Validation of L-Lactic Acid Production Using Companilactobacillus farciminis KUJ 25-S for Sustainable Bio-Polylactic Acid Manufacturing
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection of Lactic Acid Bacteria from Naturally Fermented Fish
2.2. Identification of Lactic Acid Bacteria from Naturally Fermented Fish
2.3. Preparation of SEM Samples
2.4. Preparation of TEM Samples
2.5. TLC
2.6. Enzymatic Method for D-L-Lactic Acid Determination
2.7. HPLC for D-L-Lactic Acid Determination
2.8. Optimization of L-Lactic Acid Fermentation Condition
2.9. Bacteriological Growth Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Selection of Lactic Acid Bacteria from Naturally Fermented Fish
3.2. Characterization of Lactic Acid and Its Stereoisomers from C. farciminis KUJ 25-S
3.3. Cell Morphology on Solid and Liquid Media of C. farciminis KUJ 25-S
3.4. Effect of Temperature on Lactic Acid Formation and Growth
3.5. Effect of pH on Lactic Acid Formation and Growth
3.6. Effect of NaCl on Lactic Acid Formation and Growth
3.7. Effect of Glucose on Lactic Acid Production
3.8. Effect of Aeration on Lactic Acid Production
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghaffar, T.; Irshad, M.; Anwar, Z.; Aqil, T.; Zulifqar, Z.; Tariq, A.; Mehmood, S. Recent trends in lactic acid biotechnology: A brief review on production to purification. J. Radiat. Res. Appl. Sci. 2014, 7, 222–229. [Google Scholar] [CrossRef]
- Ohara, H. Biorefinery. Appl. Microbiol. Biotechnol. 2003, 62, 474–477. [Google Scholar] [CrossRef] [PubMed]
- Market Research.com. Lactic Acid Market Size, Share & Trends Analysis Report By Raw Material (Sugarcane, Corn, Cassava), By Application (PLA, Food & Beverages), By Region, And Segment Forecasts, 2021–2028, Inc. 2023. Available online: https://www.grandviewresearch.com/industry-analysis/lactic-acid-and-poly-lactic-acid-market (accessed on 11 April 2022).
- Narayanan, N.; Roychoudhury, P.; Srivastava, A. L(+)-Lactic acid fermentation and its product polymerization. Electron. J. Biotechnol. 2004, 7, 167–178. [Google Scholar] [CrossRef]
- Benthin, S.; Villadsen, J. Production of optically pure D-lactate by Lactobacillus bulgaricus and purification by crystallization and liquid/liquid extraction. Appl. Microbiol. Biotechnol. 1995, 42, 426–429. [Google Scholar] [CrossRef]
- Kadam, S.R.; Patil, S.S.; Bastawde, K.B.; Khire, J.M.; Gokhale, D.V. Strain improvement of Lactobacillus delbrueckii NCIM 2365 for lactic acid production. Process Biochem. 2006, 41, 120–126. [Google Scholar] [CrossRef]
- Reuter, G. Lactobacillus alimentarius sp. nov., nom rev. and Lactobacillus farciminis sp. nov., nom. rev. Syst. Appl. Microbiol. 1983, 4, 277–279. [Google Scholar] [CrossRef]
- Tanasupawat, S.; Okada, S.; Komagato, K. Lactic acid bacteria found in fermented fish in Thailand. J. General. Appl. Microbiol. 1998, 44, 193–200. [Google Scholar] [CrossRef]
- Yamini, C.; Sharmila, G.; Muthukumaran, C.; Pavithran, K.; Manojkumar, N. Proteomic perspectives on thermotolerant microbes: An updated review. Mol. Biol. Rep. 2022, 49, 629–646. [Google Scholar] [CrossRef]
- Tareb, R.; Bernardeau, M.; Horvath, P.; Vernoux, J. Rough and smooth morphotypes isolated from Lactobacillus farciminis CNCM I-3699 are two closely-related variants. Int. J. Food Microbiol. 2015, 193, 82–90. [Google Scholar] [CrossRef]
- De Man, J.C.; Rogosa, M.; Sharpe, M.E. A medium for the cultivation of lactobacilli. J. Appl. Bact. 1960, 23, 130–135. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis of AOAC International, 17th ed.; Aoac Intl: Rockville, MD, USA, 2000. [Google Scholar]
- Axelsson, L. Lactic Acid Bacteria: Microbiology and Functional Aspects; Marcel Dekker, Inc.: New York, NY, USA, 1998. [Google Scholar]
