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Abstract: Colorants have many applications in food, cosmetics, pharmaceutics, textile, paints, plastics,
paper, ink and photographic industries. Colorants are classified according to their solubility into
dyes and pigments. Those of natural origin have many advantages over synthetic ones, as natural
colorants usually do not induce allergies or other health problems. In addition, their consumption in
the food and drug industries is fortified with nutritional and health benefits as the majority of them
possess antioxidant activity or can be used to produce some vitamins. Plants, animals, insects and
microorganisms are rich sources of colorants. However, microbial pigments are favored over other
natural pigments due to their higher yield, stability, economical production. Therefore, we focus in
this review on fungal pigments, the history of their use, their chemistry and their applications in food
and non-food fields. Additionally, the ability of the fungal genus, Epicoccum, to produce pigments is
discussed. Moreover, the challenges and future prospects concerning fungal pigment production are
highlighted in detail.

Keywords: dyes; pigments; fungi; secondary metabolites; biotechnology; applications

1. Introduction

Colorants are the compounds used to add or change the color of different substrates
and are involved in different industries including food, cosmetics, pharmaceutics, textile,
paints, plastics paper, ink and photographic industries. The global dye market was valued
at USD 31.97 billion in 2019 and is expected to reach USD 50.38 billion by 2023 [1]. According
to their solubility, colorants are classified into two classes, dyes and pigments. The main
differences are that dyes are soluble in organic solvents and water, while pigments are
insoluble in them. The mechanism of coloring differs between dyes and pigments. Dyes
color substrates to which they have affinity. In contrast, pigments color any polymeric
substrate at the surface level unless the pigment is mixed with the polymer in earlier stages
of its formation [2]. Unlike the majority of organic compounds, dyes have color due to
many reasons. First, they absorb light in the visible spectrum (400–700 nm) and have
at least one color-bearing group (chromophore) or sometimes certain groups known as
color helpers (auxochromes) such as hydroxyl groups, sulfo, carboxylic and amino groups.
Such groups are not responsible for color appearance, but they affect dye solubility and
contribute to shifting the color of a colorant. The structure of dyes carries a conjugated
system (the double and single bonds alter their location). Their structure shows electron
resonance that is considered as a stabilizing force [3].

Nature is the main source of colorants, but extraction of natural colors and their in-
stability represent problems that are associated with the synthesis of artificial (synthetic)
colors, which started with Perkin’s mauve pigment in 1856 [4]. The application of such
synthetic colors in different industries in general and in food and pharmaceutical industries
in particular has raised several concerns and compulsory warnings by the FDA, World
Health Organization and European Union regulators, especially for children’s food, drugs
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and cosmetics [5]. Hence, due to various health problems associated with the overuse of
synthetic colorants and the increasing customer and consumer awareness and demand for
synthetic colorant-free products, scientific research has been oriented toward screening
for natural colorants and improving their production and stability [6–10]. The majority
of natural colorants also have nutritional and health benefits, especially as antioxidant
agents [11,12]. Examples of well-known natural colorants that provide color and are con-
sidered safe are carotenoids, betalains, anthocyanins, curcumin and chlorophylls [5,13].
Natural colorants originate from different sources, such as insects, animals, plants and
microorganisms. However, pigments originating from microorganisms have many advan-
tages over those produced by animals or plants, such as supply sustainability, higher yield,
significant cost efficiency and considerable stability [5]. Among different microbial genera,
fungi and algae are ranked first in the production of a variety of water-soluble natural
pigments [14,15]. Still, the low pigment yields of algal cultures represents an obstacle to
commercial production [16]. Fungi were used centuries ago in dying textiles, especially silk
and wool [17]. Hence, the aim of this review is to elucidate the history of fungal pigments
and their chemical structure. Well-known fungal producers are discussed, and some of the
food and non-food applications of fungal pigments are highlighted.

2. Fungi as a Source of Pigments

The oldest record of using fungal pigments was the use of Monascus pigments in
producing red mold rice (ang-kak). Fungi are an excellent source of natural pigments
with significant advantages over plants. For example, fungi provide season-independent
pigment production, and their growth is easier and faster and requires a cheap culture
medium [18]. Moreover, fungal pigments are of different color hues and possess higher
stability and solubility [19]. The members of specific fungal families are known as promis-
ing pigment producers, including Chaetomiaceae, Chlorociboriaceae, Cordycipitaceae,
Herpotrichiellaceae, Hypocreaceae, Hyaloscyphaceae, Hymenochaetaceae, Monascaceae,
Nectriaceae, Ophiostomataceae, Pleosporaceae, Polyporaceae, Sordariaceae, Tremellaceae,
Trichocomaceae, Tuberaceae and Xylariaceae [18,20].

