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Abstract: Microchannels typically have rectangular cross-sections, whereas biological channels, such
as blood vessels and airways, have circular cross-sections. The difference in cross-sections causes
different fluidic behaviors, resulting in differences between fluidic behavior in microchannels and
biological channels. To simulate fluidic behavior in vitro, circular cross-sectional microchannels are
required. We developed a circular cross-sectional microchannel with a smooth channel wall, free
from cracks and irregularities. In the fabrication process of the circular cross-sectional microchannel,
uncured polydimethylsiloxane (PDMS) was inserted into a rectangular cross-sectional microchannel.
Then, the PDMS was pushed out by the introduction of compressed air before the curing process.
During the introduction of compressed air, we observed the behavior of the uncured PDMS and
found the formation and movement of protrusions along the microchannel. After pushing out the
uncured PDMS, the residual PDMS was cured, resulting in a circular cross-sectional microchannel.
The fabrication method was examined by varying the channel orientation and airflow direction.
In the case of the horizontal orientation and airflow in an opposite direction, the circularity of the
microchannel was greater than 0.99 at the centimeter scale in all cross-sections along the microchannel.

Keywords: circular cross section; non-cured PDMS; microchannel; airflow

1. Introduction

Microfluidic technologies have been developed based on the advances in microfabri-
cation, resulting in advances in the microscale fields of chemistry [1,2], biology [3,4], and
medicine [5,6]. They have attracted the attention of numerous researchers in these fields
for the development of biological and medical applications. For example, the behaviors [7]
and deformations [8] of red blood cells flowing through a single micrometer cross-sectional
microchannel have been visualized, and the degradation of their cellular membranes due to
the change in oxygen tension driven by flow has been found [9]. The behavior of cancer cells
has been measured under a gradient of oxygen tension and glucose concentration [10,11].
For these studies, microfluidic devices made using the conventional fabrication method
of soft lithography have been used. This uses a photo-patterned mold and polydimethyl-
siloxane (PDMS), resulting in rectangular cross-sectional microchannels [12]. However, the
cross-sections of biological channels, such as blood vessels, lymphatic vessels, intestinal
channels, airways, and periarterial spaces [13] are almost circular. This is because of the
minimization of fluidic resistance by minimizing the perimeter under a constant cross-
sectional area of the microchannels, resulting in a circular cross-section [14]. The difference
in cross-sectional shapes influences the behavior of cells flowing through them, for ex-
ample, deformation and damage to cells [15], inertia focusing [16], and platelet adhesion
and aggregation [17] inside the microchannels. To reproduce the behavior of cells in such
biological channels in vitro, the cross-section of the microchannels should be circular.

Methods for fabricating circular cross-sectional microchannels have been developed.
The fabrication method using a femtosecond laser has achieved a circular cross-section
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of high circularity; however, its size is limited because it uses the nanofabrication tech-
nique [18,19]. A fabrication method that combines two microchannels of a semi-circular
cross-section has been developed [20,21]. It requires a highly precise alignment directly
before bonding. A fabrication method was developed by introducing air into the PDMS-
filled microchannel of a rectangular cross-section after the curing process [22]. It achieved a
circular cross section; however, the circularity was not constant and cracks existed. The ge-
ometrical irregularities of microchannels have made the reproduction of in vivo biological
phenomena difficult in vitro.

Here, we improve the fabrication method by introducing air and changing the cured
PDMS into uncured PDMS in a rectangular cross-sectional microchannel. Uncured PDMS is
a viscous fluid, and the shape of the microchannel before the curing process is dynamically
changed by the airflow. This is followed by a necessary stabilization process. To verify
the circularity and irregularity, we used a centimeter-order microchannel. The airflow and
gravity directions were adjusted and a highly circular cross-sectional microchannel without
irregularities such as cracks and dumps was achieved.

