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Abstract: Nanofibrillar cellulose (NFC)-derived dressings such as films, hydrogels, and aerogels are
one of the favorable materials for wound healing due to their proper mechanical properties and water
holding ability. However, the therapeutic differences between native and anionic NFC materials are
rarely studied. In this report, we compared the differences and addressed the regenerative potential
of native and anionic wood-derived NFC hydrogels for wound treatment. In vitro characteristics of
the hydrogels were detected using scanning electron microscopy, rheological measurements, and
swelling and hemolytic activity assays. Skin regeneration at an early stage after hydrogel treatment
was analyzed using an in vivo splinted excisional full-thickness skin wound model in C57BL/6 mice.
Both native NFC and anionic NFC (ANFC) hydrogel with differing mechanical and surface properties
were shown to be biocompatible. Surprisingly, wounds treated with NFC and ANFC hydrogel did
not show any statistical difference compared with control wounds and progressed through normal
wound closure, inflammatory response, re-epithelialization, vascularization, and tissue maturation
with no signs of fibrosis. The data show here for the first time the therapeutic performance of
native and anionic NFC hydrogel in a wound mimicking human wound healing mechanisms. The
mechanical properties of native and anionic NFC hydrogels such as the capability to modify material
stiffness may also prove to be valuable in the management of wounds in the future.
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1. Introduction

Wound healing is a complex biological process, which occurs immediately at the
time of injury and requires interactions between resident and migratory cell populations,
soluble factors, and the extracellular matrix [1]. Clinically, wounds are categorized into
acute and chronic wounds. The acute wounds are healed typically within days or a few
weeks and they proceed through four overlapping and highly programmed wound healing
phases: hemostasis, inflammation, proliferation (formation of granulation tissue), and
remodeling [1,2]. If the wound is not healed within timely or orderly manner due to a
failure at one or more phases of wound healing, it is characterized as a chronic wound.

To overcome problems related to disturbed wound healing, various tissue-engineering
applications such as hydrogels, biologics, bioactive wound dressings, cell-based approaches,
cultured epithelial autografts and biofabrication via 3D printing have been developed [3–8].
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Among these, hydrogels are three-dimensional highly hydrated polymer structures re-
sembling the natural structure of extracellular matrix (ECM) [9–11]. At the wound site,
hydrogels are capable to absorb exudates, maintain moisture and offer a tissue-like struc-
ture [12]. Further, they can be loaded with different agents such as cells, growth factors,
drugs, or antibacterial entities to stimulate wound healing [13]. Thus, they serve as a
promising method to treat a wide variety of wounds, such as dry chronic wounds, pressure
ulcers and burn wounds either as a temporary or a permanent dressing. Injection offers
an appealing way for hydrogel delivery and most injectable hydrogels form “in situ” via
chemical or physical crosslinking [13]. In addition, sprayable hydrogels can be delivered
via simple application [14]. Recently, smart hydrogels have been developed, which respond
to various external stimuli such as pH, temperature, or light [15].

A variety of synthetic and naturally derived hydrogels have been used for wound
healing applications [12,13,16]. The common synthetic polymers used for hydrogel fabrica-
tion include polyethylene glycol (PEG), poly(vinyl alcohol) (PVA), poly(acrylic acid) (PAA),
and polypeptides, which are attractive for tissue engineering purposes due to having
controllable chemical and physical properties. Natural hydrogel polymers, on the other
hand, provide excellent biocompatibility, biodegradability, and nontoxicity, and include,
e.g., alginate, chitosan, collagen, carrageenan, hyaluronic acid, and silk fibroin. However,
medical devices consisting of naturally derived hydrogels incorporate mostly animal origin
materials even if they introduce a risk of disease transmission. The regulatory require-
ments of U.S. Food and Drug Administration (FDA) for medical devices that incorporate
materials of animal origin are demanding and could be alleviated by using non-human
and non-animal-derived materials in devices [17].

Among other biopolymers, cellulose offers a potential source for a hydrogel to be used
for wound treatment [18]. Cellulose is an abundant polymer present in plant cell wall or
produced by certain bacteria consisting of repeating units of β-D-glucose units held by
β-1,4-glycosidic linkages [18]. Nanofibrillar cellulose (NFC) derived from wood pulp has a
nanoscale structure with tunable properties and high elastic modulus in hydrogel form
that makes it a promising human and animal origin-free material for wound treatment [19].
The wound healing potential of NFC results mainly from its highly hydrophilic nature and
ability to retain moisture, which creates a moist wound environment known to enhance
wound healing [20,21]. Previously, we have indicated the suitability of native NFC based
wound dressing in split-thickness skin graft donor site treatment of patients, where it
promoted efficient wound healing and epithelialization [22,23]. In a study by Nuutila
et al. [24], on the other hand, NFC hydrogels were shown to inhibit wound contraction.
Surface structure of native NFC can be modified with 2,2,6,6-tetramethylpiperidine-1-
oxyl (TEMPO) oxidation to obtain an anionic charged structure [25,26]. Both native and
anionic NFC has shown to be biocompatible as well as non-toxic for cells, and to provide
a suitable scaffold for cell culturing [19,27,28]. Further, anionic NFC is suitable for drug
delivery applications [29]. The stiffness of NFC hydrogels is easy to modify and can be
tailored according to the varying stiffness of different tissues, which is an important aspect
to consider.