Fungal pigments are considered secondary metabolites that are produced by mycelium
under certain conditions as the shortage in nutrients or under some unfavorable environ-
mental stresses [21]. Many fungal genera, such as Aspergillus, Trichoderma, Fusarium and
Penicillium, produce intermediate metabolites (pigments) during their growth [22]. Produc-
tion of pigments such as melanin has a role in fungi protection, helping the microorganism
to survive under severe environmental stresses and protecting from UV light. However, a
single fungal species can produce different pigments with different properties.

3. Chemistry of Fungal Pigments

Generally, fungal pigments belong to different chemical classes such as carotenoids,
melanins, azaphilones, flavins, phenazines, quinones, monascin, violacein, indigo and
polyketides [22,23]. The fungal polyketides are composed of tetraketides and octaketides
possess eight C2 units, forming a polyketide chain. Some fungi are capable of producing
naphthoquinones, which also have strong antibacterial and antimalarial activities.

Monascus is a well-known producer of different pigments, especially polyketide as it
was reported to produce different polyketide pigments, including Monascin and ankaflavin
(which are yellow pigments), monascorubrin and rubropunctatin (which are orange pig-
ments) and monascorubramine and rubropuntamine (which are red pigments) [24]. Most
Monascus pigments are produced mainly by four species, M. purpureus, M. pilosus, M. rubber
and M. froridanus. Generally, Monascus pigments are characterized by sensitivity to both
heat and light, instability at low pH and poor dissolution in water, which can be improved
by reacting with amino-containing compounds [25]. Nevertheless, pigments produced
by M. ruber are known as important food colorant sand additives [18]. M. ruber produces
various pigments, as shown in Table 1, such as rubropunctin, N-glucosylrubropunctamine,
N-glucosylmonascorubramine and monarubrin [26]. M. purpureus is also known for produc-
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ing different pigments (Table 2), including monapurone A–C, monasphilone A–B, monapi-
lol A–D and 9-(1-hydroxyhexyl)-3-(2-hydroxypropyl)-6a-methyl-9,9a-dihydrofuro [2,3-h]
isoquinoline-6,8 (2H,6aH)-dione [27,28]. Similarly, many species of the genus Penicillium are
known as potent pigment producers [29–31]. The first commercial fungal pigment, Arpink
redTM (also known as Natural red™), is produced by Penicillium oxalicum. Other pigments
such as talaroconvolutins A–D, sclerotiorin, xanthoepocin, atrovenetin and dihydrotri-
chodimerol are produced by other Penicillium species as P. convolutum, P. mallochii, P. simpli-
cissimum, P. melinii and P. flavigenum [32–34]. It should be noted that some Monascus-like
pigments are produced by Penicillium, such as PP-V [(10Z)-12-carboxylmonascorubramine]
and PP-R [(10Z)-7-(2-hydroxyethyl)-monascorubramine] [18]. Another fungal genus that is
reported as a promising source of pigment is Talaromyces, especially T. purpureogenus, which
was formerly known as Penicillium purpureogenum [35,36]. Herqueinone-like and Monascus-
like azaphilone pigments (N-glutarylmonascorubramine and N-glutarylrubropunctamine)
are produced by T. purpureogenus. Other pigments such as mitorubrin, monascorubrin,
PP-R, glauconic acid, purpuride and ZG-1494α are produced by T. atroroseus, while tri-
hydroxyanthraquinones such as erythroglaucin, emodin and catenarin are isolated from
T. stipitatus [37–39]. Epicoccum species secrete various secondary metabolites such as polyke-
tides, carotenoids, polyketide hybrids and diketopiperazines. The pigments produced
by E. nigrum have many industrial applications, especially epicocconone, which is a flu-
orophore that is used in cell staining cells and proteins in gel electrophoresis for protein
detection [40–42].