- Huang, X.; Madan, A. CAP3: A DNA sequence assembly program. Genome Res. 1999, 9, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Calabia, B.P.; Tokiwa, Y.; Aiba, S. Fermentative production of L-(+)-lactic acid by an alkaliphilic marine microorganism. Biotechnol. Lett. 2011, 33, 1429–1433. [Google Scholar] [CrossRef] [PubMed]
- Larsson, A. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 2014, 30, 3276–3278. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Gabriet, B.L. Biological Electron Microscope; Van Nostrand Reinhold Company Inc.: New York, NY, USA, 1982; p. 264. [Google Scholar]
- Harris, R. Electron Microscopy in Biotogy: A Practical Approach; Oxford University Press: New York, NY, USA, 1991; p. 308. [Google Scholar]
- Spurr, A.R. A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 1969, 26, 31–43. [Google Scholar] [CrossRef]
- Reynolds, E.S. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 1963, 17, 208–212. [Google Scholar] [CrossRef]
- Bozzola, J.J.; Russell, L.D. Electron Microscopy Principles and Techniques for Biologists; Jones and Bartlett, John: Boston, MA, USA, 1992. [Google Scholar]
- Lee, K.Y.; So, J.S.; Heo, T.R. Thin layer chromatographic determination of organic acids for rapid identification of bifidobacterial at genus level. J. Microbiol. Methods 2001, 45, 1–6. [Google Scholar] [CrossRef]
- EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed); Bampidis, V.; Azimonti, G.; Bastos, M.L.; Christensen, H.; Dusemund, B.; Durjava, M.; Kouba, M.; López-Alonso, M.; Puente, S.L.; et al. Scientific opinion on the efficacy of a feed additive consisting of Companilactobacillus farciminis CNCM I-3740 (Biacton®) for chickens and turkeys for fattening (ChemVet dk A/S). EFSA J. 2023, 21, 8049. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 2013, 31, 877–902. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Sonomoto, K. Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J. Biotechnol. 2016, 236, 176–192. [Google Scholar] [CrossRef]
- Ma, J.; Wang, W.; Sun, C.; Gu, L.; Liu, Z.; Yu, W.; Chen, L.; Jiang, Z.; Hou, J. Effects of environmental stresses on the physiological characteristics, adhesion ability and pathogen adhesion inhibition of Lactobacillus plantarum KLDS 1.0328. Process Biochem. 2000, 92, 426–436. [Google Scholar] [CrossRef]
- Sauer, M.; Russmayer, H.; Grabherr, R.; Peterbauer, C.K.; Marx, H. The efficient clade: Lactic acid bacteria for industrial chemical production. Trends Biotechnol. 2017, 35, 756–769. [Google Scholar] [CrossRef] [PubMed]
- Ennahar, S.; Cai, Y.; Fujita, Y. Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis. Appl. Environ. Microbiol. 2003, 69, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Romero-Garcia, S.; Hernández-Bustos, C.; Merino, E.; Gosset, G.; Martinez, A. Homolactic fermentation from glucose and cellobiose using Bacillus subtilis. Microb. Cell Fact. 2009, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, Y.; Zhao, S.; Chen, H.; Zheng, X.; Luo, J.; Liu, Y. Efficient production of optically pure l-lactic acid from food waste at ambient temperature by regulating key enzyme activity. Water Res. 2015, 70, 148–157. [Google Scholar] [CrossRef]
- Tanaka, T.; Hoshina, M.; Tanabe, S.; Sakai, K.; Ohtsubo, S.; Taniguchi, M. Production of d-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour. Technol. 2006, 97, 211–217. [Google Scholar] [CrossRef]
- Tashiro, Y.; Matsumoto, H.; Miyamoto, H.; Okugawa, Y.; Pramod, P.; Miyamoto, H.; Sakai, K. A novel production process for optically pure l-lactic acid from kitchen refuse using a bacterial consortium at high temperatures. Bioresour. Technol. 2013, 146, 672–681. [Google Scholar] [CrossRef]