In this report, we aimed to evaluate the effects of native (chemically inert) and anionic
(surface charged) NFC hydrogel on wound healing in vivo using a splinted excisional
full-thickness skin wound model in mice, which replicates the human wound healing
process that occurs via re-epithelialization and granulation tissue formation instead of
wound contraction typical for mouse wounds [30,31]. We focused on analyzing the NFC hy-
drogel properties in vitro, and wound closure, inflammatory response, re-epithelialization,
granulation tissue formation, and blood vessel density in vivo. In addition, the presence of
myofibroblasts in the granulation tissue and the expression of transforming growth factor
(TGF)-β1 and collagen I were evaluated concomitantly with the activation of underlying
mitogen-activated protein kinase (MAPK) signaling pathways facilitating wound healing.
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2. Materials and Methods
2.1. Nanofibrillar Cellulose

Sterile native 1.5 w/w% NFC hydrogel (lots 120714619h and 119663917g applied for
in vitro and in vivo assays, respectively), and 5.5 w/w% anionic NFC (ANFC) hydrogel (lot
11944) diluted to 3.2 w/w% ANFC hydrogel (UPM Biomedicals, Helsinki, Finland) were
produced as described previously [19,29]. NFC raw material was aseptically collected
from bleached birch pulp and homogenized using an industrial fluidizer. Purified pulp
fibers were diluted with sterilized, ultra-high-quality water and fibrillated. To form ANFC
hydrogel, the cellulose kraft pulp was chemically modified via oxidation before fibrillation
to yield a carboxylic acid content of 1.0 mmol/g, which was determined by conducto-
metric titration according to the standard SCAN-CM 65:02. Before in vivo application,
ANFC hydrogel was sterilized by autoclaving at 121 ◦C for 15 min. pH indicator paper
sticks (Fisherbrand, Fisher Scientific, Vantaa, Finland) were used to measure the pH of
NFC hydrogels.

2.2. Scanning Electron Microscopy (SEM)

For SEM analysis, native and anionic NFC hydrogels were freeze-dried. First, samples
were frozen by dipping in liquid nitrogen, and subsequently transferred to a freeze dryer
(ScanVac CoolSafe, Labogene, Allerød, Denmark). Freeze-drying was performed in a
vacuum for 72 h and the pressure in the chamber was decreased to 0.036 mBar. The
temperature of an external condenser was −110 ◦C. For imaging, the samples were cut with
tweezers and coated with platinum with Quorum Q150TS, turbomolecular-pumped high
resolution coater (Quorum Technologies, Laughton, UK) for the analysis of the hydrogel
inner structure. The morphology of the freeze-dried hydrogels was imaged using 2.0–5.0 kV
and 2.5–4.0 spot in high vacuum with a scanning electron microscope FEI Quanta 250 Field
Emission Gun SEM (FEI Company, Hillsboro, OR, USA). Pore sizes were measured from
SEM micrographs using Leica Application Suite X (LAS X Core 3.7.4) software (Leica
Microsystems, Wetzlar, Germany).

2.3. Rheological Measurements

The rheological measurements for NFC hydrogels were performed at +25 ◦C us-
ing HAAKE Viscotester iQ Rheometer (Thermo Fisher Scientific, Karlsruhe, Germany)
equipped with a Peltier system for temperature control. HAAKE RheoWin 4.0 software
(Thermo Fisher Scientific) was used to analyze the results. In all measurements, parallel
steel plate-and-plate configuration was used (plate diameter of 35 mm, gap of 1 mm). Before
the measurement, hydrogels were taken to room temperature for 30 min and allowed to
rest for additional 2 min at the measurement plate with surface area of 962 mm2, at +25 ◦C
in a volume of 0.96 mL. The linear viscoelastic region for the hydrogels was determined
by controlled stress amplitude sweeps using constant angular frequency ω = 1 Hz and
oscillatory stress between 1 × 10−4–500 Pa. For frequency sweeps, the chosen oscillatory
stresses were τ = 5 Pa and τ = 30 Pa for 1.5% NFC hydrogel and for 3.2% ANFC hydrogel,
respectively. The angular frequency ranged from 0.6 to 125.7 rads−1. Triplicate samples
were used for measurements.

2.4. Swelling and Water Retention Profile

To measure the swelling ratios of hydrogels, 1.5% native NFC hydrogel and 3.2%
ANFC hydrogel were added as wet hydrogels into Transwell® permeable inserts (Merck,
Darmstadt, Germany), and weighed before (W0) and after (Wt) immersion in phosphate-
buffered saline (PBS) on a 12-well plate. The plate was incubated at +37 ◦C at 150 rpm. At
predetermined intervals ranging from 2 h to 21 days, the PBS buffer was removed and the
swollen hydrogels on a transwell insert were blotted on a paper to remove the buffer on
the surface and weighed. The swelling ratio was obtained from the following equation:

Swelling ratio (%) = [(Wt − W0)/W0] × 100%, (1)
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The anticipated state of swelling equilibrium for the hydrogels was reached when no
growth in swelling ratio was observed between two adjacent time points. The results were
recorded and averaged from five replicate samples.

2.5. Hemolytic Activity

Human donor red blood cells (RBCs; Finnish Red Cross Blood Service, Helsinki,
Finland) separated from the whole blood were washed three times with sterile PBS by
centrifugation at 2000 rpm for 5 min. Subsequently, an RBC suspension was prepared by
dispersing 200 µL of RBC in 9.8 mL of PBS. Native 1.5% NFC hydrogel and 3.2% ANFC
hydrogel (~20 µL) were immersed into 1 mL of RBC suspension, and the mixture was
incubated at +37 ◦C for 1 h. After incubation, the mixture was centrifuged at 2000 rpm
for 5 min, and the supernatant collected for absorbance measurement at 540 nm using
Varioskan LUX (Thermo Scientific, Waltham, MA, USA) microplate reader and SkanIt RE
6.0.2 software (Thermo Scientific). Triton X-100 (2%; Merck) and PBS were used as positive
and negative controls, respectively.

2.6. Animals

C57BL/6 male mice were purchased from Charles River Laboratories (Portishead, UK)
at the age of 7 weeks, and adaptively bred at least for 7 days before surgery. All animal
experiments followed the EU Directive 2010/63/EU and were performed in compliance
with the 3Rs and with the institute’s policy on animal use and ethics. Animal experiments
were approved by Animal Research Ethics Committee of University College Dublin (AREC-
15-27-Wang), and by Health Products Regulatory Authority (AE18982/P091), Ireland.
Animals were housed four animals per cage presurgery and two to four animals per
cage postsurgery under standard conditions in a temperature-controlled room on a 12 h
light/dark cycle at Biomedical Facility, University College Dublin. A standard laboratory
diet was supplied ad libitum, and soft bedding material and a plastic tube shelter were
provided for animals as an environmental enrichment. The animals were monitored
and scored daily for behavior and appearance, for pain and discomfort, and for signs of
infection before and after surgery until humanely euthanized, using the mouse grimace
scale and a specific score sheet. In case of signs of increased pain, additional analgesia
was provided for the animal, which was scored again after four hours. Power analysis for
calculation of the animal number applied for the study is presented in the Supplementary
Materials and Methods (Supplementary Table S1; Supplementary Figure S1). Animals
were divided in different study groups using randomization (Supplementary Figure S2).
Animals at 8–11 weeks of age were applied for surgery.