Additionally, macrofungi (mushrooms) have been reported for the production of differ-
ent pigments, especially genera of the family Cordycipitaceae such as Beauveria, Cordyceps,
Hyperdermium, Torrubiella and Lecanicillium. For example, the yellow pigments bassianin
and tenellin are produced by Beauveria bassiana and B. brongniartii, while the pale yellow
pigments pyridovericin and pyridomacrolidin are secreted by B. bassiana. Some species of
Torubiella produces torrubiellones A–D, Lecanicillium aphanocladii produce oosporein, and
Cordyceps farinosa produces anthraquinone-related compounds, while Ophiocordyceps unilat-
eralis produces erythrostominone, 4-O-methyl erythrostominone, deoxyerythrostominone,
deoxyerythrostominol, epierythrostominol and 3,5,8-TMON (3,5,8-trihydroxy-6-methoxy-
2-(5-oxohexa-1,3-dienyl)-1,4-naphthoquinone) [43–45]. It should be noted that Aspergillus,
Trichoderma and Fusarium are well-known producers of the safe pigment, anthraquinone.

Table 1. Well-known chemical classes responsible for different colors.

Compound Color Chemical Structure

Carotenoids
Yellow
Yellowish
orange
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Table 1. Cont.

Compound Color Chemical Structure

Oxopolyene and azaphilones
Yellow
Red
Purple red
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Table 2. Cont.

Fungal Species Pigment Name Color Reference

Monascus ruber

Monascin Yellow

Mapari et al. [29]; Loret and Morel [48]

Citrinin Yellow

Ankaflavin Yellow

Monarubrin Yellow

Rubropunctin Yellow

Rubropunctatin Orange

Monascorubrin Orange

Monascorubramine Red

N–glucosylrubropunctamine Red

N–glucosylmonascorubramine Red

Rubropunctamine Purple-red

Trichoderma harzianum

Pachybasin Yellow

Caro et al. [30]Emodin Yellow

Chrysophanol Orange-red

Aspergillus ruber

Asperflavin Yellow

Caro et al. [30]

Guestin Yellowish orange

Emodin Orange

3–O–(α–D–ribofuranosyl)–questin Orange

Catenarin Red

Rubrocristin Red

Eurorubrin Brown

Talaromyces purpureogenus

Mitorubrin Yellow

Mapari et al. [29]; Ogbonna et al. [36]

Purpurogenone Yellowish orange

Mitorubrinol Orange-red

Rubropunctatin Red

Azaphilones Red

Penicillium viridicatum
Viomellein reddish-brown

Mapari et al. [29]; Ogbonna et al. [36]
Xanthomegnin Orange

Penicillium oxalicum

Secalonic acid D Yellow

Mapari et al. [29]; Caro et al. [30]
Arpink red™ Red

Anthraquinone derivative Red

Anthraquinones Red

Ophiocordyceps unilateralis

Erythrostominone Red

Caro et al. [30]

Deoxyerythrostominone Red

deoxyerythrostominol Red

4–O–methyl erythrostominone Red

Epierythrostominol Red

Naphthoquinones Bloody red

Cerioporus squamosus Melanin Black Tudor [49]

Fomes fomentarius Melanin Black Tudor [49]; Tudor et al. [50]
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Table 2. Cont.

Fungal Species Pigment Name Color Reference

Chaetomium globosum

Chaetoviridins A–D Yellow

Caro et al. [30]
Chaetoglobin A–B Purple

Chaetomugilins A–F Purple

Cochliodinol Purple

Epicoccum nigrum

Carotenoids Yellow

Mapari et al. [29];
da Costa Souza et al. [44]

Chromanone Yellow

Orevactaene Yellow

Epicoccarines A–B Fluorescent
yellow

Epicocconone Fluorescent
yellow

Epipyridone Red

Flavipin Brown

Isobenzofuran Brownish yellow

Fusarium fujikuroi

Bikaverin Red

Mapari et al. [29]; Frandsen et al. [51];
Avalos et al. [52]

Norbikaverin Red

O–demethylanhydrofusarubin Red

8–O–methybostrycoidin,
2–(4–((3E,5E)–14–aminotetradeca–
3,5–dienyloxy)
butyl)–1,2,3,4–tetrahydroisoquinolin–
4–ol
(ATDBTHIQN)

Pink

Neurosporaxanthin Orange

β–carotene Orange-red

Fusarubin Red

O–methylsolaniol Orange-red

Fusarium oxysporum

2,7–dimethoxy–6–
(acetoxyethyl)juglone Yellow

Medentsev et al. [53]; Avalos et al. [52];
Lebeau et al. [54]

Nectriafurone Yellow

O–methyl–6– hydroxynorjavanicin Yellow

Bikaverin Red

Bostrycoidin Red

Norjavanicin Red

O–methylfusarubin Red

O–methylanhydrofusarubin Orange-red

Neurosporaxanthin Orange

β–carotene Orange-red

Naphthaquinones Purple



Appl. Microbiol. 2023, 3 741

Table 2. Cont.

