microfluidic assay utilized for biosensing. While
the paper layer is responsible for fluid imbibition, the tape layer adds rigidity to the frame,
scaling the response deflection of the actuator. The results of this model, as depicted in
Figure 7, reveal that the Computational Fluid Dynamics (CFD) model closely mirrors the
Washburn flow. This correspondence has been experimentally validated in previous papers
and proves to be suitable for our modeling. Obtaining the fluid velocity is vital as it informs
the nature of the loading determined by flow conditions, an essential factor in evaluating
the response of the bilayer actuator. With the velocity assessed, we advanced to solve the
fluidically coupled formulation, which led to the determination of the response deflection.

The dynamic response deflection of the bilayer was solved numerically, yielding
results that align with our previous research and experimental findings. Figure 8 illustrates
the dynamic response deflection for various wetted lengths, and it is essential to recognize
that the dynamic effects within this formulation are minimal. This leads us to conclude that
the results closely mirror the static formulation as presented in previous studies. While
the formulation can be considered static for most cases due to the slight dynamic effect,
it is intriguing to discover outcomes that could accommodate different material types. If
utilized to construct a bilayer actuator, this formulation could be applied to gauge the
response deflection across a broader range of materials.

The coupled fluid–structure model for bilayer actuators accounts for changes in the
modulus and hygro-expansion strain upon wetting. Since paper is hygroscopic in nature,
its properties are altered due to fluid imbibition, resulting in hygro-expansion strain and a
decrease in modulus. These relations, detailed in Equations (8) and (9), highlight trends
at various saturation levels, aligning with the experimental values deduced in previous
research. The coupled fluid model assesses the effects of different saturation levels of the
paper when fluidically loaded. These properties change rapidly upon wetting, explaining
why the dynamic effect is negligible in our case. This model serves as a valuable tool for
assessing or quantifying a range of biosensors that operate based on external stimuli. In
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our scenario, the fluid functions as the external stimulus, and by analyzing the response
deflection at different saturation levels, we pave the way to quantify the response for
analogous systems.

Critical loading characterizes a scenario where dynamic pressure and strain loading
are equivalent. Achieving this equivalence would necessitate an exceedingly large fluid
velocity, which is not a practical approach in our model given that the dynamic pressure is
minimal. However, in specific practical cases where the velocity of the moving load can be

defined by
√

ζ
η , the concept of critical loading can be identified and applied. This reveals

the potential complexity of the system and highlights a condition that may be relevant in
different or more extreme contexts.

A comparative data analysis of the dynamic responses in B-MaC was undertaken to
align our findings with the existing literature. This analysis evaluated diverse parameters,
including the materials utilized, modeling techniques, key outcomes, and the extent of
interaction studies, all of which are elaborated upon in Table 4. The table provides a compar-
ative analysis of B-MaC’s dynamic responses across eight studies. Our research, utilizing
Whatman Grade 41 filter paper and Scotch tape, delves into bilayer actuator dynamics
through HSMAC and FDM methodologies, focusing on hygro-expansion responses. Other
studies explore various facets, from tracing paper’s curling dynamics to nanowire thermal
conductivity in amorphous polystyrene (a-PS). Different modeling methods are adopted,
including empirical, and numerical, each study shedding light on unique interactions and
bringing its own set of limitations and key findings. Across the board, there is an emphasis
on understanding material dynamics under varied conditions.

Table 4. Comparative data analysis of dynamic responses in B-MaC.

Parameter Our Study Study [8] Study [9] Study [10] Study [19] Study [25] Study [26] Study [27]

Objective Bilayer actuator
dynamics

Curling
dynamics

Bending
response
due to
interaction
with water

Swelling-
induced
actuation
analysis

Hygro-
expansive
deformation
analysis

Non-linear
piezoelectric
actuator

Microcantilever
dynamic
analysis

Nanowire
thermal
conductivity

Material used
Whatman Grade
41 filter paper
and Scotch tape

Tracing
paper Filter paper Tracing paper

Whatman
Grade 1 filter
paper

PZT, or lead
zirconate titanate

High-density
copper

Amorphous
polystyrene
(a-PS)

Modeling
approach

HSMAC and
FDM Empirical Numerical Empirical Numerical FEA FDM Thermal

Interaction
studied

Hygro-
expansion
response

Swelling
response

Hygro-
mechanical
response

Differential
swelling

Hygro-
expansive
swelling

Domain wall
dynamics

Hydrodynamic
interaction

Thermal
conductance

Limitations

Small to
moderate
deflections only
(0–10 mm)