2.7. Surgical Procedure

Mice were anesthetized with isoflurane inhalation, and Buprenorphine (0.05 mg/kg) [32]
was administered subcutaneously before surgery. The dorsal hair of the animals was shaved
on either side of the spine, and the skin was disinfected with chlorhexidine, and sterilely
draped. On the shaved dorsal surface, two full-thickness 6 mm-diameter circular excisional
wounds were surgically created, one on either side of the spine. A sterile donut-shaped
splint (outer diameter 14 mm, inner diameter 10 mm) fabricated from a 1.6 mm thick
silicone sheet (Grace Bio-Labs, Bend, OR, USA) was then sutured with eight sutures using
4-0 Ethilon nylon sutures (Ethicon US LLC, Somerville, NJ USA) onto the surface of the
skin surrounding the excision. Sterile native 1.5 w/w% NFC hydrogel and sterile 3.2 w/w%
ANFC hydrogel were applied topically from a sterile syringe to the wound area at a
volume of 100 µL. Control wounds were left untreated. All the wounds were covered
with a transparent Tegaderm Film dressing (3 M Health Care, St Paul, MN, USA) that was
sutured on the silicone splint. Subsequently, wounds were covered with a gauze sutured on
the skin, owing to difficulty of keeping the dressings in place. Animals were observed until
they fully recovered from anesthesia. After surgery, pain relief was provided for all animals
via subcutaneous injection of Buprenorphine (0.05 mg/kg) twice daily for three days.
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At days 3 or 7 after surgery, animals were anesthetized again with isoflurane inhalation
for sample collection. Full-thickness skin specimens containing the entire wound and
wound margins were surgically collected after removal of the splint and partial removal of
the hydrogel, divided in two halves and stored in 10% formalin for histological analysis, or
frozen in liquid nitrogen and stored at −80 ◦C for preparation of a tissue protein lysate.
Animals were subsequently euthanized with an intraperitoneal injection of Pentobarbital
sodium (100 mg/kg).

2.8. Measurement of Wound Closure Rate

Wound beds were digitally photographed on days 0, 3, and 7 post-surgery. Wound
area in pixels at each time point was evaluated by measuring the wound diameter using
ImageJ 1.50i software, and the wound size calculated using the following equation:

Wound area (%) = [wound area (day n)/original wound area (day 0)] × 100%, (2)

2.9. Exclusion Criteria

Exclusion criteria during the study included wound infection, premature detachment
of hydrogel, or splint failure, which could have biased the results, and exaggerated pain,
itch, or discomfort in animals, followed by euthanasia. Splint failure was determined as
partial or complete detachment of splint, or more than three sutures released.

2.10. Histopathology and Immunohistochemistry

Wound tissue samples fixed in 10% formalin for 24 h were embedded in paraffin, cut
into 5 µm sections, and stained with hematoxylin and eosin (H&E) or Masson’s trichrome.
Inflammation in the wound area and in wound margins was analyzed from H&E-stained
sections by a pathologist, and graded based on the abundance of inflammatory infiltrate
in the wound area, and inflammatory changes in the wound margins (extent of the tissue
affected and intensity of the reaction) with a numerical scale from 1 to 4; 1 representing mild
(no inflammatory cell infiltration or tissue reaction); 2, moderate (minimal neutrophilic
infiltration and cell debris); 3, marked (necrotic debris and infiltration of neutrophils
and/or macrophages); and 4, severe inflammation (purulent infiltrate of neutrophils and/or
macrophages and necrotic debris). Grade 4 inflammation was considered as a necrotic
deep inflammation suggesting infection, and those samples (n = 1) were removed from the
final analyses due to exclusion criteria.

For immunostaining, tissue sections were deparaffinized in xylene, rehydrated, and
washed in distilled water. Antigen retrieval was performed in citrate buffer, pH 6 at 100 ◦C
for 15–20 min, followed by blocking of endogenous peroxidase activity in 3% H2O2 for
10 min. Non-specific staining was blocked with 5% bovine serum albumin (BSA; Merck,
Darmstadt, Germany) in Tris buffered saline with Tween 20 (Merck)(TBS-T), and endoge-
nous biotin using Avidin/Biotin Blocking Kit (Vector Laboratories, Burlingame, CA, USA).
Sections were incubated with anti-rabbit ACTA2/alpha-smooth muscle actin (α-SMA)
antibody (1:30; LifeSpan Biosciences Inc, Seattle, WA, USA) or anti-mouse proliferating
cell nuclear antigen (PCNA) antibody (1:500; Santa Cruz Biotechnology Inc., Dallas, TX,
USA) at +4 ◦C overnight, followed by biotinylated goat anti-rabbit or goat anti-mouse IgG
secondary antibody (1:1000; Abcam, Cambridge, UK) for 1 h at room temperature (RT).
Antibodies were detected using VECTASTAIN Elite ABC Reagent (Vector Laboratories), fol-
lowed by 3,3’-diaminobenzidine (DAB) horseradish peroxidase (HRP) substrate treatment
(Vector Laboratories). Subsequently, the sections were counterstained with hematoxylin,
dehydrated, and cleared in xylene.

The sections were scanned using Pannoramic 250 Flash III brightfield digital slide
scanner (3DHISTECH Ltd., Budapest, Hungary). The length of the newly formed epidermis
and the thickness of the granulation tissue were measured from Masson’s trichrome-
stained sections using Pannoramic Viewer 1.15.4 software (3DHISTECH Ltd.). ImageJ 1.50i
software was used to evaluate α-SMA staining intensity, the number of PCNA-positive
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keratinocytes in a microscopic field by manual counting, and the deposition of collagen
(blue intensity) from Masson’s trichrome-stained samples.