2. Fabrication of Circular Cross-Sectional Microchannel
2.1. Working Principle

A liquid is typically attached on a solid surface, except for a hydrophobic surface, to
minimize the surface free energy. When the solid surface has microscaled steps, the liquid
sticks along the corners of the steps, resulting in a smooth surface. This is caused by the
surface tension of the liquid. This also occurs in microchannels. The corners of a rectangular
cross-section of a microchannel can be smoothed by residual liquid after pushing out liquid
from the microchannels by the introduction of a gas (Figure 1). When the liquid is PDMS,
the corners are filled with the PDMS. Circular cross-sectional microchannels can be obtained
by heating the microchannel with the residual PDMS at the corners. Moreover, to obtain
smooth surfaces along the microchannel, the formation of protrusions can be prevented
by utilizing long-term airflow to stabilize the surface geometry. With this process, the
roughness on the surface of the microchannel decreases, resulting in smooth surfaces.
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block for a mold. (b) Molding of a PDMS replica. (c) Bonding of a PDMS replica and a PDMS 
plate. (d) Uncured PDMS filling into a PDMS channel. (e) Pushing uncured PDMS out from the 
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Figure 1. Fabrication process of circular cross-sectional microchannel. (a) cutting a polyacetal block
for a mold. (b) Molding of a PDMS replica. (c) Bonding of a PDMS replica and a PDMS plate.
(d) Uncured PDMS filling into a PDMS channel. (e) Pushing uncured PDMS out from the channel by
air introduction. (f) Cure of residual PDMS in the channel.

2.2. Design of Microchannel

A rectangular cross-sectional microchannel was designed as a base to form a circular
cross section. The shape was a simple straight channel. The original square cross-section
was 500 µm high, 500 µm wide, and 2 cm long. It was made of PDMS, which is a typical
material for microfluidic devices.
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2.3. Fabrication Process of Circular Cross-Sectional Microchannel

Figure 1 displays the fabrication process for a circular cross-sectional microchannel. A
mold for the PDMS replica was fabricated from a polyacetal block using a three-dimensional
cutting machine (MODELA Model MDX-40, Roland DG, Shizuoka, Japan) (Figure 1a).
The PDMS base and curing agent were mixed at a weight ratio of 10:1 and degassed
in a vacuum container. The PDMS mixture was poured onto the mold of a rectangular
cross-sectional microchannel and degassed again. It was baked in a furnace at 85 ◦C for
3 h, resulting in a cured PDMS. The PDMS replica was peeled off (Figure 1b). After a
treatment of 20 s vacuum ultraviolet light irradiation, it was bonded to a PDMS plate at
85 ◦C for 1 h. A rectangular cross-sectional microchannel was obtained (Figure 1c). The
rectangular cross-sectional microchannel was filled with uncured PDMS at a weight ratio
of 10:1 with a pipette (Figure 1d). Compressed air was introduced into the rectangular
cross-sectional microchannel at 10 kPa (Figure 1e). The airflow continued until the uncured
PDMS was pushed out and the geometry of the surface became stable. Under these
conditions, the microchannel was heated to 120 ◦C for 10 min to cure the residual PDMS
inside the microchannel (Figure 1f). The process was repeated twice to achieve superior
circulatory performance. The durations of the first and second processes were 20 min and
60 min, respectively.

3. Fabrication of Circular Cross-Sectional Microchannel
3.1. Experimental Setup

Figure 2 displays the experimental setup. The rectangular cross-sectional microchannel
was connected, using a stainless pipe of 1 mm in diameter (inlet), to a pressure source
(OFP-07005, Iwata, Kanagawa, Japan) via a precise regulator (HPR-100-05, Tokyo Meter,
Kanagawa, Japan). Using the precise regulator, the pressure of the compressed air was set
to 10 kPa. The pressure was adjusted by trial and error method; at low pressure range (0
to 5 kPa), the extrusion speed of uncured PDMS was low, resulting in no penetration; at
high pressure range (50 to 100 kPa), the extrusion speed was high, resulting in excessive
pushing out of uncured PDMS. After pushing out the filled PDMS in the microchannel, the
microchannel was heated on a hot plate, maintaining the compressed airflow. The curing
temperature should be 120 ◦C, because the circularity decreased a few % at 100 ◦C. The
microchannel was sliced using a microtome (THK, Kenis, Osaka, Japan) to analyze the
circularity of the circular cross-section along the longitudinal direction. Dynamic changes
in the residual PDMS in the microchannel and its slices were observed using a digital
microscope (MS-200, Asahikogaku, Tokyo, Japan).
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3.2. Parameters for Circular Cross-Section