- Dedenaro, G.; Costa, S.; Rugiero, I.; Pedrini, P.; Tamburini, E. Valorization of agri-food waste via fermentation: Production of l-lactic acid as a building block for the synthesis of biopolymers. Appl. Sci. 2016, 6, 379. [Google Scholar] [CrossRef]
- Wu, C.; Wu, C.; Huang, J.; Zhou, R. Progress in engineering acid stress resistance of lactic acid bacteria. Appl. Microbiol. Biotechnol. 2014, 98, 1055–1063. [Google Scholar] [CrossRef]
- Tareb, R.; Bernardeau, M.; Amiel, C.; Vernoux, J.P. Usefulness of FTIR spectroscopy to distinguish rough and smooth variants of Lactobacillus farciminis CNCM-I-3699. FEMS Microbiol. Lett. 2017, 364, fnw298. [Google Scholar] [CrossRef]
- Sriphochanart, W.; Skolpap, W. Temperature shift and feeding strategies for improving L-lactic acid production by Lactiplantibacillus plantarum in batch and fed-batch cultures. Process Biochem. 2021, 113, 11–21. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Tashiro, Y.; Zendo, T.; Shibata, K.; Sonomoto, K. Isolation and characterization of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo l-(+)-lactic acid. Appl. Microbiol. Biotechnol. 2011, 89, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.A.; Jun, C.; Joo, J.C.; Kim, S.; Lee, S.H.; Kim, Y.H. Higher thermostability of l-lactate dehydrogenases is a key factor in decreasing the optical purity of d-lactic acid produced from Lactobacillus coryniformis. Enzyme Microb. Technol. 2014, 58, 29–35. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Tashiro, Y.; Zendo, T.; Sakai, K.; Sonomoto, K. Enterococcus faecium QU 50: A novel thermophilic lactic acid bacterium for high-yield l-lactic acid production from xylose. FEMS. Microbial. Lett. 2015, 362, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.; Loder, A.J.; Basen, M.; Izquierdo, J.; Kelly, R.M.; Adams, M.W. Production of lignofuels and electrofuels by extremely thermophilic microbes. Biofuels 2014, 5, 499–515. [Google Scholar] [CrossRef]
- Yokaryo, H.; Tokiwa, Y. Isolation of alkaliphilic bacteria for production of high optically pure L-(+)-lactic acid. J. Gen. Appl. Microbiol. 2014, 60, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Weiss, N.; Schillinger, U.; Kandler, O. Lactobacillus trichodes, and Lactobacillus heterohiochii, Subjective synonyms of Lactobacillus fructivorans. Syst. Appl. Microbiol. 1983, 44, 507–511. [Google Scholar] [CrossRef]
- Kyla-Nikkila, K.; Hujanen, M.; Leisola, M.; Palva, A. Metabolic engineering of Lactobacillus helveticus CNRZ32 for production of pure L-(+)-lactic acid. Appl. Environ. Microbiol. 2000, 66, 3835–3841. [Google Scholar] [CrossRef]
- Lapierre, L.; Germond, J.E.; Ott, A.; Delley, M.; Mollet, B. D-Lactate dehydrogenase gene (ldhD) inactivation and resulting metabolic effects in the Lactobacillus johnsonii strains La1 and N312. Appl. Environ. Microbiol. 1999, 65, 4002–4007. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, J.; Wang, M.; Du, G.; Chen, J. Lactobacillus casei combats acid stress by maintaining cell membrane functionality. J. Ind. Microbiol. Biotechnol. 2012, 39, 1031–1039. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, S.; Zhang, Q.; Hao, J.; Lin, Y.; Zhang, J.; Li, A. Assessing the intestinal bacterial community of farmed Nile tilapia (Oreochromis niloticus) by high-throughput absolute abundance quantification. Aquaculture 2020, 529, 735688. [Google Scholar] [CrossRef]
- Grabar, T.B.; Zhou, S.; Shanmugam, K.T.; Yomano, L.P.; Ingram, L.O. Methylglyoxal bypass identified as source of chiral contamination in l(+) and d(−)-lactate fermentations by recombinant Escherichia coli. Biotechnol. Lett. 2006, 28, 1527–1535. [Google Scholar] [CrossRef] [PubMed]
- Upadhyaya, B.P.; DeVeaux, L.C.; Christopher, L.P. Metabolic engineering as a tool for enhanced lactic acid production. Trends Biotechnol. 2014, 32, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Adsul, M.G.; Singhvi, M.S.; Gaikaiwari, S.A.; Gokhale, D.V. Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresour. Technol. 2011, 102, 4304–4312. [Google Scholar] [CrossRef]