2.11. Immunofluorescence

Deparaffinized and rehydrated sections were blocked using 5% BSA in phosphate-
buffered saline (PBS)/Tween 20, followed by primary antibody incubation at +4 ◦C
overnight with anti-rabbit CD31/platelet endothelial cell adhesion molecule (PECAM-1)
antibody (1:500; Novus Biologicals, Abingdon, UK). Alexa Fluor 594 donkey anti-rabbit
IgG (1:500; Thermo Scientific) was applied as a secondary antibody, and incubated for 1 h at
RT. Slides were mounted with ProLong Diamond Antifade Mountant with DAPI (Thermo
Fisher Scientific), imaged with Aurox Clarity Laser Free Confocal HS (Aurox, Oxford, UK)
wide-field microscopy, and analyzed by counting manually the number of CD31-positive
blood vessels with a visible lumen per microscopic field using Fiji ImageJ 1.51 software.

2.12. Western Blotting

Skin tissue samples were homogenized in Pierce RIPA lysis buffer (Thermo Scien-
tific, ) supplemented with protease inhibitor and phosphatase inhibitor (Roche, Basel,
Switzerland) using TissueRuptor (Qiagen, Hilden, Germany), and centrifuged at 10,000× g
at +4 ◦C for 20 min. Protein concentrations were measured using the Pierce BCA Protein
Assay Kit (Thermo Scientific). Equal amounts of protein (40 µg) were separated by 10% or
12% SDS-PAGE and transferred onto a nitrocellulose membrane using Trans-Blot Turbo
Transfer System (BioRad, Hercules, CA, USA). The membranes were then incubated with
5% BSA or non-fat milk in TBS-T for 1 h at RT, followed by incubation at +4 ◦C overnight
with primary antibodies anti-rabbit ACTA2/α-SMA (1:1000), anti-rabbit TGFβ (1:200; Cell
Signaling Technology, Danvers, MA, USA), anti-rabbit Collagen 1/COL1A1 (1:1000; Boster
Biological Technology, Pleasanton, CA, USA), anti-mouse ERK 1

2 (1:100) or anti-mouse
p-ERK 1

2 (1:200) (Santa Cruz Biotechnology, Inc.), anti-rabbit p38 MAPK (1:500) or anti-
rabbit Phospho-p38 MAPK (1:500) (Cell Signaling Technology), and anti-rabbit β-Actin
(1:300; Bio-Rad). Peroxidase conjugated goat anti-rabbit IgG (1:50; Thermo Scientific) or
goat anti-mouse IgG (1:500; Life Technologies, Carlsbad, CA, USA) secondary antibody
was then applied on membranes for 1 h at RT and immunoblots were detected with Pierce
ECL Western Blotting Substrate (Thermo Scientific). Relative amount of proteins were
quantified using ImageJ 1.50i software.

2.13. Statistical Analysis

Data are expressed as mean ± standard deviation (SD). Statistical significance between
the groups was determined using one-way analysis of variance (ANOVA) followed by
Tukey’s honestly significance difference test. The significance level was defined as p < 0.05.

3. Results
3.1. Characterization of NFC Hydrogels

We evaluated the structure and porosity of NFC hydrogels using SEM. Both native
NFC (nNFC) and ANFC hydrogel exhibited highly porous internal structures with average
pore size of 13.2 µm for nNFC (range 3–29 µm) and of 30.6 µm for ANFC (range 12–59 µm)
(Figure 1A). Thus, with the increase in the fiber content, the pore size increased. We then
measured the pH of NFC hydrogels. Both native NFC hydrogel and ANFC hydrogel
showed pH 7. This is because NFC is a sugar, of which alcohol groups show pH values of
approximately 9 until it is neutral. ANFC hydrogel, on the other hand, is a Na+ salt, which
has about 20% of the hydroxyl groups ionized. However, because the wound environment
is extremely buffered, and OH groups are weak acids, the pH of NFC hydrogels is always
kept at the physiological level.
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The analysis of the viscoelastic properties of NFC hydrogels revealed higher storage
(G’) and loss modulus (G”) in ANFC compared with native NFC (Figure 1B). In addition,
storage modulus (G’) values of both nNFC and ANFC were higher compared with loss
modulus (G”) values. The swelling behavior of NFC hydrogels was tested in PBS at
+37 ◦C (Figure 1C). Native NFC hydrogel reached the equilibrium state of swelling within
2 h and ANFC hydrogel within 8 h. However, both NFC hydrogels remained stable in
PBS for 21 days at +37 ◦C with agitation at 150 rpm without using preservatives, and no
degradation was observed during the time period. The swelling ratios at equilibrium were
approximately 20% for nNFC and 40% for ANFC. Since the hydrogels are highly porous,
they contain two types of water, the water hydrating the polymer chains, and bulk water
filling the pores. We further evaluated the biocompatibility of NFC hydrogels in vitro using
hemolysis assay (Figure 1D). The results show that both nNFC and ANFC induce even less
lysis of red blood cells than the negative control (PBS), suggesting that NFC hydrogels do
not trigger hemolytic toxicity.
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3.2. The Effect of Nanofibrillar Cellulose Hydrogels on Wound Closure and Inflammation

The effect of native and anionic NFC hydrogels on wound healing was evaluated in a
splinted full-thickness excisional mouse wound model. Untreated wounds served as con-
trols. Due to exclusion criteria, 36 wound samples (13 controls, 13 native NFC, 10 ANFC)
harvested on days 3 or 7 post-surgery were available for analyses (Supplementary Table S2).
None of the animals suffered from exaggerated pain, itch, or discomfort due to the treat-
ments. Wound area was measured as indicated in Figure 2A. Representative photographs
of the wounds at both time points are presented in Figure 2B. Compared with control
wounds, wounds treated with native or anionic NFC did not promote wound closure on
either of the time points (Figure 2C). At day 7, wound healing in control wounds was
significantly progressed compared with day 3, while in wounds treated with native NFC
or ANFC wound closure was not advanced (Figure 2C). These results suggest that NFC
hydrogels do not affect wound closure.
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Figure 2. Wound closure is not affected by nanofibrillar cellulose (NFC) hydrogels in splinted mouse
wounds. (A) A representative image of native NFC (nNFC)-treated wound on day 3 showing the
wound area marked with a black circle applied to measure the wound diameter. (B) Photographs of
wounds treated with native NFC (nNFC) or anionic NFC (ANFC) on the day of surgery (day 0; d0)
and on days 3 and 7 after surgery. Control wounds were left untreated. (C) Quantitation of wound
closure presented as the percentage of wound area on days 3 and 7 post-surgery. The values are the
mean ± standard deviation (n = 4–8). ** p < 0.01 d3 vs. d7. Ctrl, control; n.s., not significant.