The shape of the cross-section was determined by the shape of the residual PDMS cov-
ering the rectangular cross-sectional microchannel, which was determined by the balance of
surface tension, gravity, and local pressure applied to the PDMS in the microchannel. Sur-
face tension is a material constant. The direction of gravity was vertically downward, and
therefore, the effect of gravity could be controlled by the orientation of the microchannel.
The local pressure was different at the inlet and outlet; the pressure at the inlet was applied
pressure; that at the outlet was atmospheric pressure. In repeated processes, the position
from the inlet could be changed by the flow direction, that is, switching or non-switching
the position of the inlet between the first inlet and outlet. Therefore, we chose orientation
and flow direction as the parameters to control the circulatory performance.

Figure 2 displays the experimental conditions influencing the circularity of the circular
cross-sectional microchannel. For the orientation, we set the microchannel horizontally,
vertically upward, or vertically downward. When the microchannel was aligned vertically
upward or downward, it was sandwiched and fixed between steel blocks placed on a hot
plate to cure the residual PDMS. For the flow direction, the microchannel was set in the
same or opposite direction. That is, the same direction did not require switching the inlet
between the first inlet and outlet, whereas the opposite direction required switching.

3.3. Analysis of Microchannel Circularity

We selected the circularity parameter to measure the circular degree of the microchan-
nel cross section. The circularity was calculated using the following equation:
circularity = 4π × cross-section area/perimeter2. To measure the circularity, the microchan-
nel was sliced at positions from the inlet. The stainless pipe connected to the microchannel
caused deformation in the shape of the microchannel cross-section. Therefore, we omitted
the first 3 mm and sliced the 17 mm microchannel along the longitudinal direction every
unit millimeter. The cross-sections included 32 approximate polygons, as indicated in
Figure 3; the area and perimeter were measured. The circularity was calculated using these
parameters. Image analysis was performed using ImageJ (National Institutes of Health,
Bethesda, MD, USA).
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4. Results
4.1. Formation of Irregularity-Free Circular Cross-Sectional Microchannel

Figure 4 displays the formation process for the circular cross-sectional microchannel
without irregularities. Compressed air was introduced into a PDMS-filled rectangular
cross-sectional microchannel and reached the outlet. The PDMS inside the microchannel
was pushed out 7 s later by the introduction of air (Figure 4a, Video S1). The initial diameter
of the microchannel was 340 µm. The air introduction was sustained and the surface of
the residual PDMS on the walls of the microchannel deformed 10 s later (Figure 4b). The
majority of the residual PDMS was pushed against the walls and moved aside, resulting
in the formation of depressions. Simultaneously, protrusions of 106 µm in height and
489 µm in width appeared at both ends of the depressions (red arrows in Figure 4b). This
made narrow necks along the microchannel. The rate of the protrusion formation was
initially 1.0 count/s. The protrusions moved downstream along the microchannel at an
average of 2.54 mm/s until they reached the outlet (Figure 4b–d). While the formations
and movements of the protrusions were repeated, the formation rate, dimensions, and
speed of the protrusions gradually decreased. After approximately 1 min, the rate of the
protrusion formation was 0.20 count/s and the speed was 0.84 mm/s. The height and
width were 97 and 554 µm, respectively. The formation of the protrusions virtually stopped
(~0.01 count/s) 3 to 4 min later; the speed was 0.20 mm/s. The height and width were 81
and 606 µm, respectively. This movement of the protrusions caused a fluctuation of the local
pressure in the microchannel. Following this protrusion behavior, the dynamic formations
and movements of the protrusions in the microchannel stabilized and the microchannel
had a smooth surface without irregularities.
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Then, we measured the temporal changes in the diameter of the microchannel (Figure 5).
The microchannel was divided into four zones; 2–5 mm, 6–10 mm, 11–15 mm, and
16–20 mm from the microchannel inlet. The diameters in the different zones demonstrated
similar trends; the rate of diameter change was initially high and gradually slowed. In the
2–5 mm zone, the diameter became stable at 442 µm, 120 s later. In the 6–10 and 11–15 mm
zones, the plots were virtually similar; the diameters reached 441 µm. In the 16–20 mm
zone, the diameter at 540 s was the smallest at 422 µm. Certain data points had large error
bars caused by the passage of protrusions. Using trial and error methods, the durations
of the air introduction to achieve smooth surfaces were determined to be 20 min in the
first process and 60 min in the second process. The shrinkage of PDMS during the curing
process can be negligible. The shrinkage of the PDMS coating can be calculated to be less
than 1 µm, which is small enough in comparison to the diameter of the microchannel,
considering that the thickness of the PDMS coating was less than 40 µm and the shrinkage
rate was less than 2% [23].
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4.2. Circularity of Circular Cross-Section along Microchannel

