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Abstract: Ionic liquids have many interesting properties as they share the properties of molten
salts as well as organic liquids, such as low volatility, thermal stability, electrical conductivity, non-
flammability, and much more. Ionic liquids are known to be good solvents for many polar and
nonpolar solutes. Combined with their special properties, ionic liquids are good replacements for
the conventional toxic and volatile organic solvents. Each ionic liquid has different properties than
others. In order to alter, tune, and enhance the properties of ionic liquids, sometimes, it is necessary
to mix different ionic liquids to achieve the desired properties. However, using mixtures of ionic
liquids in chemical processes requires reliable estimations of the mixtures’ physical properties such
as refractive index and density. The ionic liquids used in this work are 1-butyl-3-methylimidazolium
thiocyanate ([BMIM][SCN]), 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), 1-hexyl-
3-methylimidazolium tetrafluoroborate ([HMIM][BF4]), and 1-hexyl-3-methylimidazolium hexaflu-
orophosphate ([HMIM][PF6]). These ionic liquids were supplied by Io-li-tec and used as received.
However, new measurements for the density and refractive index were taken for the pure ionic liquids
to be used as reference. In the present work, the densities and refractive indices of four different
binary mixtures of ionic liquids with common cations and/or anions have been measured at various
compositions and room conditions. The accuracy of different empirical mixing rules for calculation
of the mixtures refractive indices was also studied. It was found that the overall absolute average
percentage deviation from the ideal solution in the calculation of the molar volume of the examined
binary mixtures was 0.78%. Furthermore, all of the examined mixing rules for the calculation of the
refractive indices of the mixtures were found to be accurate. However, the most accurate empirical
formula was found to be Heller’s relation, with an average percentage error of 0.24%. Furthermore,
an artificial intelligence model, an adaptive neuro-fuzzy inference system (ANFIS), was developed
to predict the density and refractive index of the different mixtures studied in this work as well as
the published literature data. The predictions of the developed model were analyzed by various
methods including both statistical and graphical approaches. The obtained results show that the
developed model accurately predicts the density and refractive index with overall R2, RMSE, and
AARD% values of 0.968, 7.274, 0.368% and 0.948, 7.32 × 10−3 and 0.319%, respectively, for the
external validation dataset. Finally, a variance-based global sensitivity analysis was formed using
extended the Fourier amplitude sensitivity test (EFAST). Our modelling showed that the ANFIS
model outperforms the best available empirical models in the literature for predicting the refractive
index of the different mixtures of ionic liquids.

Keywords: refractive index; density; ionic liquids; mixtures; ANFIS

1. Introduction

Ionic liquids are salts in the liquid state. Due to the strong ionic bond between the
cation and the anion, most ionic compounds exist in the form of crystal lattice (solid state) at
room temperature. However, many asymmetric organic based ionic liquids appear in liquid
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form at room temperature due to the weaker ionic bonding between the cation and anion.
Ionic liquids have many interesting properties, as they share the properties of molten salts
as well as organic liquids, such as low volatility, thermal stability, electrical conductivity,
non-flammability, and much more. Ionic liquids are known to be good solvents for many
polar and nonpolar solutes. Combined with their special properties, ionic liquids are
good replacements for the conventional toxic and volatile organic solvents. Each ionic
liquid has different properties to others. In order to alter, tune, and enhance the properties
of ionic liquids, sometimes, it is necessary to mix different ionic liquids to achieve the
desired properties.

However, using mixtures of ionic liquids in chemical processes requires the reliable
estimations of the mixtures’ physical properties, such as refractive index and density.
Many general mixing rules for liquids have been proposed so far, which describe specific
types of systems. This emphasizes the need to examine these mixing rules with respect
to ionic liquid mixtures and to determine the best mixing rule for each physical property.
Furthermore, assuming ideal behavior for the mixtures simplifies their complexity. Hence,
the validity and accuracy of an ideal mixture assumption are uncertain and need to be
examined. This will give a clearer picture in the design stage about the uncertainty of the
calculations and in estimating the safety factor required for the design.