At the beginning of inflammatory phase in wound healing, numerous leukocytes
consisting mainly of neutrophils are infiltrated into the wound area during the first hours
after the skin injury to clear the wound from invaded microbes and foreign material [1]. In
our study, an independent pathologist analyzed the inflammatory changes from histological
wound samples stained with hematoxylin and eosin on days 3 and 7 (Figure 3). On day 3,
the dermis indicated various levels of inflammation. Dermal adipose tissue showed necrotic
debris and hemorrhage, suggesting a marked trauma due to wounding, and moderate
mixed inflammation. On day 7, a cellular crust consisting of abundant granulocyte debris
and eosinophilic material covered the wound areas. The dermis exhibited mild to moderate
inflammatory cell infiltration, and dermal adipose tissue showed mild to marked mixed
inflammation. The inflammation in the wound area and in the wound margin were
separately graded with numerical scales (Tables 1 and 2, respectively). No significant
difference in acute inflammatory response was observed in native NFC- or ANFC-treated
wounds compared with control, suggesting that wounds treated with NFC hydrogels
progress through normal inflammation phase during wound healing. Further, there was
no evidence of cell death due to the treatments.
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Figure 3. Representative hematoxylin and eosin staining images of wounds treated with native
nanofibrillar cellulose (nNFC) and anionic NFC (ANFC), and untreated control. (A) On day 3, the
epithelium at the wound margins exhibits mild to marked hyperplasia (asterisk). On day 7, the
wound margin epidermis shows moderate to marked hyperplasia (asterisk). Some granulation tissue
(G) is present. Scale bar, 200 µm. (B) On day 3, the dermis shows moderate to no mixed inflammatory
cell infiltration (mononuclear cells indicated with a red arrow and neutrophils with a red arrowhead)
in control wounds, mild to no inflammatory cell infiltration in nNFC-treated wounds and mild mixed
inflammation or no inflammatory cell infiltration in ANFC-treated wounds. On day 7, the dermis
exhibits mild mononuclear inflammation (macrophages and lymphocytes) in control and mild to
moderate mixed inflammation in hydrogel-treated wounds. Scale bar 50 µm. Ctrl, control.

Table 1. Grading of inflammation in the wound area 3 and 7 days after wounding based on the
abundance of inflammatory infiltrate.

Histopathologic Scale to Evaluate Inflammation

Day Group Total Grade 1 Grade 2 Grade 3 Grade 4 p Value

3 ctrl 5 0 2 3 0
nNFC 4 0 1 3 0
ANFC 4 2 1 1 0 0.129

7 ctrl 4 0 1 3 0
nNFC 4 1 1 2 0
ANFC 3 2 0 1 0 0.323

Numerical scales represent mild (1; no inflammatory cell infiltration); moderate (2; minimal neutrophilic infiltration);
marked (3; infiltration of neutrophils and/or macrophages); or severe (4; purulent infiltrate of neutrophils and/or
macrophages) inflammatory changes. Ctrl, control; ANFC, anionic nanofibrillar cellulose; nNFC, native NFC.
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Table 2. Grading of inflammation in the wound margin 3 and 7 days after wounding based on the
intensity of the inflammatory reaction and extent of the tissue affected as described in the materials
and methods.

Histopathologic Scale to Evaluate Inflammation

Day Group Total Grade 1 Grade 2 Grade 3 Grade 4 p Value

3 ctrl 6 2 3 1 0
nNFC 6 2 3 1 0
ANFC 6 2 2 2 0 0.918

7 ctrl 4 0 0 4 0
nNFC 5 0 1 4 0
ANFC 2 0 0 2 0 0.6

Numerical scales represent mild (1; no tissue reaction); moderate (2; cell debris); marked (3; necrotic debris); or
severe (4; purulent necrotic debris) inflammatory changes. Ctrl, control; ANFC, anionic nanofibrillar cellulose;
nNFC, native NFC.

According to histopathologic evaluation, both native NFC and ANFC appeared bio-
compatible and induced no foreign body giant cell formation but showed infiltration of
various cell types, mainly neutrophils in addition to few macrophages, into the hydrogels
(Figures 3 and 4). Native NFC even exhibited some infiltration of mesenchymal cells and
epidermal cells and was encapsulated by fibrous tissue in some samples (Figure 4B,C).
These results point out an acute inflammatory response, which is characterized by neu-
trophil infiltration, but no pathological immune response towards the biomaterial involving
development of foreign body giant cells (FBGCs) [33]. However, it cannot be ruled out that
FBGCs are not forming at the later time points, which are not addressed in this study.
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Figure 4. Cell infiltration into nanofibrillar cellulose (NFC) hydrogels. (A) Day 3. Native NFC (nNFC)
hydrogel shows minimal, mostly neutrophilic infiltration, while there is minimal to moderate but
largely superficial neutrophilic or mixed inflammatory infiltration into the anionic NFC (ANFC)
hydrogel. Scale bar in the images on the left, 200 µm. Higher magnification with neutrophils marked
with red arrowheads is shown on the right, scale bar 50 µm. (B) Day 7. Native NFC hydrogel is
invaded mostly by neutrophils (red arrowhead) with few macrophages (red arrow), and small number
of mesenchymal cells (black arrow) and epidermal cells (black arrowhead) infiltrating into the hydrogel
in some samples. ANFC hydrogel shows minimal to marked infiltrates of neutrophil debris (asterisk).
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Scale bar in the images on the left, 200 µm. Higher magnification is shown on the right, scale bar
50 µm. (C) On the left, native NFC hydrogel aggregate is enclosed in a layer of fibrin and a loose
layer of cellular debris containing neutrophils, macrophages, and mesenchymal cells. On the right,
fragmented ANFC hydrogel covers and submerges inside the adipose tissue. Scale bar, 200 µm.

