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Abstract: Pterostilbene has been shown to exhibit antifungal activities. However, the detailed
action mechanism is unknown. Here, we analyzed the antifungal mechanism of pterostilbene
against Saccharomyces cerevisiae. The minimum growth inhibitory and fungicidal concentrations of
pterostilbene were 120 and 240 µM in a YPD medium, respectively. Although pterostilbene produced
reactive oxygen species (ROS), resveratrol did not. This effect was maximized at 120 µM. Furthermore,
α-tocopherol acetate inhibited ROS production and reversed pterostilbene-induced growth inhibition.
At 240 µM, pterostilbene showed fungicidal effects accompanied by the leakage of intracellular
potassium ions, suggesting the involvement of membrane injury in addition to oxidative stress in
fungicidal action. Nevertheless, the antioxidants gradually reversed the decrease in cell viability
caused by pterostilbene, suggesting that ROS production mainly contributed to the lethal effect. As
Pterocarpus marsupium extract, mainly containing pterostilbene, is used as a traditional medicine,
pterostilbene has great potential for development as a preservative with fewer adverse effects.
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1. Introduction

Controlling fungal growth is essential to prevent frequent food spoilage, which leads to
significant economic losses [1]. Despite advancements in food preservatives, food spoilage
caused by yeasts such as Saccharomyces cerevisiae and Wickerhamomyces anomalus cannot
be entirely prevented. These yeasts are major sources of spoilage in preserved foods and
beverages due to their high tolerance to weak acid preservatives and ethanol [2,3]. The
brewing yeast S. cerevisiae is the primary microorganism involved in alcoholic fermentation.
Among film-forming yeasts, W. anomalus frequently causes spoilage in beer [4,5] and bakery-
related products [6,7]. Furthermore, non-Saccharomyces yeasts, including W. anomalus,
contribute to the complex aroma of wine [8]. Traditional preservatives such as sorbic acid
and its potassium salt are added to wine with residual sugars to prevent re-fermentation
by yeasts such as S. cerevisiae and W. anomalus, but their use is limited due to their slight
odor and fatty acid-like taste. Therefore, safe and effective antifungal preservatives are
required to control these yeasts. Although several theories have been proposed to inhibit
yeast growth using this class of compounds, the weak antifungal activities of such organic
acid-based preservatives have not yet been overcome [9]. Thus, there is a pressing need to
develop effective fungus-targeting preservatives to reduce food losses.

Pterostilbene is a type of trans-stilbene, which is a natural methoxylated analog of resver-
atrol (Figure 1). It can be derived from several plants, including Pterocarpus marsupium (Indian
kino tree), Pterocarpus santalinus (red sandalwood), Vitis vinifera (common grape vine), and
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Vaccinium ashei (rabbit-eye blueberry) [10–13]. Pterostilbene, in addition to resveratrol, exhibits
various biological activities that are beneficial to human health, including anticancer, anti-
inflammatory, antioxidant, and analgesic properties [14–17]. It also has anti-biofilm activity
against the human pathogenic fungus Candida albicans [18]. In addition to its human health
benefits, this stilbene exhibits antifungal effects against several plant pathogens, including
Phomopsis viticola, Phomopsis obscurans, and Botrytis cinerea [19–21]. However, the antifungal
mechanism of pterostilbene against fungi, including food spoilage yeasts, has not yet been
thoroughly investigated. Therefore, we analyzed its action mechanism using the fungal model
microorganism S. cerevisiae at the molecular level.
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Figure 1. Chemical structures of resveratrol (A) and pterostilbene (B).

2. Materials and Methods
2.1. Chemicals

Pterostilbene and resveratrol were purchased from Tokyo Chemical Industry Co. Ltd.
(Tokyo, Japan). α-Tocopherol acetate and 2′,7′-dichloro-fluorescein diacetate (DCFH-DA)
were purchased from Sigma-Aldrich (St. Louis, MO, USA). N,N-dimethylformamide (DMF)
was obtained from Wako Pure Chemicals (Osaka, Japan). Pterostilbene and resveratrol
were dissolved in DMF before use. α-Tocopherol acetate and DCFH-DA were diluted in
ethanol before use. The K+ ion assay kit was purchased from HACH (Loveland, CO, USA).
All the other chemicals were of analytical grade.

2.2. Strain and Culture Conditions

The strain S. cerevisiae BY4741 was purchased from Thermo Fisher Scientific (Waltham,
MA, USA). The yeast cells were grown in YPD broth, consisting of 1% Bacto yeast extract
(Difco Laboratories, Detroit, MI, USA), 2% Bactopeptone (Difco Laboratories), and 2%
D-glucose at 30 ◦C for 16 h without shaking prior to experiments, unless otherwise stated.
All experiments, including an assay for cellular reactive oxygen species (ROS) levels, were
performed in the dark.