Fungal Species Pigment Name Color Reference

Beauveria basiana

Tenellin Yellow

Wat et al. [55]; Caro et al. [30]

Bassianin Yellow

Pyridovericin Yellow

Pyridomacrolidin Yellow

Oosporein Red

Curvularia lunata

Chrysophanol Red

Mapari et al. [29]; Caro et al. [30]

Erythroglaucin Red

Catenarin Red

Cynodontin Bronze

Helminthosporin Maroon

Pyrenophora species

Catenarin Red

Mapari et al. [29]; Caro et al. [30]

Erythroglaucin Red

Cynodontin Bronze

Helminthosporin Maroon

Tritisporin Reddish brown

Alternaria alternate

Alternariol Red

Devi et al. [56]

Alternarienoic acid Red

Alterperylenol Red

Altenuene Violet-red

Alternariol-5-methyl ether Brownish red

Tenuazoic acid Orange-red

Stemphyperylenol Yellow–orange-
red

Neurospora crassa

Neurosporaxanthin Yellow-orange

Avalos et al. [57]; Caro et al. [30]

Phytoene Yellow-orange

Neurosporen Yellow-orange

β–carotene Red-orange-
yellow

Lycopene Red

Spirilloxanthin Violet

γ–carotene Yellow-orange

4. Application of Fungal Pigments in Different Industries

Natural pigments have different applications (Figure 1) in food- and non-food-related
fields. This came as a result of scientific research, which has warned of the health hazards
accompanying the use of artificial synthetic pigments. Hence, we highlight here some of
the applications of fungal pigments.
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4.1. Fungal Pigment Applications in Food Industry

As mentioned previously, there are continuous demands of consumers for less syn-
thetic and artificial colors in their food and dairy products due to the health hazards and
adverse effects caused by these artificial colors. In the middle of the 1980s, tartrazine
was nominated as potential cause of sleep disturbance, hyperactivity and irritability in
children [58]. Furthermore, azo-dyes, which are commonly used as additives in the food
industry, were regarded as potential carcinogens after being transformed by the gut mi-
crobiota [59]. Artificial colors such as tartrazine, sunset yellow and ponceau are also
capable of inducing allergic reactions in many individuals even when consumed at low
concentrations [60]. In addition, glossitis was linked to ponceau 4R consumption at high
concentrations [61]. Hence, natural colors are favored; however, the safety of colors from
microbial origins must be firstly checked. It is known that the majority of fungi produce
mycotoxins, which can restrict their application in food and pharmaceutics. Some fungal
species, such as Aspergillus carbonarius, produce a yellow pigment without producing any
mycotoxins [62]. A. carbonarius produces polygalacturonase, which tolerates UV irradia-
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tion, and during its growth phase, a safe yellow pigment is accumulated in its biomass
which can be used in food industry [63]. Thermomyces sp. produces a thermophilic yel-
low pigment that has antioxidant activity [60]. Pigmentation varies from yellow to red,
according to many growth conditions such as temperature, age of the fungus and the
used substrate. Food and beverages fortified by the yellow pigment recorded high an-
tioxidant properties, antimicrobial properties and color stability [64]. Blackslea trispora is
a promising source of safe β-carotene as this fungus does not produce mycotoxins [65].
The β-carotene from this fungus was the first approved microbial food colorant in the
European Union. Different Fusarium species are capable of producing a wide range of
diverse pigments, especially F. graminearum, which produces rubrofusarin, a red naph-
thoquinone pigment [66]; F. fujikuroi, which produces fusarubin, an orange carotenoid
pigment [67]; and F. oxysporum, which secretes bikaverin, a red naphthoquinone [68]. How-
ever, there are safety concerns about such pigments because the metabolites produced by
Fusarium species contain different mycotoxins such as fumonisins, fusaric acid, fusarins,
zearalenone and beauvericins [57]. On the contrary, Monascus species are generous produc-
ers of safe pigments with strong contributions in food industry, such as M. purpureus, which
produces monascorubramine and rubropunctamine; M. anka, which secretes ankaflavin
and monascin; and M. ruber, which produces monascorubrin and rubropunctatin [69–71].
Monascus pigments are produced on rice using solid-state microbial fermentation, and red
mold rice was used centuries ago as a food colorant in traditional oriental medicine [72].
Many Penicillium species produce antibiotics and pigments and are used in manufacturing
cheese [73]. P. purpurogenum secretes an azaphilone-like, brick-red pigment. Addition-
ally, violet and orange pigments were obtained by modifying conditions of culturing [74].
Pigment production using Penicillium as a source is more efficient and highly preferred
because it secretes water-soluble and stable pigments extracellularly, so it can be easily
purified [75]. Talaromyces purpureogenus (previously known as Penicillium purpureogenum),
secretes safe yellow and red pigments under submerged fermentation conditions, while
other strains of Talaromyces as T. aculeatus, T. funiculosum, T. purpurogenum and T. pinophilus
produce Monascus-like polyketide azaphilone pigments [76]. Trichoderma viride secretes
a brown pigment and can synthesize the yellow pigment emodin [60]. Neurospora crassa
produces safe yellow to orange-red polyketide and carotenoid fungal pigments that are
used as food colorants. Mushrooms are known for producing pigments, especially mem-
bers of family Cordycipitaceae such as Cordyceps, Torrubiella, Hyperdermium, Beauveria and
Lecanicillium. Beauveria bassiana produces tenellin, pyridomacrolidin and pyridovericin,
which is blood-red dibenzoquinone, while B. brongniartii secretes bassianin, and Torubiella
produces torrubiellones [60].