3.3. Nanofibrillar Cellulose Hydrogels Provide Efficient Wound Re-Epithelialization

Concomitantly with the inflammation phase, the wound healing continues with cell
proliferation that facilitates the growth of a new epithelium and the granulation tissue. We
observed hyperplasia to be present in the epithelium at the wound margin in all samples
(Figure 3A). Further, we evaluated re-epithelialization in wounds from Masson’s trichrome-
stained wound sections by measuring the length of the neo-epithelium, i.e., the layer of
keratinocytes growing into the wound area, as indicated by double-headed arrows in
Figure 5A. Both native NFC and ANFC showed comparable re-epithelialization at day 3
and day 7 compared with control wounds (Figure 5A,B).

To analyze cell proliferation in the newly regenerated epidermis, the proliferating
cell nuclear antigen (PCNA), a marker for proliferating cells, was detected in day 3 and 7
wound sections by immunohistochemistry to quantify the amount of positive keratinocytes
(Figure 5C–F). NFC hydrogels showed similar levels of PCNA-positive keratinocytes in
the epidermis compared with control (Figure 5D,F) indicating that cell proliferation in the
epidermis was not significantly affected. Results presented herein propose that the growth
of the new epidermal tissue progresses ordinarily in wounds treated with NFC hydrogels.

3.4. Granulation Tissue Formation Appears Normal in NFC Hydrogel-Treated Wounds

The growth of granulation tissue was evaluated from Masson’s trichrome-stained
sections by measuring its thickness. Wounds treated with NFC hydrogels showed equal
granulation tissue compared with control (Figure 6A,B). The growth of granulation tissue
is facilitated by dermal fibroblasts, which produce new ECM proteins such as collagen.
The amount of collagen deposition was analyzed in the newly formed granulation tissue
at day 7 from Masson’s trichrome-stained sections that shows collagen fibers in blue. No
significant difference in collagen deposition was observed after treatment with native NFC
or ANFC compared with control (Figure 6C). These results suggest that NFC hydrogels
provide normal granulation tissue development during wound healing.

3.5. Nanofibrillar Cellulose Hydrogels Provide Normal Angiogenesis and Tissue Maturation in
a Wound

The expression of α-SMA is considered as a marker of fibroblast differentiation into
myofibroblasts that are essential for wound contraction and extracellular matrix (ECM)
remodeling following tissue injury [34]. We therefore examined whether NFC hydrogels
affect α-SMA expression. The immunohistochemical staining at day 7 revealed similar
expression levels of α-SMA in wounds treated with NFC hydrogels compared with control
wounds (Figure 7A,B). The α-SMA expression levels were further confirmed by Western
blot analysis of full-thickness wound samples, which showed similar results (Figure 7C).
Considering that α-SMA is also expressed in pericytes facilitating blood vessel matura-
tion [35], and to study the effect of NFC hydrogels on wound vascularization, we addressed
the level of angiogenesis in wounds by immunofluorescence staining of platelet endothelial
cell adhesion molecule CD31 [36,37] (Figure 7D). Native NFC or ANFC did not affect the
density of CD31-positive blood vessels compared with control (Figure 7E), suggesting that
angiogenesis is not affected by NFC hydrogel treatment.
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Figure 5. Re-epithelialization in control, native nanofibrillar cellulose (nNFC), and anionic NFC (ANFC)-treated wounds.
(A) Representative images of Masson’s trichrome staining from the wound margin on days 3 and 7. The double-headed
arrows indicate the length of the newly formed epithelium. Scale bars, 200 µm. (B) Quantitation of the length of the new
epithelium from Masson’s trichrome-stained sections on day 3 and 7 showing normal re-epithelialization by NFC hydrogels.
The values are the mean ± standard deviation (SD) (n = 4–7). (C) Proliferating cell nuclear antigen (PCNA) staining of
wound sections on day 3. Scale bars, 200 µm (top row), 50 µm (bottom row). (D) The number of PCNA-positive keratinocytes
in the epidermis on day 3 is not affected by NFC hydrogels. The values present the mean ± SD (n = 6). (E) PCNA staining
on day 7. Scale bars, 200 µm (top row), 50 µm (bottom row). (F) The number of PCNA-positive keratinocytes on day 7
is comparable in wounds treated with NFC hydrogels compared with control (mean ± SD, n = 4–5). Ctrl, control; n.s.,
not significant.
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Figure 6. Granulation tissue formation in control, native nanofibrillar cellulose (nNFC)- and anionic
NFC (ANFC)-treated wounds. (A) Representative images of Masson’s trichrome staining from
the wounds showing the granulation tissue on days 3 and 7. The double-headed arrows indicate
the thickness of the granulation tissue. Scale bars, 500 µm. (B) Quantitation of granulation tissue
thickness on day 3 and 7 indicating equal growth of the granulation tissue in NFC hydrogel-treated
wounds compared with control on day 7. The values present the mean ± standard deviation (SD)
(n = 4–6). (C) NFC hydrogels do not affect the percentage of collagen deposition in the granulation
tissue quantitated from day 7 Masson’s trichrome-stained sections. The values are the mean ± SD
(n = 4–5). Ctrl, control; n.s., not significant.