2.3. Measurement of Cell Growth and Viability

To obtain an initial cell density of approximately 106 cells/mL, the precultured cells
were inoculated into freshly prepared YPD medium in a test tube (diameter, 10 mm) and
incubated at 30 ◦C without shaking in the presence or absence of the test compound at
various concentrations. After 24 h of culturing, we measured cell turbidity at 595 nm to
estimate the minimum growth inhibitory concentration (MIC). MIC was defined as the
lowest concentration of the test compound that causes a decrease in cell turbidity of less
than 80% in the absence of drugs. After measuring cell turbidity, 100 µL portions of the cell
culture were plated on a YPD medium containing 1.8% (w/v) agar. After 48 h of incubation
at 30 ◦C, colony formation was assessed to confirm cell viability and to determine the
minimum fungicidal concentration. The minimum fungicidal concentration (MFC) was
determined as the lowest concentration of the test compound to prevent colony formation
on agar plates.
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2.4. Leakage of K+ Ions

Yeast cells cultured overnight in YPD medium were harvested by centrifugation, washed
twice, and resuspended in 50 mM succinate buffer (pH 6.0) at a cell density of 5× 107 cells/mL.
The cell suspensions were supplemented with or without each compound and incubated
with vigorous shaking at 30 ◦C for 3 h. The supernatant obtained after removing the cells by
centrifugation was used for the quantification of K+ ions released from the cells. The K+ ions
from the cells react with sodium tetraphenylborate to form potassium tetraphenylborate, an
insoluble white solid. The amount of turbidity produced is proportional to the K+ concentration.
The measurement wavelength of the spectrophotometer was 650 nm. Quantification was
performed using a K+-ion assay kit based on the tetraphenylborate method [22].

2.5. Determination of Cellular Reactive Oxygen Species (ROS) Levels

Cellular ROS production was measured using the DCFH-DA method, which is de-
pendent on intracellular deacetylation and oxidation of 2′,7′-dichlorodihydrofluorescein
(DCFH) to the fluorescent compound 2′,7′-dichlorofluorescein (DCF) [23,24]. This probe
is highly reactive with hydrogen peroxide and has been used to evaluate ROS generation
in yeast. Following preincubation (1 × 107 CFU/mL) in YPD medium with 40µM of
DCFH-DA at 30 ◦C for 60 min, 3 mL of cell suspension was withdrawn and further treated
with the test compounds against the yeast cells for 60 min. After treatment, the cells were
washed and resuspended in 330µL of phosphate-buffered saline buffer. The fluorescence
intensity of the cell suspension was measured using a GENios (TECAN, Grödig, AT, USA)
(excitation at 485 nm and emission at 535 nm). Arbitrary units were based on fluorescence
intensity per 107 cells.

2.6. Statistical Analysis

Statistical evaluation was performed using Student’s t-test; p < 0.05 was considered to
represent statistical significance.

3. Results and Discussion

Pterostilbene constitutes approximately 90% of the extract from the dried heartwood
of P. marsupium [11]. The Pterocarpus extract (Sabinsa Japan Corp., Tokyo, Japan) was pre-
liminarily found to restrict the colony formation of W. anomalus NBRC (Biological Resource
Center, NITE, Tokyo, Japan) 10213 and S. cerevisiae NBRC 100929 on potato dextrose agar
plates after 48 h incubation at concentrations more than 100 µg/mL. Therefore, pterostil-
bene is thought to be the active constituent of the extract and is expected to be a candidate
preservative with antifungal properties. To analyze the antifungal mechanism of pterostil-
bene, we evaluated the antifungal activities of resveratrol and pterostilbene after 24 h of
incubation with the drugs based on cell turbidity in liquid YPD media. Although resveratrol
did not show growth-inhibitory effects on S. cerevisiae at concentrations up to 480 µM (data
not shown), the MIC of pterostilbene was 120 µM, as shown in Figure 2. After determining
the MIC, the MFC was determined using cell suspensions. The MFC of pterostilbene was
240 µM. These results indicate that the two methoxy residues contribute to the antifungal
activity of pterostilbene compared with the chemical structure of resveratrol. The two
methoxy residues of pterostilbene are demethylated in resveratrol (Figure 1). In resveratrol,
the hydroxyl residues are distributed at the ends of the molecule. Additionally, due to the
presence of two methoxy residues at one end of the molecule and one hydroxy residue at the
other end, pterostilbene possibly exhibits nonionic surfactant-like characteristics, with both
hydrophobic and hydrophilic properties within the molecule. As an example of nonionic
surfactants, hydroxyl groups in n-alkanols would interact with hydrophilic groups thrust
on the membrane to form hydrogen bonds [25]. Nonpolar carbon chains in the alkanols
might be folded into membrane bilayers [26–28]. Therefore, nonionic surfactants such as
n-alkanols and alkyl gallates physically disrupt the orderly structure of the lipid bilayer in
the plasma membrane, thereby affecting membrane permeability [26–28]. Therefore, we
examined the effect of pterostilbene on membrane permeability in S. cerevisiae cells.
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Figure 2. Effect of pterostilbene on the growth of S. cerevisiae. The exponentially growing yeast cells
were incubated in YPD broth with 0–240 µM of pterostilbene at 30 ◦C for 24 h. After incubation, the
cell turbidity was measured at 595 nm to evaluate growth inhibitory effect of pterostilbene. Each data
point represents the mean ± SD of triplicate assays.