In addition to the existing empirical rules for the estimation of the different properties
of the ionic liquid mixtures, such as refractive index, artificial intelligence (AI) models
such as artificial neural networks (ANNs), regression models, fuzzy logic, support vector
machine (SVM), and neural-based fuzzy interference system (ANFIS), can be used to
predict the behavior of such complex systems. Different techniques have already been
applied for the calculation of the various thermophysical properties of ionic liquid mixtures.
Among various AI techniques, ANN alone or along with evolutionary algorithms such as
genetic algorithms (GAs) and particle swarm optimization (PSO) has been used effectively
to predict the properties of ionic liquid binary mixtures [1–4]. These techniques can predict
responses with high accuracy, regardless of variation in input parameters. Very few studies
have assessed the ability of the ANFIS model for this purpose [5]. ANFIS, however, is a
potential soft computational modelling technique that combines the power of ANN with
fuzzy logic [6–8]. ANFIS, as with the ANN, learns from training data with any complex
relationships, then implements the solutions on a fuzzy inference system (FIS). ANFIS can
use FIS to define hidden layers and to improve its predictive ability; thus, it eliminates the
difficulty of defining the hidden layers that often exist in ANN; however, the number of
membership functions (MFs) should be defined per input. The number of MFs depends on
the number of the existing dataset. Their ability to overcome problems with experimental
and deterministic models makes them ideal for complex chemical processes. However,
determining the structure of ANN has become a major challenge in developing a highly
accurate model [9]. Consequently, Hosoz et al. [10] pointed out that ANFIS, according to
other studies, can predict more accurately than ANN. However, in other studies, it has been
stated that the accuracy of these techniques depends on how they are implemented and
their applications [11]. Considering all the aforementioned facts, in the present study, we
have made an attempt to develop and examine an ANFIS model to predict the properties
of ionic liquid binary mixtures. Our measured density and refractive index of binary ionic
liquid mixtures as well as the available published data on these properties have been used
in this work.

2. Properties of Binary Liquid Mixtures
2.1. Molar Volume

For ideal liquid mixtures, the molar volume is defined as:

videal mix = ∑ xivi (1)

where vmix is the molar volume of the mixture, vi is the individual molar volume of
component i, and xi is mole fraction of component i. Many liquids do not form ideal
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mixtures and hence do not show volume additivity. The deviation from ideality can be
calculated by introducing excess molar volume term to the previous equation. Hence, the
equation is written as:

vreal mix = videal mix + vexcess (2)

2.2. Mixture Density

The density of a mixture can be defined as the overall mass of mixture occupying one
unit volume. It can be calculated by:

ρmix =
mtotal
Vtotal

(3)

where ρmix is the mixture density, mtotal is the total mass of mixture, and Vtotal is the total
volume of mixture. For ideal liquid mixtures, using volume additivity, this equation can be
written in terms of an individual component’s densities as follows:

1
ρideal mix

= ∑
xi
ρi

(4)

where ρi is the density of component i and xi is the mass fraction of component i. The
average absolute relative difference percent (AARD%) is a good statistical parameter for
analyzing the success of the proposed correlations for different properties such as density,
which is defined as:

AARD% =
100 ∑

∣∣∣ ρideal mix−ρ mix, exp
ρ mix, exp

∣∣∣
n

(5)

2.3. Refractive Index

There are several mixing rules for the refractive index of mixtures in the literature.
The most well-known correlations which have been used in this work are the following:

# Lorentz–Lorenz relation (L–L)

nmix
2 − 1

nmix
2 + 2

= ∑
ni

2 − 1
ni

2 + 2
φi (6)

where nmix is the refractive index of the mixture, ni is the refractive index of pure component
i, and φi is the volume fraction of component i in the mixture.