Small
deflections
only

Moisture
transport
with
constant
diffusivity
only

Non-swelling
mediums only

Small
deflections
only (0–4 mm)

Phenomenological
model constraints

Small
deflections
only (0–5 mm)

Conduction
only

Key
contributions

Fluid–structure
interaction for
bilayer actuators

Curling
instability
induced by
swelling

Non-linear
stability
influence on
paper

Curling of wet
paper

Bending and
buckling of
wet paper

Electro-elastic
material
optimization

Fluid–coupled
dynamic
analysis

Thermal
conductance
using dual
cantilevers

In this study, we primarily explored the dynamic behavior of rectangular cantilevers, a
choice driven by its prevalent application and analytical convenience. However, real-world
applications present a variety of cantilever shapes and sizes. While our model offers a
robust foundation for rectangular configurations, its extension to other geometries, like
circular or triangular, demands further scrutiny. Such expansion is critical, as different
shapes introduce unique stress distributions, boundary conditions, and vibrational modes,
potentially affecting the dynamic response.
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5. Conclusions

This study elucidates the intricate dynamics of bilayer actuators using advanced nu-
merical methods, specifically the HSMAC method and FDM, shedding light on interactions
between saturation, modulus, hygro-expansion strain, and deflection.

The manuscript provides a comprehensive study on the dynamic behavior of bilayer
actuators, integrating the effects of fluid flow, strain, and material properties. The fluid
flow section validates the fluid flow model by comparing CFD and Lucas–Washburn (LW)
outcomes against empirical results, achieving values of 9 and 8.344 respectively, underscor-
ing the model’s fidelity in simulating capillary action. The dynamic response of B-MaC
elucidates the fluid–structure interaction, which is formulated through a coupled fluid–
structure model. The deflection response significantly varies when subjected to strain
loading. It reveals a direct relationship between axial strain and deflection, emphasizing
that material selection can fine-tune actuator behavior, and the role of dynamic pressure
and mass density in modulating the deflection response, identifying a minimal response
threshold beyond which changes are negligible. Finally, the study results delve into the
critical interplay between saturation level, hygro-expansion strain, and modulus, each
influencing the deflection response of the bilayer actuator in distinct manners. The re-
sults substantiate the model’s capabilities to accurately capture complex fluid–structure
interactions and offer valuable insights into the sensitivities of bilayer actuator systems to
various influencing factors. Moreover, the study examines dynamic response deflection in
bilayer actuators and underscores the minimal dynamic effects, broadening its material
applicability. The hygroscopic changes evident in the hygro-expansion strain and reduced
modulus of paper augment the model’s utility, especially in biosensor contexts.

In summary, this research provides a comprehensive understanding of bilayer ac-
tuators using novel methodologies and rigorous validation. The framework presented
challenges conventional approaches and enhances the domain of fluid and structural dy-
namics. The findings serve as a foundation for future studies and highlight potential
advancements in both academic research and practical applications.
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Appendix A. Motion of Finite Beam [28]

Governing equation considering pre-stress beam:

−V +

(
V +

∂V
∂x

dx
)
− Tθ +

(
T +

∂T
∂x

dx
)(

θ +
∂θ

∂x
dx
)
+ q dx = ρA dx

∂2w
∂t2 (A1)

The equation illustrates the forces exerted on a beam element of length dx. Here, T
represents the axial force, V is the shear force, q is the transverse force, and M stands for
the moment.
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Neglecting higher-order terms dx2 appearing in conjunction with tension terms,

∂V
∂x

+
∂

∂x
(Tθ) + q = ρA

∂2w
∂t2 (A2)

In formulation, we disregard the effects of rotary inertia. Since the moment effects
attributable to tension are of a higher order, the results align with those from the original
beam development, V = ∂M

∂x , and using θ = ∂w
∂x , the moment-curvature results in EI ∂3w

∂x3 =

−V. Substituting these expressions in the equation (A2), we obtain

EI
∂4w
∂x4 −

∂

∂x

(
T

∂w
∂x

)
+ ρA

∂2w
∂t2 = q(x, t) (A3)
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The effects of axial strain inertia are not significant in the transverse motion. Therefore,
under the assumption of constant axial tension, ∂T

∂x = 0, where T = EAεo , the final form
for the transverse equation of motion is thus

EI
∂4w
∂x4 − EAεo

∂2w
∂x2 + ρA

∂2w
∂t2 = q(x, t) (A4)

Appendix B. HSMAC Method [33]