- Ishikawa, M.; Kodama, K.; Yasuda, H.; Okamoto-Kainuma, A.; Koizumi, K.; Yamasato, K. Presence of halophilic and alkaliphilic lactic acid bacteria in various cheeses. Lett. Appl. Microbiol. 2007, 44, 308–313. [Google Scholar] [CrossRef]
- Ishikawa, M.; Nakajima, K.; Yanagi, M.; Yamamoto, Y.; Yamasato, K. Marinilactibacillus psychrotolerans gen. nov., sp. nov., a halophilic and alkaliphilic marine lactic acid bacterium isolated from marine organisms in temperate and subtropical areas of Japan. Int. J. Syst. Evol. Microbiol. 2003, 53, 711–720. [Google Scholar] [CrossRef]
- Nakajima, K.; Hirota, K.; Nodasaka, Y.; Yumoto, I. Alkalibacterium iburiense sp. nov., an obligate alkaliphilile that reduces an indigo dye. Int. J. Syst. Evol. Microbiol. 2005, 55, 1525–1530. [Google Scholar]
- Ntougias, S.; Russell, N.J. Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash-waters. Int. J. Syst. Evol. Microbiol. 2001, 51, 1161–1170. [Google Scholar] [CrossRef]
- Toffin, L.; Zink, K.; Kato, C.; Pignet, P.; Bidault, A.; Bienvenu, N.; Birrien, J.L.; Prieur, D. Marinilactibacillus piezotolerans sp. nov., a novel marine lactic acid bacterium isolated from deep sub-seafloor sediment of the Nankai Trough. Int. J. Syst. Evol. Microbiol. 2005, 55, 345–351. [Google Scholar] [CrossRef]
- Han, J.; Sun, Z.; Chen, Y.; Guo, J.; Zhang, S.; Ji, C. Adaptive laboratory evolution and mechanisms of salt tolerance in Lactiplantibacillus plantarum. Food Biosci. 2025, 63, 105811. [Google Scholar] [CrossRef]
- Yumoto, I.; Hirota, K.; Nodasaka, Y.; Tokiwa, Y.; Nakajima, K. Alkalibacterium indicireducens sp. nov., an obligate alkaliphilile that reduces an indigo dye. Int. J. Syst. Evol. Microbiol. 2008, 58, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Glaasker, E.; Tjan, F.S.; Steeg, P.F.T.; Konings, W.N.; Poolman, B. Physiological response of Lactobacillus plantarum to salt and nonelectrolyte stress. J. Bacteriol. 1998, 180, 4718–4723. [Google Scholar] [CrossRef] [PubMed]
- van de Guchte, M.; Serror, P.; Chervaux, C.; Smokvina, T.; Ehrlich, S.D.; Maguin, E. Stress responses in lactic acid bacteria. Antonie Van. Leeuwenhoek 2002, 82, 187–216. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Gao, M.; Zhu, W.; Wang, N.; Ma, X.; Wu, C.; Wang, Q. Recent advances in the separation and purification of lactic acid from fermentation broth. Process Biochem. 2021, 104, 142–151. [Google Scholar] [CrossRef]
- Mala, A.; Bhassu, S.; Taufek, N.M.; Sadali, N.M.; Wang, S.; Mohamed, E.; Nor, A.M. Review: Potential of using lactic acid bacteria as inoculant for seaweed silage towards sustainable aquaculture. Aquac. Rep. 2023, 28, 101440. [Google Scholar] [CrossRef]
- Nagarajan, D.; Chen, C.Y.; Ariyadasa, T.U.; Lee, D.J.; Chang, J.S. Macroalgal biomass as a potential resource for lactic acid fermentation. Chemosphere 2022, 309 Pt 2, 136694. [Google Scholar] [CrossRef]
- Nagarajan, D.; Oktarina, N.; Chen, P.T.; Chen, C.Y.; Lee, D.J.; Chang, J.S. Fermentative lactic acid production from seaweed hydrolysate using Lactobacillus sp. and Weissella sp. Bioresour. Technol. 2022, 344 Pt A, 126166. [Google Scholar] [CrossRef]
- Piuri, M.; Sanchez-Rivas, C.; Ruzal, S.M. Adaptation to high salt in Lactobacillus: Role of peptides and proteolytic enzymes. J. Appl. Microbiol. 2003, 95, 372–379. [Google Scholar] [CrossRef]
- Nezhad, M.H.; Hussain, M.A.; Britz, M.L. Stress responses in probiotic Lactobacillus casei. Crit. Rev. Food Sci. Nutr. 2015, 55, 740–749. [Google Scholar] [CrossRef]
- Gong, X.; Yu, H.; Chen, J.; Han, B. Cell surface properties of Lactobacillus salivarius under osmotic stress. Eur. Food Res. Technol. 2012, 234, 671–678. [Google Scholar] [CrossRef]