# Gladstone–Dale (G–D)

nmix − 1 = φ1(n1 − 1) + φ2(n2 − 1) + . . . + φn(nn − 1) (7)

# Arago–Biot (A–B)

nmix = φ1n1 + φ2n2 + . . . + φnnn (8)

# Weiner’s relation (W)

nmix
2 − n1

2

nmix
2 + 2n1

2 = ∑
6=1

ni
2 − n1

2

ni
2 + 2n1

2 φi (9)

# Heller’s relation (H)

nmix − n1

n1
=

3
2 ∑

i 6=1

mi
2 − 1

mi
2 + 2

φi (10)

where mi =
ni
n1

.
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3. Materials and Experiments

The ionic liquids used in this work are 1-butyl-3-methylimidazolium thiocyanate
([BMIM][SCN]), 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), 1-hexyl-3-
methylimidazolium tetrafluoroborate ([HMIM][BF4]), and 1-hexyl-3-methylimidazolium
hexafluorophosphate ([HMIM][PF6]). These ionic liquids were supplied by Io-li-tec and
used as received. However, new measurements for the density and refractive index were
taken for the pure ionic liquids to be used as reference. Table 1 shows the purity of each
ionic liquid reported by Io-li-tec and their molecular weights.

Table 1. Purity of the ionic liquids used in this work.

Ionic Liquid Molecular Weight Purity

[BMIM][SCN] 197.30 ≥98%
[BMIM][BF4] 226.03 ≥99%
[HMIM][BF4] 254.08 ≥99%
[HMIM][PF6] 312.24 ≥99%

A pipette was used to transfer exact amounts of ionic liquids in a graduated cylinder
to measure the total volume, each with uncertainty of 0.05 and 0.1 cm3, respectively. A
mass balance of an uncertainty of 1 × 10−4 g was used to measure the mass of the samples.
The refractive index was measured using a programmable digital KEM Refractometer
(Kyoto Electronics Manufacturing Co., LTD., Model RA 620, Kyoto, Japan) connected to
a water bath to maintain constant temperature. The uncertainty in the refractive index
measurement is 1 × 10−5, and the uncertainty in the temperature measurement is 0.1 K.
The density was measured using an Anton Paar U-tube Densitometer (Model DMA 4500 M,
Anton Paar GmbH, Graz, Austria) connected to a water bath. The uncertainty in the density
measurement is 5 × 10−5 g cm−3, while the uncertainty in the temperature measurement
was 0.1 K.

The density and refractive index of all samples were measured at 20 ◦C for the pure
ionic liquids using an Anton Paar U-tube Densitometer and a Programmable Digital KEM
Refractometer, respectively. The temperature was constantly maintained at 20 ◦C by
connecting both the densitometer and the refractometer to a water bath set to a temperature
of 20 ◦C. Binary mixtures of different ionic liquids were prepared from different volume
compositions. The mass of each ionic liquid as well as the total mass of the mixture were
measured before transfer to the graduated cylinder. A droplet was taken to be used in the
refractometer to measure the refractive index. The remainder of the mixture was used to
measure the mixture density using the density meter.