TGF-β1 is known to play various roles during the wound healing process. It is
a pro-angiogenic factor that stimulates angiogenesis [38]. Moreover, TGF-β1 induces
myofibroblast differentiation from fibroblasts, advancing fibrotic remodeling and tissue
maturation via activation of α-SMA [38,39]. However, its persistent activation is associated
with fibrosis [40]. We therefore evaluated the expression of TGF-β1 in wounds by Western
blotting to address whether NFC hydrogels increase fibrosis. The expression levels of
TGF-β1 were comparable in NFC hydrogel-treated wounds and control wounds at day 7
(Figure 7F). The fibrotic remodeling was further examined by expression analysis of a
fibrotic marker collagen I using Western blotting. The results show that the expression of
collagen I is not affected by NFC hydrogels compared with control (Figure 7G). Overall, the
results obtained herein confirm that NFC hydrogels do not induce fibrosis or significantly
affect the collagen deposition.
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Figure 7. Granulation tissue remodeling and angiogenesis in control, native nanofibrillar cellulose 

(nNFC)- and anionic NFC (ANFC)-treated wounds. (A) Immunohistochemical (IHC) staining of 

wound sections with α-smooth muscle actin (SMA) antibody on day 7. Scale bars, 50 µm. (B) Quan-

titation from IHC staining showing no significant change in expression of α-SMA in the granulation 

tissue by NFC hydrogels compared with control. The values present the mean ± standard deviation 
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Figure 7. Granulation tissue remodeling and angiogenesis in control, native nanofibrillar cellu-
lose (nNFC)- and anionic NFC (ANFC)-treated wounds. (A) Immunohistochemical (IHC) stain-
ing of wound sections with α-smooth muscle actin (SMA) antibody on day 7. Scale bars, 50 µm.
(B) Quantitation from IHC staining showing no significant change in expression of α-SMA in the
granulation tissue by NFC hydrogels compared with control. The values present the mean ± stan-
dard deviation (SD) (n = 4–5). (C) Western blot showing expression of α-SMA in control, and nNFC
and ANFC hydrogel-treated wounds on day 7. Quantitation showing the mean ± SD (n = 4–5) is
presented on the right. (D) Immunofluorescence staining of CD31 (red) and nuclei (DAPI; blue)
in the granulation tissue on day 7. Scale bars, 50 µm. (E) Quantitation of CD31-positive blood
vessels from immunofluorescence staining showing no difference between NFC hydrogel-treated
and control wounds. The values are the mean ± SD (n = 4). (F,G) Immunoblots and quantitations
showing no significant change in the expression levels of TGF-β1 (F) and collagen I (G) in NFC
hydrogel-treated wounds compared with control. The values are the mean ± SD (n = 4–5). Ctrl,
control; n.s., not significant.
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The phosphorylation of extracellular signal-regulated kinases (ERK) and p38 MAPK
has been shown to improve wound healing by inducing the proliferation and migration
of fibroblasts and keratinocytes [41–43]. Thus, we analyzed the phosphorylation state
of ERK and p38 MAPK in wound samples by Western blotting. The results show that
the phosphorylation of ERK and p38 MAPK in native NFC or ANFC hydrogel-treated
wounds are comparable with control wounds (Figure 8A,B), suggesting further that tissue
maturation during wound healing proceeds normally in NFC hydrogel-treated wounds.
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Figure 8. Extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase
(MAPK) signaling in control and nanofibrillar cellulose (NFC) hydrogel-treated wounds on day 7.
(A) Western blot and quantitation showing the phosphorylation of ERK, presented as the mean ± SD
(n = 3–4). ERK phosphorylation is not affected by NFC hydrogels. (B) Western blot and quantitation
presenting unchanged phosphorylation level of p38 MAPK by NFC hydrogels. The data represent
the mean ± SD (n = 3–4). Ctrl, control; ANFC, anionic NFC; nNFC, native NFC; n.s., not significant.

4. Discussion

The biomaterial properties including biocompatibility, water-retaining ability, mechan-
ical and chemical properties, and scaffold structure affect its successful application in tissue
engineering [44]. We decided to test different hydrogel concentrations of native (1.5%) and
anionic NFC (3.2%) to give insight of the material behavior for different further applications
of NFC hydrogel. The chemical nature of the two hydrogels is different, and therefore
they show varying stiffness even in the same concentration. The 1.5 w/w% NFC hydrogel
is a readily available commercial product. It would be promising to test its potential in
treatment of humanized deep wounds and for possible use, e.g., as a cell delivery scaffold
in the future. ANFC hydrogel is a more novel form of NFC in the field of pharmaceutical
applications, and it has an advantage of being transparent and easily moldable, which
makes it an interesting biomaterial. In this study, we aimed to perform the preliminary
in vivo tests with 3.2 w/w% ANFC hydrogel, which has previously shown potential in
drug release [29]. We first addressed the morphology and water retention capacity of NFC
hydrogels. Both native NFC and ANFC hydrogel showed a porous structure that may
provide a sufficient space for the proliferation and migration of endogenous cells to facili-
tate tissue renewal. Regarding the swelling ratios, we observed that both NFC hydrogels
show only a minor swelling behavior but long water-retaining capacity and no degradation
during a period of 21 days. A proper moisture content is important for optimal wound
healing, and therefore, both NFC hydrogels seem suitable for wound healing treatment
due to their high water-retaining capacity. Further, our in vitro hemolysis assay revealed
the non-hemolytic and thus biocompatible nature of both NFC hydrogels.

Repair of full-thickness wounds is initiated by the formation of granulation tissue that
provides a platform for the new epithelial covering [45,46]. In humans, re-epithelialization
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is the primary mechanism of wound healing accounting for up to 80% of wound clo-
sure [47]. Previously, it has been shown in a porcine full-thickness wound model that 1.7
w/w% native and 0.7 w/w% anionic NFC hydrogel both inhibit wound contraction and
re-epithelialization with simultaneous increase in α-SMA expression in the wound [24]. We
have demonstrated here that native 1.5 w/w% native NFC hydrogel and 3.2 w/w% ANFC
hydrogel do not significantly affect wound closure in the mouse splinted wound model.
Further, neither native or anionic NFC hydrogel did impact granulation tissue formation
or collagen deposition in wounds.