- Wang, P.; Wu, Z.; Wu, J.; Pan, D.; Zeng, X.; Cheng, K. Effects of Salt Stress on Carbohydrate Metabolism of Lactobacillus plantarum ATCC 14917. Curr. Microbiol. 2016, 73, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Hujanen, M.; Linko, S.; Linko, Y.Y.; Leisola, M. Optimisation of media and cultivation conditions for L(+)(S)-lactic acid production by Lactobacillus casei NRRL B-441. Appl. Microbiol. Biotechnol. 2001, 56, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Hofvendahl, K.; Hahn-Hägerdal, B. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 2000, 26, 87–107. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.C.; Yuan, S.F.; Wang, C.A.; Huang, Y.J.; Guo, G.L.; Hwang, W.S. Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D lactate dehydrogenase gene-deficient Lactobacillus paracasei strain. Bioresour. Technol. 2015, 198, 651–657. [Google Scholar] [CrossRef]
- Subramanian, M.R.; Talluri, S.; Christopher, L.P. Production of lactic acid using a new homofermentative Enterococcus faecalis isolate. Microb. Biotechnol. 2015, 8, 221–229. [Google Scholar] [CrossRef]
- Chen, J.; Shen, J.; Hellgren, L.I.; Jensen, P.R.; Solem, C. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate. Sci. Rep. 2015, 5, 14199. [Google Scholar] [CrossRef]
- Condon, S. Responses of lactic acid bacteria to oxygen. FEMS Microbiol. Rev. 1987, 3, 269–280. [Google Scholar] [CrossRef]
- Condon, S. Aerobic metabolism of lactic acid bacteria. Irish J. Food Sci. Technol. 1983, 7, 15–25. [Google Scholar]
- Murphy, M.G.; Condon, S. Correlation of oxygen utilization and hydrogen peroxide accumulation with oxygen induced enzymes in Lactobacillus plantarum cultures. Arch. Microbiol. 1984, 138, 44–48. [Google Scholar] [CrossRef]
- Sun, Z.; Yu, J.; Dan, T.; Zhang, W.; Zhang, H. Lactic Acid Bacteria; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Tongpim, S.; Meidong, R.; Poudel, P.; Yoshino, S.; Okugawa, Y.; Tashiro, Y.; Taniguchi, M.; Sakai, K. Isolation of thermophilic L-lactic acid producing bacteria showing homo-fermentative manner under high aeration condition. J. Biosci. Bioeng. 2014, 117, 318–324. [Google Scholar] [CrossRef]
- Brosnan, C.A. Regulation of Oxygen-Dependent Lactate Metabolism by Lactobacillus plantarum. Master’s Thesis, University College Cork, Cork, Ireland, 1984. [Google Scholar]
- Murphy, M.G.; Condon, S. Comparison of aerobic and anaerobic growth of Lactobacillus plantarum in a glucose medium. Arch. Microbiol. 1984, 138, 49–53. [Google Scholar] [CrossRef]
- Brooijmans, R.; Smit, B.; Santos, F.; van Riel, J.; de Vos, M.N.; Hugenholtz, J. Heme and menaquinone induced electron transport in lactic acid bacteria. Microb. Cell Fact. 2009, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Arioli, S.; Zambelli, D.; Guglielmetti, S.; De Noni, I.; Pedersen, M.B.; Pedersen, P.D.; Bello, F.D.; Mora, D. Increasing the heme-dependent respiratory efficiency of Lactococcus lactis by inhibition of lactate dehydrogenase. Appl. Environ. Microbiol. 2013, 79, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K.; Alegría, Á.; Bron, P.A.; de Angelis, M.; Gobbetti, M.; Kleerebezem, M.; Lemos, J.A.; Linares, D.M.; Ross, P.; Stanton, C.; et al. Stress physiology of lactic acid bacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 837–890. [Google Scholar] [CrossRef]
- Konings, W.N.; Lolkema, J.S.; Bolhuis, H.; Van Veen, H.W.; Poolman, B.; Driessen, A.J.M. The role of transport processes in survival of lactic acid bacteria, energy transduction and multidrug resistance. Antonie Van. Leeuwenhoek 1997, 71, 117–128. [Google Scholar] [CrossRef]