4. The Developed ANFIS Model and EFAST Sensitivity Analysis

Fuzzy logic is an appropriate technique for solving complex and nonlinear problems.
ANNs have a strong ability to learn from existing data. Fuzzy logic theory is a powerful
tool to deal with uncertainty. In general, fuzzy logic is an approach to calculate the degree
of accuracy instead of using two-state true or false logic. Therefore, combining fuzzy logic
theory with ANNs could provide great results for describing complex patterns, which is
called ANFIS modelling. FIS assigns fuzzy rules and a membership function (MF) which
ANN can optimize. Takagi–Sugeno and Mamdani are two well-known structures of FISs.
Each FIS consists of a number of fuzzy rules, and each fuzzy rule has an antecedent and
a consequent. In Mamdani-type FISs, both antecedents and consequents include fuzzy
values; however, in Takagi–Sugeno-type FISs, the consequent of fuzzy rules are in the
form of a fixed number (for zero type Takagi–Sugeno FISs) or a linear combination of
inputs; this type of FISs are often used in ANFIS modelling. In this study, an ANFIS model
was developed using the Takagi–Sugeno structure with the Neuro-Fuzzy Designer app in
MATLAB 2017a software [9]. The ANFIS structure comprises four layers, which are fuzzy,
product, consequent calculation, and output layer. The first layer includes antecedent
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fuzzy values (also known as membership functions), the inputs enter these fuzzy values,
and a membership grade is produced for each fuzzy value in each rule. In layer 2, the
product of membership grades in a fuzzy rule is used as the firing strength of the rule in
this this research. Then, in layer 4 (in parallel with layers 1 and 2), the output of each rule is
calculated using the input values. In the last layer, the output of the FIS is calculated by
the output values and firing strengths of all rules. In this research, the weighted sum of
outputs was used, where the weight of each rule output is the firing strength of the same
rule. The unknowns of this modelling problem were the number of rules and fuzzy values
(membership functions) of rules and consequent parameters. These were identified by
using the experimental data.

In this study, various membership functions were investigated for their use in the
rules’ antecedents, such as the triangular-shaped membership function (trimf) and others,
for which the details can be found elsewhere [12]. The result of this comparison is given in
Section 6.

To estimate the density parameter using ANFIS, 1670 datasets were collected from the
literature, which were applied for model training and cross validation. Cross validation
partition defines a random partition on a dataset. This partition is used to define training
and validation sets for validating a model. In this study, the early stopping method was
used for preventing overfitting and the total dataset partitioned into training (85%) and
holdout cross validation (15%) partitions. The holdout cross validation method creates a
random nonstratified partition for holdout validation on n observations. Then, to determine
the predictive power of the model, the measured data from this study (16 samples) were
introduced to the model as external validation or a test dataset. The same procedure was
followed for modelling the refractive index parameter, in which 149 data were collected and
utilized from the published data for training and validation. Finally, 16 new measured data
from this study were entered into the model for external validation. The hybrid-learning
algorithm (as detailed in [13]) was used for parameter estimation, and the validity of the
optimized ANFIS model was evaluated using experimental test data. The coefficient of
determination (R2), the root-mean-squared error (RMSE), and average absolute relative
deviation (AARD%) were calculated to evaluate the model’s performance [14,15].

R2 =
1−∑n

i=1
(
Yp −Ye

)2

∑n
i=1
(
Yp −Ye

)2 (11)

RMSE =

√
1
n

n

∑
i=1

(
Ye −Yp

)2 (12)

AARD% =
100
n

n

∑
i=1

∣∣Ye −Yp
∣∣

Ye
(13)

where Ye, Yp, and Ye show the actual response, predicted response, and the average of the
actual response, respectively, and n is the number of datasets.

For complex nonlinear models, such as the artificial intelligence models, global sensitiv-
ity analysis (GSA) techniques are able to provide appropriate information about parameter
sensitivity. In the present study, the extended Fourier amplitude sensitivity test (EFAST),
which is one of the efficient and well-known GSA methods, was applied for sensitivity
analysis in MATLAB 2017 software. FAST is a variance-based global sensitivity analysis
technique, which is based on conditional variances, indicating the individual or interaction
effects of the uncertain inputs on the response parameter [16].
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5. Experiments
5.1. Pure Ionic Liquids

Density and refractive index of the pure ionic liquids measured at 20 ◦C are shown in
Table 2.

Table 2. Density and refractive index of the pure ionic liquids at 20 ◦C.

Ionic Liquid Refractive Index Density (g/cm3)

[HMIM][BF4] 1.43940 1.14859, 1.14511 a

[HMIM][PF6] 1.42257 1.29544, 1.29145 a

[BMIM][SCN] 1.54543 1.07254, 1.06954 a

[BMIM][BF4] 1.43223 1.20447, 1.20085 a

a Literature data at 298.15 K [17].