4.2. Non-Food Applications of Fungal Pigments

Safe fungal pigments can be used for various industrial applications such as dyes for
textiles, paper, paints, leather and cosmetics. Many fungal pigments originating from gen-
era such as Monascus, Talaromyces, Penicillium, Trichoderma and Aspergillus showed antibac-
terial activity against many pathogenic bacteria [77–80]. Such antimicrobial potential leads
to application of these pigments in different fabrics, with promising results that suggest
their potential use in suture threads, bandages, face masks and other related medical appli-
cations [81,82]. Some fungal pigments such as naphthoquinones, melanin, violacein and
carotenoids showed antioxidant activity [83,84]. Interestingly, some Monascus fungal pig-
ments such as monascin, monapurone A–C, ankaflavin, monasphilone A–B, monaphilone
A–B and monapilol A–D show anticancer or antitumor activity against different cancer cells
such as mouse skin carcinoma, human colon adenocarcinoma, pulmonary adenocarcinoma,
human laryngeal carcinoma and human hepatocellular carcinoma [85,86]. Fungal pigments
are utilized in the cosmetics industry due to their reported biological activities. Carotenoids,
melanin and lycopene are already applied in cosmetics, sunscreens, sunblocks, sun lotions,
anti-ageing creams, face creams, skin conditioning and lipsticks. [18,87]. Fungal pigments,
as natural pigments with different advantages (eco-friendly, easy degradation, safe and
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high staining capability) over synthetic pigments, represent a good alternative to the syn-
thetic dyes in the textiles industry. Pigments of the fungal genera Monascus, Curvularia,
Aspergillus, Penicillium, Talaromyces, Trichoderma, Alternaria, Cordyceps, Bisporomyces and
Cunninghamella were applied to different fabrics such as cotton yarn, wool, silk, nylon and
polyester [21,88].