Figure 6 displays the circularity of the microchannel cross-sections along the longitudi-
nal direction. The position is the distance from the inlet in the first process. To compare the
circularity in the horizontal, vertically upward, and vertically downward orientations, we
performed the process in the same direction. In all orientations, the circularity was greater
than 0.99 in the range from 12 to 20 mm from the inlet. In the range from 3 to 12 mm, the
circularity decreased owing to the high pressure near the inlet. The circularity at 3 mm
from the inlets was 0.92, 0.93, and 0.90 for the horizontal, vertically upward, and vertically
downward cases, respectively.
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Figure 6. Circularity as function of distance from outlet.

The circularity in the same and opposite directions was compared in the horizontal
orientation. In the case of the horizontal opposite direction, the circularity was greater
than 0.99 at each position in the range from 3 mm to 17 mm. Even at 3 mm from the
inlet, where the circularity was the worst, it was 0.99. We tried to apply this method
to the microfabricated rectangular cross-sectional microchannel, whose original square
cross-section was 50 µm high, 50 µm wide, and 2 cm long, but the uncured PDMS was not
pushed out due to its small cross-sectional area and high viscosity. From these results, we
determined that the local pressure distribution and fluctuation influenced the circularity,
whereas gravity did not.

4.3. Cross-Sectional Images

Figure 7 displays cross-sectional images of the microchannel fabricated in the hori-
zontal orientation and same direction. Figure 7a–c are cross-sectional images at 5, 10, and
15 mm from the inlet, respectively. The walls of the rectangular cross-sectional microchan-
nel were exposed near the inlet (Figure 7a), whereas they were covered by PDMS near
the outlet (Figure 7c). The excessive pushing-out of the PDMS caused low circularity. The
pressure near the inlet (virtually the applied pressure) was greater than that near the outlet
(virtually atmospheric pressure). This pressure distribution along the microchannel was
caused by pressure loss along the microchannel. High pressure pushed out more PDMS,
resulting in an exposed rectangular cross-section.
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Figure 8 displays cross-sectional images of the microchannel fabricated in the hori-
zontal orientation and opposite direction. Figure 8a–c are cross-sectional images at 5, 10,
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and 15 mm from the first inlet, respectively. Compared to the microchannel fabricated in
the horizontal orientation and same direction, the thickness of the PDMS coating from
the inlet to outlet was virtually constant. The pressure distribution switched between
the two processes. Thus, the PDMS near the inlet was excessively pushed out in the first
process, and the PDMS near the outlet in the first process was excessively pushed out in the
second process. This averaged the thickness of the PDMS coating on the microchannel wall.
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Figure 8. Cross-sectional images of microchannel fabricated in horizontal orientation and opposite
direction. (a) 5 mm from the inlet. (b) 10 mm. (c) 15 mm.

5. Conclusions

We developed a method for forming a highly circular cross-sectional microchannel
without irregularities. The method was initiated by filling a rectangular cross-sectional
microchannel with PDMS, introducing air to push the PDMS out and curing the residual
PDMS on the wall of the microchannel. With the introduction of air, the surface deformation
caused by the pressure distribution and fluctuation gradually disappeared, and the surface
became smooth. To obtain high circularity in the cross-sections of the microchannel along
the longitudinal direction, gravity and local pressure were examined. The process in
the horizontal orientation and opposite direction of the airflow formed a highly circular
cross-section, greater than 0.99. In the future, we will fabricate circular cross-sectional
microchannels with small diameters, curves, bifurcations, and confluences to reproduce
in vivo flows in biological microchannels.
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