These values are used as references for the pure components in the analysis. Ionic
liquid mixtures prepared for the experiments were labeled, and their measured masses and
volumes at 20 ◦C are shown in Table 3.

Table 3. Measured volume and mass of prepared ionic liquid mixtures.

Mole
Fraction (x1)

Components Mass (g)
1 2 1 2 Total

0.813

[HMIM][BF4] [HMIM][PF6]

13.78308 3.88632 17.66940

0.620 10.33731 7.77264 18.10995

0.421 6.89154 11.65896 18.55050

0.214 3.44577 15.54528 18.99105

0.769

[HMIM][BF4] [BMIM][SCN]

13.78308 3.21762 17.00070

0.555 10.33731 6.43524 16.77255

0.357 6.89154 9.65286 16.54440

0.172 3.44577 12.87048 16.31625

0.772

[HMIM][BF4] [BMIM][BF4]

13.78308 3.61341 17.39649

0.560 10.33731 7.22682 17.56413

0.361 6.89154 10.84023 17.73177

0.175 3.44577 14.45364 17.89941

0.753

[HMIM][PF6] [BMIM][SCN]

15.54528 3.21762 18.76290

0.534 11.65896 6.43524 18.09420

0.337 7.77264 9.65286 17.42550

0.160 3.88632 12.87048 16.75680

Table 3 shows the volume and mass of each component in the mixture. The mass of
each component was used to calculate the mass fraction and mole fraction needed for the
rest of calculations.

5.2. Mixtures of Ionic Liquids
5.2.1. Molar Volume and Density of Ionic Liquid Mixtures

Table 4 shows the measured mixture density, ideal mixture density, AARD%, measured
mixture molar volume, ideal mixture molar volume, excess molar volume, and AARD% of
the prepared ionic liquids.
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Table 4. Measured and calculated volumetric data for the ionic liquid mixtures studied in this work.

Mixture ρmix (g/cm3) ρideal mix
(g/cm3)

vmix
(cm3/mol)

videal mix
(cm3/mol)

vexcess

(cm3/mol)

[HMIM][BF4] +[HMIM][PF6]

0.813 1.18620 1.17796 223.34763 224.90918 −1.56154
0.620 1.21185 1.20733 227.88141 228.73380 −0.85239
0.421 1.23965 1.2367 232.13618 232.69074 −0.55456
0.214 1.27477 1.26607 235.17064 236.78701 −1.61637

[HMIM][BF4] +[BMIM][SCN]

0.769 1.13934 1.13338 211.48711 212.59928 −1.11218
0.555 1.11587 1.11817 205.05542 204.63350 0.42191
0.357 1.09203 1.10296 199.21668 197.24310 1.97359
0.172 1.10823 1.08775 186.84919 190.36790 −3.51871

[HMIM][BF4] +[BMIM][BF4]

0.772 1.14710 1.159766 215.93122 213.57352 2.35771
0.560 1.15424 1.170942 209.43286 206.44638 2.98648
0.361 1.17505 1.182118 200.98041 199.77956 1.20086
0.175 1.18286 1.193294 195.23652 193.52985 1.70667

[HMIM][PF6] +[BMIM][SCN]

0.753 1.25270 1.25086 226.61410 226.94751 −0.33341
0.534 1.20984 1.20628 213.78904 214.41969 −0.63065
0.337 1.16933 1.1617 201.87652 203.20263 −1.32611
0.160 1.13755 1.11712 189.63286 193.10083 −3.46797

AARD% = 0.78058% AARD% = 0.78264%

5.2.2. Refractive Index of Ionic Liquid Mixtures
Table 5 shows the experimental refractive indices of the ionic liquid mixtures and the

calculated values using different empirical mixing rules.