5. Epicoccum as an Example of Pigment-Producing Fungi

Many studies have discussed the promising potential of different fungal genera to
secrete pigments. However, few reports have described pigments secreted by the genus
Epicoccum. Epicoccum is an endophytic dematiaceous ascomycetous fungus that is known
for its application as biocontrol agent against many phytopathogens [89]. Colonies of
Epicoccum are fast-growing, suede-like to downy, showing a deep yellow to brownish
orange diffusible pigment. During sporulation, many black conidiophore aggregates can be
observed. Conidia of Epicoccum appear singularly on densely compacted, determinant and
faintly pigmented conidiophores. Conidia are characterized by being globose to pyriform,
with a characteristic funnel-like base and broad attachment scar, frequently seceding with a
protuberant basal cell. Conidia are multicellular, deeply pigmented and have a surface that
appears verrucose externally. Epicoccum sp. secretes different metabolites from different
chemical classes such as polyketides, diketopiperazines, polyketide hybrids, carotenoids
and siderophores. Some of these metabolites showed promising biological activities, such
as antimicrobial, antioxidant and anticancer properties, and there are many promising and
important metabolites with potent biological activities such as the anticancer drug taxol,
D8646-2-6 orsellinic acid and curvularin. Additionally, many Epicoccum species produce
pigments that have potential industrial applications, such as E. nigrum (Tables 2 and 3),
for example epicocconone, which is commercially known as fluorophore and is used
in cell staining and in gel electrophoresis for protein detection [40,41]. Other reported
Epicoccum-derived pigments are listed in Table 3.

Table 3. Some of the pigments produced by Epicoccum species.

Compound Type Pigment Color References

Flavipin Polyketide Yellow pigment Brown et al. [90];
Madrigal et al. [91]

Epicoccones A and B Polyketide Brown pigment
Abdel-lateff et al. [92];

Kemami et al. [93];
El Amrani et al. [94]

3-methoxy epicoccone Polyketide Yellow pigment El Amrani et al. [94]

3-methoxy epicoccone B Polyketide Yellow pigment El Amrani et al. [94]

2,3,4-trihydroxy-6-(methoxymethyl)-
5-methylbenzaldehyde Polyketide Brown pigment El Amrani et al. [94]

7-methoxy-4-oxo-chroman-5-carboxy
acid methyl ester Polyketide Pale yellow pigment Lee et al. [95]

1,3-dihydro-5-methoxy-7-methyl
isobenzofuran Polyketide Light brown pigment Lee et al. [95]

Epicoccalone Polyketide Yellow pigment Kemami Wangun et al. [93]

Epicocconone Polyketide
Pigment of high

orange-red fluorescent in
the presence of proteins

Bell and Karuso [40]

Acetosellin Polyketide Yellow pigment Talontsi et al. [96]

Quinizarin Polyketide Red pigment Dzoyem et al. [97]
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Table 3. Cont.

Compound Type Pigment Color References

Orevactaene Polyketide Orange pigment Shu et al. [98]

Epipyridone Polyketide–nonribosomal
peptide hybrid Red pigment Kemami Wangun and

Hertweck [99]

Epicoccarines A and B Polyketide–nonribosomal
peptide hybrid

Antibacterial and
red pigment

Kemami Wangun and
Hertweck [99]

β-Carotene Carotenoid Antioxidant and
yellow pigment

Foppen and
Gribanovski-Sassu [100]

γ-Carotene Carotenoid Orange pigment Foppen and
Gribanovski-Sassu [100]

Rhodoxanthin Carotenoid Red pigment Foppen and
Gribanovski-Sassu [100]

Torularhodin Carotenoid Violet pigment Foppen and
Gribanovski-Sassu [100]

As shown in Table 3, the pigments secreted by Epicoccum species are of polyketide
and/or carotenoid origin [101,102] with pigment color shades ranging in yellow, orange
and red spectra.

6. Extraction and Optimization of Pigment Production

Extraction process of metabolites such as pigments from microbial sources is conducted
using different solvents depending on various variables, for example the type of used
solvent, temperature used during the extraction process, the time of extraction process
and the solid/liquid ratio [103]. Nevertheless, application of this extracted pigment in
the industrial field will be economical only if high yield (efficient extraction) is achieved.
Many approaches were applied in order to optimize fungal pigment production, such as
optimization of production medium components, culturing conditions and using statistical
optimization methods [104]. Some statistical optimization methods are based on applying
one factor at a time, which is less efficient, consumes time, is relatively expensive and
fails to determine the relationship between different variables [105]. Meanwhile, other
statistical optimization methods such as the response surface model can investigate variable
independent parameters and their interactive relationship and subsequently can be utilized
to develop relevant mathematical models that can predict the whole process. In other
words, applying such statistical optimization models produces substantial results from a
small number of experiments [106]. Hence, it is critically important to use such efficient
methods for optimization of pigment production for industrial application. The main
obstacle in the fungal pigment production process is the difficulty in optimizing both
biomass yield and pigment yield, since both are indirectly proportional. Therefore, such
a relationship (between pigment yield and biomass) must be studied. The use of genetic
engineering approaches can solve such a problem and control pigment production through
employing recombinant DNA, for example, to change the activity of enzymes responsible
for carotenoid biosynthesis [22].