Leakage of potassium ions from cells was confirmed to evaluate the effect of pterostilbene
on membrane permeability. A traditional polyene antifungal, amphotericin B (AmB), interacts
with fungal ergosterols, thereby forming pores to leak potassium ions selectively [29]. It was
used as a positive control in this study, causing an increase in membrane permeability. AmB
at MFC significantly induced leakage after 120 min of incubation with the cells (Figure 3).
Similarly, pterostilbene at MFC also significantly induced leakage, but the leakage was gradual
and at lower levels than that in the AmB treatment. Therefore, the fungicidal effect of
pterostilbene cannot be explained solely by its effect on membrane permeability, and other
factors are possibly involved.
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Figure 3. Effects of pterostilbene on K+ ion leakage from cells. Exponentially growing yeast cells
were incubated at 30 ◦C in S-buffer alone (closed circle) and the buffer containing 10 µM of AmB
(open square) or 240 µM of pterostilbene (open circle). Each data point represents the mean ± SD of
triplicate assays. Asterisks indicate significant differences compared to the cells incubated in S-buffer
without drugs (p < 0.05).

Dodecanol is a medium-chain normal aliphatic alcohol that also shows nonionic
surfactant-like characteristics, attributed to a hydrophobic tail alkyl chain and a hydrophilic
head hydroxyl moiety. This alcohol induces oxidative stress by inducing the production
of cellular reactive oxygen species (ROS) against S. cerevisiae [30]. In addition, AmB
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also induces cellular ROS production against human pathogenic yeast species, including
Candida albicans [31]. Thus, we evaluated the effects of resveratrol and pterostilbene on
cellular ROS production using a ROS detection fluorescence probe, DCFH-DA. Prior
to determining cellular ROS levels, yeast cells were incubated at 30 ◦C for 1 h in the
YPD broth with or without the drugs. Resveratrol did not induce ROS production at
concentrations up to 240 µM (Figure 4). In contrast, pterostilbene significantly induced
ROS production at 120 and 240 µM, indicating that the drug caused oxidative stress in yeast
cells. Maximum ROS production was observed at a concentration of 120 µM. However,
it is unclear why ROS production was reduced in the 240 µM pterostilbene treatment.
The nonionic surfactant nature of pterostilbene may have leaked DCFH-DA molecules,
thereby reducing the intracellular concentration of the fluorescent probe. As one of the
other possibilities, the reaction rate may reach a plateau point in the ROS production, where
all of the oxygen source was consumed by pterostilbene.
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Figure 4. Effects of pterostilbene on cellular ROS production. (A) Effects of resveratrol (closed) and
pterostilbene (open) concentrations on cellular ROS production. The DCFH-DA pre-stained cells
were incubated in YPD broth with each drug at 30 ◦C for 1 h prior to the measurement of DCF
fluorescence. Each data point represents the mean ± SD of triplicate assays; (B) effect of tocopherol
acetate on pterostilbene-induced ROS production. The DCFH-DA pre-stained cells were incubated in
YPD broth with 120 µM of pterostilbene and 120 µM of tocopherol acetate at 30 ◦C for 1 h prior to the
measurement of DCF fluorescence. Each data point represents the mean ± SD of triplicate assays.