Table 5. Experimental refractive indices of the ionic liquid mixtures and the calculated values using
different empirical mixing rules.

Binary
Mixtures

Refractive Index (n)

Experimental L–L G–D A–B W H

[HMIM][BF4]+[HMIM][PF6]

0.813 1.43831 1.43599 1.43604 1.43604 1.43603 1.43603
0.620 1.43745 1.43267 1.43267 1.43267 1.43267 1.43266
0.421 1.42883 1.42932 1.42931 1.42931 1.42930 1.42929
0.214 1.42408 1.42598 1.42594 1.42594 1.42594 1.42592

[HMIM][BF4]+[BMIM][SCN]

0.769 1.46016 1.45955 1.46061 1.46061 1.46038 1.46033
0.555 1.46524 1.48088 1.48182 1.48182 1.48145 1.48125
0.357 1.50059 1.50209 1.50302 1.50302 1.50266 1.50217
0.172 1.52000 1.52364 1.52423 1.52423 1.52395 1.52309

[HMIM][BF4]+[BMIM][BF4]

0.772 1.43918 1.43801 1.43798 1.43797 1.43797 1.43797
0.560 1.43767 1.43655 1.43654 1.43654 1.43654 1.43654
0.361 1.43475 1.43513 1.43511 1.43511 1.43511 1.43510
0.175 1.43288 1.43372 1.43367 1.43367 1.43367 1.43367

[HMIM][PF6]+[BMIM][SCN]

0.753 1.45442 1.44636 1.44715 1.44715 1.44683 1.44676
0.534 1.47034 1.47048 1.47172 1.47172 1.47123 1.47094
0.337 1.50643 1.49504 1.49629 1.49629 1.49579 1.49512
0.160 1.51558 1.52005 1.52086 1.52086 1.52053 1.51930

ARD (%) 0.24810 0.25711 0.25711 0.25190 0.24188
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As we can see from Table 5, the refractive index of the ionic liquid mixtures can be
confidently estimated using any of the discussed empirical formulae since the average
relative error is around 0.25% for each correlation. However, Heller’s relation (H) best
estimates the refractive index of these ionic liquid mixtures with an average relative error
of 0.242%.

6. ANFIS Modelling

The ANFIS models, developed to predict the density and refractive index of ionic
liquid mixtures, are shown in Figures 1A and 2A. In this structure, we have employed the
Takagi–Sugeno-type FIS with Gaussian curve membership functions. The ANFIS model has
seven inputs of temperature (T), pressure (P), BMIM (mole fraction of BMIM ion), HMIM
(mole fraction of HMIM ion, BF4 (mole fraction of BF4 ion), PF6 (mole fraction of PF6
ion), and SCN (mole fraction of SCN ion) for density and refractive index prediction. The
grid partition technique is used to generate the rules for the model. The obtained results
showed that the Gaussian membership function (gaussmf), compared to other membership
functions, has less prediction errors in both models. Figures 1B and 2B illustrate the RMSE
of the models’ training and validation stages. During the training and validation process
of the ANFIS model, the RMSEs were plotted versus the number of epochs. The RMSE
reduces and then remains constant after some epochs. The RMSE values of the validation
step for the density and refractive index models were equal to 8.730 and 7.45 × 10−3,
respectively. The regression curves plotted in Figures 1C and 2C display the model outputs,
which show a very satisfactory performance. This comparison showed a good consistency
between the predicted and actual responses of the ANFIS models.

We have used some statistical parameters as shown in Table 6 to examine the perfor-
mance of the developed models.

Table 6. The performance of the statistical parameters for the proposed models.