7. Conclusions and Future Directions

Fungal pigments are promising metabolites with a wide range of applications when
compared to artificial pigments. Additionally, the elevated consumer awareness of the
advantages of using natural pigments in general and fungal ones in particular has oriented
researchers toward screening for other novel and safe pigments from fungi. Ascomycetous
fungal genera are favorable in this field as they are characterized by the ease of their growth
any time of the year under relatively simple laboratory conditions and therefore can be
applied in large industrial production (in contrast to plant-derived pigments where their
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availability is affected by the producer plant’s growing season). Many scientific studies
have described the large-scale production of fungal pigment production in a bioreactor
under controlled conditions. Industrial use of fungal-derived pigments has gradually
progressed throughout history. In the beginning, natural food colorant from fungal sources
was restricted to the semi-fermentative production of the yellow natural food colorant,
riboflavin, which is secreted by the filamentous fungus Eremothecium gossypii (previously
known as Ashbya gossypi) [107]. However, the use of riboflavin as food colorant has some
limitations because it is sensitive to light. After that, the fungus Blakeslea trispora was used to
produce β-carotene as a food colorant. Previously, tomato was the sole source of lycopene,
but nowadays Blakeslea trispora is approved as a promising source of lycopene [108,109].
Cordyceps unilateralis (also known as Ophiocordyceps unilateralis) is capable of producing
pigments that have similar structure to shikonin and alkanin (red pigments derived from
plants) [110].

There are various color hues of polyketide pigments with anthraquinone, naphtho-
quinone, azaphilone and hydroxyanthraquinone structure. However, for centuries, polyke-
tide pigments secreted by the fungus genus Monascus have been the most widely used in
Asian countries such as Southern China, Southeast Asia and Japan for making anka, red
soybean cheese and red rice wine [111]. As described previously, Monascus sp. secretes
many pigments such as monascin and ankaflavin (yellow in color), rubropunctatin and
monascorubrin (orange in color) and rubropunctamine and monascorubramine (purple-red
in color). Hence, different companies have filed many patents for Monascus-like pigments,
and their products are now available in the market. It should be noted that Monascus se-
cretes a hepato-nephrotoxic mycotoxin (citrinin); however, the literature does not describe
any death due to consumption of red rice wine, red soybean cheese or anka made using
Monoascus pigments. Hence, evaluation of toxicity of different fungal pigments is of critical
importance before testing their potential and allowing them to enter the market as food
colorants or as drugs, which explains why application of fungal pigments in food and
medical fields is relatively difficult. Nowadays, researchers are focusing on screening of
fungal diversity for pigment production with an emphasis on two major points, which
are finding a non-mycotoxin producing strain and a pigment that is water-soluble [110].
Challenges facing the industrial application of some Monascus pigments include their weak
water solubility, poor pH stability and sensitivity to heat and light. One of the proposed
solutions for such challenges is changing the pigment’s chemical structure through substi-
tuting oxygen with nitrogen from the amino group in its structure [112]. Moreover, another
serious problem is the co-production of toxic metabolites with the pigment, which prevents
its application, or production of a mixture of pigments, which represents a challenge when
trying to produce a pigment with one color tone. This problem can be solved by optimizing
culturing conditions such as changing the used substrates, temperature, pH and dissolved
oxygen either in submerged or solid-state fermentation. However, it was reported that
solid-state fermentation results in higher secondary metabolites yield because it resembles
the natural habitat of fungi besides providing a solid support that fungal strain can attach
to [113]. Another critical point that affects the application of a pigment in industry is the
stability of this pigment over time, but some approaches such as nanoencapsulation can
address both the stability and solubility problems [5]. A recent study has described the
effect of ozone processing, which is used during the pasteurization process of some juices
and foods on some fungal pigments, and fungal pigments showed higher stability com-
pared with other tested natural pigments [114]. Interestingly, biological activities of fungal
pigments may open new opportunities for their use in the production of functional textiles
with medical properties or functional colored food with nutritional and health-improving
benefits. Finally, construction of an online database that carries all information about fungal
producers of different pigments and their chemical characteristics will facilitate the work of
scientists and save their time.
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