Cellular ROS production originates mainly from the mitochondrial respiratory chain [32],
in addition to lipid peroxidation of the plasma membrane [33]. Moreover, in previous studies,
cellular ROS production was effectively inhibited by the addition of antioxidants to the yeast
culture [34,35]. Therefore, we investigated the effect of hydrophilic and lipophilic antioxidants
on pterostilbene-induced ROS production. To measure ROS levels, pterostilbene was used at
a concentration of 120 µM, because the maximum level of ROS production was observed at
this concentration. Yeast cells were co-treated with each antioxidant and the indicated drugs
at 30 ◦C for 1 h. The hydrophilic antioxidant ascorbic acid (1.0 mM) reduced ROS production
by 23% (data not shown). In contrast, the lipophilic antioxidant, 120 µM of α-tocopherol
acetate, reduced ROS production by 63% (Figure 4B). Next, we examined the effects of
the two antioxidants on the decrease in cell turbidity induced by 120 µM of pterostilbene.
Pterostilbene at 120 µM reduced cell turbidity by 90% and 97%, respectively, compared to drug-
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free treatment after 24 and 48 h of incubation, respectively. Although ascorbic acid (1.0 mM)
did not restore the decrease in cell turbidity (data not shown), 120 µM of α-tocopherol acetate
restored cell turbidity by up to 30% and 90% after 24 and 48 h of incubation, respectively
(Figure 5). These results indicated that the hydrophilic antioxidant ascorbic acid did not affect
pterostilbene-induced ROS production or growth inhibition, whereas lipophilic α-tocopherol
acetate reduced ROS production and restored growth inhibition. As ascorbic acid probably
behaves as a dissociated ion in media such as a YPD broth, it is difficult for dissociation
to penetrate the cell membrane and be incorporated into the cytoplasm. Therefore, higher
concentrations of ascorbic acid may be required to induce its antioxidant effects. In contrast,
α-tocopherol acetate readily penetrates the cell membrane, gets deacetylated, and integrates
into the membranes. Therefore, α-tocopherol probably inhibits ROS production originating
from membranes of cell organelles, such as the mitochondrial inner membrane, where ROS
production is caused by the blockade of electron transfer in complexes I and III of the electron
transport chain [36,37]. On the other hand, with regard to treatment with a fungicidal
concentration of pterostilbene, α-tocopherol acetate at 240 µM did not restore yeast growth
after 24 h of incubation, but after 72 h incubation, the growth was restored to 85% of the
control condition (data not shown), indicating that it takes a long time to recover growth after
treatment with the lethal concentration.
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Figure 5. Effect of tocopherol acetate on pterostilbene-induced growth inhibition. The cells were
incubated in YPD broth with or without 120 µM of pterostilbene supplemented with or without
12 µM of tocopherol acetate at 30 ◦C. After incubation, the cell turbidity was measured at 595 nm.
Each data point represents the mean ± SD of triplicate assays.

Recently, the involvement of oxidative stress in lethal effects has been reported in an-
timicrobial drugs [38,39]. The drugs have been believed to disrupt cellular metabolism and
the membrane as primary targets. In contrast, bacteriostatic drugs do not induce oxidative
stress, such as the production of hydroxyl radicals [39]. Although antifungal AmB induces
plasma membrane injury, such as the formation of pores and leakage of potassium ions
against fungi, including human pathogenic Candida albicans, the fungicidal action of AmB
is related to membrane depolarization, decreasing metabolic activity, and increasing ROS
production in addition to membrane injury [40]. A sesquiterpene dialdehyde, polygodial,
also acts primarily by damaging the permeability barrier of S. cerevisiae cells [41]. In ad-
dition, this dialdehyde also exerts fungicidal action via ROS production caused by the
depletion of intracellular glutathione [42]. In this case, α-tocopherol can lower the cellular
levels of ROS produced, thereby partly reducing the fungicidal effect. Following treatment
with fungistatic concentrations of pterostilbene, cellular ROS were produced at maximum
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levels, but membrane injury was not observed (data not shown). Pterostilbene induced
fungicidal action via membrane injury and ROS production, the levels of which were lower
than those induced by the fungistatic concentration. The involvement of cellular damage
induced by two or more pathways in fungicidal action was consistent with previously
reported AmB and polygodial fungicidal mechanisms, although slightly different. Farnesol
showed growth-inhibitory effects against S. cerevisiae, and the mechanism involved ROS
production without membrane injury [43]. This is consistent with our results showing that
pterostilbene-induced fungistatic effects are dependent on ROS production.

Although pterostilbene has been reported to show antioxidative activities [14–16]
also, including the blockade of ROS’s surge in mammalian cell lines [44], its antioxidative
effects seem to be inconsistent with its ability to induce ROS production in fungi. This
discrepancy was also reported for other compounds. When phenolic compounds with
potent antioxidant activity react with ROS and scavenge radicals, they produce highly
active phenoxy and hydroxyl radicals, which in turn, produce new ROS [45–47]. Whether
pterostilbene exhibits an antioxidant effect or exerts oxidative stress may depend on the
species of drug applied. Further investigations are needed to clarify the possibility of
pterostilbene-induced fungus-specific oxidative stress.

4. Conclusions

We showed that pterostilbene exerts fungistatic effects via cellular ROS production
and fungicidal effects via plasma membrane injury in addition to ROS production. ROS
contributes to both fungistatic and fungicidal activities. Phenolic compounds derived
from plants, such as flavonoids and dihydroxycinnamic acids, also induce ROS production
depending on the concentrations used [47]. Therefore, pterostilbene and Pterocarpus extract
may serve as potential preservatives when used to restrict fungal growth at concentrations
that do not cause side effects in humans. The replacement of certain preservatives with
pterostilbene might contribute to a reduction in food losses.
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