Parameters
ANFIS (Density) ANFIS (Refractive index)

Train Validation Test Train Validation Test

R2 0.992 0.985 0.968 0.988 0.972 0.948
RMSE 6.035 8.730 7.274 4.47 × 10−3 7.45 × 10−3 7.32 × 10−3

AARD% 0.437 0.649 0.368 0.242 0.444 0.319

It is noteworthy that the ranges of error parameters for two responses (density and
refractive index) are suitable at the training, validation, and test stages. The use of more
data in the training and validation stages for density resulted in high predictive power,
therefore the test data that were externally validated (not used in the training stage) resulted
in predictions with higher accuracy. Moreover, a variance-based global analysis was
performed using an extended EFAST method to determine which parameter had the
greatest effect on the density and refractive index [18]. According to Figure 3A, the first
three main factors affecting density are PF6, SCN, and pressure. In addition, according to
Figure 3B, the most effective input parameters for the refractive index were SCN, pressure,
and PF6. The coefficient values of different parameters are given in Figure 3.

Figures 4 and 5 show the three-dimensional plots of the developed models for the
density and refractive index (n). As shown in Figure 4A,B, the density parameter often
decreases with increasing temperature and increases with increasing pressure. In addition,
an increase in parameters BMIM and SCN lead to a decrease in density (Figure 4B,E). BF4
has very little effect on density (Figure 4D). HMIM and PF6 have a positive correlation
with density, as shown in Figure 4C,E. It is evident from Figure 5A that temperature has
a negative effect on refractive index, and pressure has shown a non-uniform effect on it.
However, the effect of the temperature on the refractive index is very small compared
to the effect of pressure. In addition, an increase in parameters BMIM, BF4, and SCN
leads to a decrease in the refractive index (Figure 5B–D). HMIM has very little effect on
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the refractive index (Figure 5C). PF6 has a positive correlation with the refractive index,
which is shown in Figure 5D. The model dataset contains 1670 density values over a
temperature range of 220–472 K and a pressure range of 100–300,000 kPa collected from
the NIST ILThermo database [19]. The model dataset contains 1670 density values over a
temperature range of 220–472 K and a pressure range of 100–300,000 kPa collected from
the NIST ILThermo database [19]. Our dataset for the refractive index which contains
149 values also has been collected from the NIST ILThermo database [19] in the range
of 280–353 K for temperature, and the range of 81–116 kPa for pressure. This collected
database is available in the Supplementary file in excel.
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7. Conclusions

Density and refractive index of different binary mixtures of ionic liquids were studied
in this work. Some data were generated experimentally in this work and the rest of required
data were collected from the literature. The effects of different variables such as temperature,
pressure, and the molar concentrations of different functional groups in the ionic liquids
were investigated. For analyzing the data, we first examined different models including
empirical models for these properties. The deviation from the ideal mixture volume was
calculated and found to be 0.78%. Therefore, it is a very accurate assumption to assume an
ideal mixture and apply a volume additivity rule. Furthermore, the refractive indices of
the binary ionic liquid mixtures were measured and compared with the estimated values
using different empirical mixing rules. All of the empirical rules showed good performance
for estimation of the refractive index of the binary ionic liquid mixtures, with an average
percentage error around 0.25%. However, Heller’s relation was found to be the best model
to estimate these mixtures’ refractive index with an average relative error of only 0.242%.
For gaining a deep understanding of the effects of the different parameters on the density
and refractive index of the studied mixtures, we have also developed artificial intelligence
models. An ANFIS model was developed to predict a density and refractive index, and
the grid partition technique was implemented. Our results showed that the Gaussian
membership function, compared to other membership functions, has a low prediction
error. Based on obtained results, the developed model showed excellent performance for
predicting the density and refractive index of various mixtures, with overall R2, RMSE,
and AARD% values of 0.985, 8.730, 0.649%, and 0.972, 7.45 × 10−3, and 0.444%, in cross
validation, and 0.968, 7.274, 0.368%, and 0.948, 7.32 × 10−3, and 0.319% in the external
validation stages, respectively. According to the sensitivity analysis using the EFAST
method, the most effective input parameters for both properties were found to be SCN,
pressure, and PF6.
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