- Zhou, Y.; Hua, J. Regulation and mechanisms of L-lactic acid and D-lactic acid production in Baijiu brewing: Insights for flavor optimization and industrial application. Fermentation 2025, 11, 213. [Google Scholar] [CrossRef]
- van der Pol, E.C.; Eggink, G.; Weusthuis, R.A. Production of l (+)-lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans DSM2314 in a simultaneous saccharification and fermentation strategy. Biotechnol. Biofuels 2016, 9, 248. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, J.; Han, X.; Gao, C.; Ma, C.; Tao, F.; Xu, P. Kinetic characteristics of long-term repeated fed-batch (LtRFb) l-lactic acid fermentation by a Bacillus coagulans strain. Eng. Life Sci. 2020, 20, 562–570. [Google Scholar] [CrossRef]
- Qiu, Z.; Gao, Q.; Bao, J. Engineering Pediococcus acidilactici with xylose assimilation pathway for high titer cellulosic l-lactic acid fermentation. Bioresour. Technol. 2018, 249, 9–15. [Google Scholar] [CrossRef]
- Papadopoulou, E.; de Evgrafov, M.C.R.; Kalea, A.; Tsapekos, P.; Angelidaki, I. Adaptive laboratory evolution to hypersaline conditions of lactic acid bacteria isolated from seaweed. New Biotechnol. 2023, 75, 21–30. [Google Scholar] [CrossRef]






| Scheme | E-Value | Percentage Identity | Accession Number |
|---|---|---|---|
| Companilactobacillus farciminis KCTC 3681 = DSM 20184 | 0 | 99.73% | CP017702.1 |
| Companilactobacillus farciminis | 0 | 99.73% | KX139182.1 |
| Companilactobacillus farciminis KCTC 3681 = DSM 20184 | 0 | 99.73% | LC063168.1 |
| Strain | Process Type/Condition/Substrate | Titer (g/L) | Yield (g/g Substrate) | Optical Purity (% L-LA) | Key Note/Stress-Relevant Trait | Reference |
|---|---|---|---|---|---|---|
| C. farciminis KUJ 25-S | Batch/controlled (with 5% NaCl + aeration)/glucose | 265 | NR | 97 | Candidate strain for industrial bioprocessing under harsh conditions/ Strong multi-stress tolerance (pH, NaCl, osmotic, aeration) | This study |
| Bacillus coagulans (arr4; highest reported example) | Exponential fed-batch (high-performance)/ glucose | 206.8 (highest reported) | NR | NR | Thermotolerant, engineered/optimized process report highest titers in literature | [85] |
| Bacillus coagulans H-2 | Long-term repeated fed-batch/glucose | 203.3 | NR | NR | Very high and stable titer/productivity across batches (thermotolerant). | [86] |
| Pediococcus acidilactici ZY271 | Batch/Wheat straw (xylose) | 130.8 | 94.9 | NR | Engineering strain/NR for stress tolerance | [87] |
| L. plantarum | Batch/Hydrolysate from seaweed | 20 | NR | NR | Enhanced saline tolerance following adaptive laboratory evolution/Demonstrates improvement in stress adaptation potential | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Boonprab, K.; Kitpreechavanich, V.; Nipitwattanaphon, M. Validation of L-Lactic Acid Production Using Companilactobacillus farciminis KUJ 25-S for Sustainable Bio-Polylactic Acid Manufacturing. Appl. Microbiol. 2026, 6, 1. https://doi.org/10.3390/applmicrobiol6010001
Boonprab K, Kitpreechavanich V, Nipitwattanaphon M. Validation of L-Lactic Acid Production Using Companilactobacillus farciminis KUJ 25-S for Sustainable Bio-Polylactic Acid Manufacturing. Applied Microbiology. 2026; 6(1):1. https://doi.org/10.3390/applmicrobiol6010001
Chicago/Turabian StyleBoonprab, Kangsadan, Vichien Kitpreechavanich, and Mingkwan Nipitwattanaphon. 2026. "Validation of L-Lactic Acid Production Using Companilactobacillus farciminis KUJ 25-S for Sustainable Bio-Polylactic Acid Manufacturing" Applied Microbiology 6, no. 1: 1. https://doi.org/10.3390/applmicrobiol6010001
APA StyleBoonprab, K., Kitpreechavanich, V., & Nipitwattanaphon, M. (2026). Validation of L-Lactic Acid Production Using Companilactobacillus farciminis KUJ 25-S for Sustainable Bio-Polylactic Acid Manufacturing. Applied Microbiology, 6(1), 1. https://doi.org/10.3390/applmicrobiol6010001