The re-epithelialization progressed through the proliferation of epidermal keratinocytes,
which was not significantly influenced by NFC or ANFC hydrogel. Further, treatment with
both NFC hydrogels showed similar growth of neo-epithelium compared with control. We
have previously shown in a clinical study that a wound dressing manufactured from native
NFC provides efficient wound epithelialization in skin graft donor site wounds [22,23],
which is consistent with the results in the present study, which for the first time evaluates
the performance of native NFC hydrogel in a humanized deep wound. During the entire
healing process, continuous physical contraction appears in order to close the wound.
After wounding, fibroblasts at the wound margins are activated by physical tension to
differentiate into stress fiber-expressing proto-myofibroblasts [45]. Subsequently, these
cells are activated by TGF-β1 secreted by inflammatory cells to α-SMA expressing myofi-
broblasts, which have a key role in wound contraction [48]. We detected normal expression
of α-SMA, which proposed that contractile action of myofibroblasts is not affected by NFC
or ANFC hydrogel.

Sufficient mechanical tension in a tissue is required for TGF-β1 activation and subse-
quent tissue maturation [34]. Our rheology measurement results indicate that both 1.5%
NFC hydrogel and 3.2% ANFC hydrogel show elastic behavior due to having higher elastic
modulus compared with loss modulus [49]. However, we discovered that ANFC hydrogel
possesses higher elastic modulus compared with native NFC, but the different stiffness
did not show differential effects on wound healing. The results suggest that both NFC
hydrogels provide an optimal mechanical signal for tissue regeneration. Furthermore, the
stiffness of NFC and ANFC hydrogel is able to be modified as a function of water content
for different applications and according to the tissue in question.

In light of optimal wound healing, a correct balance in skin repair, i.e., time of wound
closure, is important to enable optimal tissue regeneration but to avoid excess scarring.
Therefore, we addressed the level of fibrosis after treatment with native NFC and ANFC
hydrogels by comparing the expression levels of fibrotic markers TGF-β1 and collagen I to
control and concluded that either of NFC hydrogels do not induce excess scarring. These
results are in line with our previous study, where we showed that NFC wound dressing
manufactured from native NFC and used for patient skin graft donor site treatment did
not form a scar after epithelialization [23].

Application of a biomaterial often initiates recruitment of immune cells that are critical
for regeneration and wound healing after injury [33,50–52]. In our study, we found that
both native and anionic NFC hydrogel provoke a normal inflammatory response that is
required for successful wound healing. Moreover, we observed infiltration of different
cell types into the hydrogels but no foreign body response, which is characterized by
multinucleated foreign body giant cells that form via macrophage fusion and that adhere
on the biomaterial surface [53]. These results suggest an interactive connection to take
place between the hydrogels and the tissue. Previously, anionic NFC scaffold has been
shown to provoke a foreign body response when implanted subcutaneously due to slow
degradation in a tissue over time [54]. However, this will not be an issue when NFC is
applied topically. Recently, the importance of an interface between biomaterial and tissue
has been recognized to enable cell adhesion, infiltration, and proliferation, which guides
stimulation of tissue regeneration [55]. From tissue engineering perspective, it is important
that the host tissue is able to successfully integrate and remodel the biomaterial into a
functional substitute tissue.
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Angiogenesis is a prerequisite for tissue regeneration since blood vessels provide the
necessary nutrients and oxygen supply for the tissue. We analyzed the presence of CD31-
positive blood vessels in the wound area and showed that NFC or ANFC hydrogel do not
impede angiogenesis. With respect to signaling pathways underlying wound healing, we
analyzed ERK and p38 MAPK signaling in wounds and showed that their phosphorylation
is not affected by either of NFC hydrogels.

In clinical use of commercial hydrogels, they are often treated with saline for their
removal from the wound bed. We observed dehydration of both hydrogels during the
treatment. Therefore, in future applications it may be worthwhile to hydrate the hydrogels
during the treatment to improve the outcome of wound healing.

Previously, surface chemistry has been shown to play a role in different biological
responses towards biomaterials, including nanofibrillar cellulose [56]. In our study, we did
not observe different behavior with respect to wound healing between native and anionic
NFC hydrogel. Since both NFC and ANFC hydrogel is applicable as a cell scaffold for 3D
cell culturing [19,28,57,58], they serve as potential scaffold materials for therapeutic cells to
be used for wound treatment to stimulate wound healing. Additionally, they may provide
a scaffold for delivery of drugs or proteins into a wound [19,29]. In summary, both NFC
hydrogels may have potential clinical significance in postoperative wound management
in the future and they may serve as a therapy for different types of wounds although
native NFC hydrogel seems more promising based on the received results. However, this
study presents only preliminary findings, and it is important to uncover the cellular and
molecular processes that regulate wound healing before development of new therapies to
modulate wound healing.

The limitations of the study include the small sample and animal number resulting
from exclusion criteria, mainly because of splint failures, and that the wound healing
was not evaluated until complete wound closure due to the same reason. The results
are, however, promising and show the biocompatibility and mechanical characteristics
of native and anionic NFC hydrogels, and a primary proof of concept of the application
of NFC hydrogels in wound healing. A further study should be systematically designed
and performed to validate the potential of NFC hydrogels as wound dressing using
more animals.

In summary, native NFC hydrogel and ANFC hydrogel were shown to provide com-
parable wound closure rate and re-epithelialization compared with control. Wound healing
in NFC and ANFC hydrogel-treated wounds progressed with normal inflammation, gran-
ulation tissue formation, and angiogenesis, and showed equal number of myofibroblasts,
and level of fibrosis compared with control treatment.

5. Conclusions

In the present study, we found that native and anionic NFC hydrogels are biocompati-
ble and facilitate wound closure and re-epithelialization comparable to control. Wounds
treated with NFC and ANFC hydrogels progress through normal inflammatory reaction,
re-epithelialization, granulation tissue formation, vascularization, and fibrotic remodeling.
Future studies with NFC hydrogels may prove their potential as biomaterial scaffolds to be
used to stimulate wound healing via delivery of a therapeutic agent to the wound.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/micro1020015/s1. Supplementary Materials and Methods: Power analysis and Random-
ization; Supplementary Table S1: Originally planned treatment groups; Supplementary Figure S1:
In vivo wound treatments; Supplementary Table S2: The number of valid samples used for analyses;
Supplementary Figure S2: Randomization of animals used for surgery.
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