Consider a 1D Navier–Stokes System of Equation:

∂u
∂x

= 0 (A5)

∂u
∂t

+ u
∂u
∂x

= −1
ρ

∂P
∂x

+ v
∂2u
∂x2 + F (A6)

where u denotes the velocity of fluid flow, P represents the pressure field, v is the kinematic
viscosity of the fluid, and F signifies the net force acting on the system.
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By defining the intermediate speed, the Simple Marker and Cell (SMAC) method splits
the N-S Equation into two parts:

u∗ − un

∆t
= −1

ρ

∂

∂x
(Pn) + v

∂2

∂x2 (u
n) + Fn − un ∂

∂x
(un) (A7)

un+1 − u∗

∆t
= −1

ρ

∂

∂x

(
Pn+1 − Pn

)
(A8)

Taking divergence on both side of Equation (A8), we obtain

1
∆t

(
∂un+1

∂x
− ∂u∗

∂x
) = −1

ρ

∂2

∂x2

(
Pn+1 − Pn

)
(A9)

∂un+1

∂x
=

∂u∗

∂x
− ∆t

ρ

∂2

∂x2

(
Pn+1 − Pn

)
(A10)
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The discretization is performed solely in terms of time. By implementing spatial
discretization using central difference for a staggered grid, we obtain

un+1
i − un+1

i−1
∆x

=
u∗i − u∗i−1

∆x
− ∆t

ρ

[
Pn+1

i+1 − 2Pn+1
i + Pn+1

i−1

(∆x)2

]
+

∆t
ρ

[
Pn

i+1 − 2Pn
i + Pn

i−1

(∆x)2

]
(A11)

Now writing Equation (A8) by discretizing the space, we obtain

un+1
i
∆x

=
u∗i
∆x
− ∆t

ρ

[
Pn+1

i+1 − Pn+1
i

∆x

]
+

∆t
ρ

[Pn
i+1 − Pn

i
∆x

]
(A12)

And shifting one grid,

un+1
i−1
∆x

=
u∗i−1
∆x
− ∆t

ρ

[
Pn+1

i − Pn+1
i−1

∆x

]
+

∆t
ρ

[Pn
i − Pn

i−1
∆x

]
(A13)

At this juncture, we diverge from the SMAC method, wherein we set Dn+1
i = ∇un+1

i
to zero. This leads us to proceed with solving the Poisson equations of pressure. However,
in the HSMAC method, we establish Dn+1

i (Pn+1
i ) such that, according to Newton’s Law,

Dn+1
i (Pn+1

i ) = 0. By meeting the condition for Pn+1
i , this approach circumvents the need to

solve the Poisson equation for pressure, allowing us to indirectly obtain the pressure.
As per Newtons Law,

m+1x = mx − f (mx)
f ′(mx)

= mx + δx (A14)
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mδx = − f (mx)
f ′(mx)

(A15)

Utilizing the above relation to satisfy Dn+1
i (Pn+1

i ) = 0, we can obtain

m+1Pn+1
i = mPn

i −
Dn+1

i(
∂Dn+1

i (Pn+1
i )

∂Pn+1
i

)
Pn+1

i =mPn+1
i

(A16)

On evaluating ∂Dn+1
i (Pn+1

i )

∂Pn+1
i

,

∂Dn+1
i (Pn+1

i )

∂Pn+1
i

=
∂

∂Pn+1
i

(
un+1

i − un+1
i−1

∆x

)
(A17)

∂Dn+1
i (Pn+1

i )

∂Pn+1
i

=
1

∆x

(
∂un+1

i

∂Pn+1
i

−
∂un+1

i−1

∂Pn+1
i

)
(A18)

Substituting the value from Equations (A12) and (A13), we obtain

∂Dn+1
i (Pn+1

i )

∂Pn+1
i

=
2∆t

ρ∆x2 (A19)

Combine Equations (A16) and (A19) to obtain

m+1Pn+1
i = mPn

i −
Dn+1

i
2∆t

ρ∆x2

(A20)

δmPi = −ω
Dn+1

i
2∆t

ρ∆x2

(A21)

where is ω the acceleration coefficient for convergence.
While updating the pressure, the flow rate must also be updated accordingly. The

fluid flow m+1un+1
i on pressure m+1Pn+1

i can be obtained by Tylor expansion on the left
and right side:

un+1
i+1 = un+1

i+1 +
∆t

ρ∆x
δPn+1

i (A22)

un+1
i = un+1

i − ∆t
ρ∆x

δPn+1
i (A23)
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