
Citation: Shaukat, M.; Hoshide, A.K.;

Muhammad, S.; Arshad, I.A.;

Mushtaq, M.; de Abreu, D.C.

Predicting Soil Carbon Sequestration

and Harvestable C-Biomass of Rice

and Wheat by DNDC Model. Crops

2023, 3, 220–240. https://doi.org/

10.3390/crops3030021

Academic Editor: Kenneth J. Moore

Received: 30 April 2023

Revised: 6 July 2023

Accepted: 21 July 2023

Published: 30 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Predicting Soil Carbon Sequestration and Harvestable
C-Biomass of Rice and Wheat by DNDC Model
Muhammad Shaukat 1, Aaron Kinyu Hoshide 2,3,* , Sher Muhammad 1, Irshad Ahmad Arshad 4,
Muhammad Mushtaq 5 and Daniel Carneiro de Abreu 3,6

1 Department of Agricultural Sciences, Faculty of Sciences, Allama Iqbal Open University,
Islamabad 44000, Pakistan; muhammad.shaukat@aiou.edu.pk (M.S.); sher.muhammad@aiou.edu.pk (S.M.)

2 College of Natural Sciences, Forestry and Agriculture, The University of Maine, Orono, ME 04469, USA
3 AgriSciences, Universidade Federal de Mato Grosso, Campus Sinop, Caixa Postal 729,

Sinop 78550-970, MT, Brazil; abreu@ufmt.br
4 Department of Statistics, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan;

irshad.ahmad@aiou.edu.pk
5 Office of Research, Innovation and Commercialization (ORIC), Allama Iqbal Open University,

Islamabad 44000, Pakistan; muhammad.mushtaq@aiou.edu.pk
6 Institute of Agricultural and Environmental Sciences, Universidade Federal de Mato Grosso, Campus Sinop,

Caixa Postal 729, Sinop 78550-970, MT, Brazil
* Correspondence: aaron.hoshide@maine.edu; Tel.: +1-207-659-4808

Abstract: Several biogeochemical models have been applied to understand the potential effects
of management practices on soil organic carbon (SOC) sequestration, crop growth, and yield. In
this study, the denitrification and decomposition (DNDC) model was used to simulate soil SOC
dynamics and harvested C-biomass in rice–wheat rotation under organic/inorganic fertilization with
conventional tillage (CT) and reduced tillage (RT). Before calibration, DNDC underpredicted harvestable
grain C-biomass of rice where percent difference (PD) varied from 29.22% to 42.14%, and over-simulated
grain C-biomass of wheat where PD was −55.01% with 50% nitrogen–phosphorus–potassium (NPK)
and 50% animal manure applied under the CT treatment. However, after calibration by adjusting
default values of soil and crop parameters, DNDC simulated harvestable grain C-biomass of both
crops very close to observed values (e.g., average PD ranged from −2.81% to −6.17%). DNDC also
predicted the effects of nutrient management practices on grain C-biomass of rice/wheat under
CT/RT using d-index (0.76 to 0.96) and the calculated root mean squared error (RMSE of 165.36 to
494.18 kg C ha−1). DNDC simulated SOC trends for rice–wheat using measured values of several
statistical indices. Regression analysis between modeled and observed SOC dynamics was significant
with R2 ranging from 0.35 to 0.46 (p < 0.01), and intercept ranging from 0.30 to 1.34 (p < 0.65). DNDC
demonstrated that combined inorganic and organic fertilization may result in higher C-biomass and
more SOC sequestration in rice–wheat systems.

Keywords: biogeochemical models; DNDC model; inorganic fertilizers; soil organic carbon

1. Introduction

In Pakistan, the farming community has a single goal which is to harvest maximum
crop yields in order to feed an increasing population. To achieve this goal, nitrogen fertiliz-
ers are intensively applied to increase crop yields [1], resulting in severe environmental
problems [2]. Environmental degradation is associated with serious threats of climate
change and climate variability because fertilized croplands act as major sources or sinks of
greenhouse gases (GHGs) such as carbon dioxide (CO2), nitrous oxide (N2O), and methane
(CH4). Furthermore, agricultural fields are also responsible for key nitrogen (N) pollutants
such as ammonia (NH3), nitric oxide (NO), and nitrate (NO3

−2) that can contaminate
watersheds adjacent to these crop fields [3]. In addition to N-fertilization, other crop pro-
duction practices such as tillage, irrigation, and crop residue management can significantly

Crops 2023, 3, 220–240. https://doi.org/10.3390/crops3030021 https://www.mdpi.com/journal/crops

https://doi.org/10.3390/crops3030021
https://doi.org/10.3390/crops3030021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crops
https://www.mdpi.com
https://orcid.org/0000-0001-6222-2475
https://orcid.org/0000-0002-1082-1019
https://doi.org/10.3390/crops3030021
https://www.mdpi.com/journal/crops
https://www.mdpi.com/article/10.3390/crops3030021?type=check_update&version=1


Crops 2023, 3 221

influence greenhouse gas (GHG) fluxes and hydrological N losses. For an agricultural
system, the net CO2 efflux from soil can be conceptualized as an opposite change in soil
organic carbon (SOC) where there is a negative change in SOC (-∆SOC). This C fraction is
resistant to microbial decomposition and hence could remain in a stable form in the soil for
a period of time greater than a decade. This C fraction is referred to as a potential source of
atmospheric CO2 at -∆SOC and a sink when ∆SOC is positive. The role of SOC as a sink or
source is controlled by temperature and precipitation [4].

SOC is a key factor in controlling soil productivity, soil water holding potential, and
nutrient retainability, and is an indicator of land degradation [5]. The improvement in SOC
is very essential for Pakistani soils, as these soils have intrinsically low levels of organic
matter (OM). Crop management strategies, which lead to a significant increase in SOC,
can be promoted to offset CO2 efflux from the soil. It is worth mentioning that carbon
sequestration in agricultural lands can play a pivotal role in reducing CO2 emissions,
mitigating global warming, and improving the soil’s basic characteristics such as biological,
physical, and chemical properties [6].

Long-term sustainability in agriculture depends on the ability to adopt appropriate
farming strategies that may slow or reverse the detrimental impacts of intensive tillage
on the physical and chemical properties of the soil [7]. Furthermore, the decline in crop
productivity has been linked with losses of soil organic matter, nutrients, soil aggregates,
and stability of soil particles [8]. Among management practices, the sole use of mineral
nutrients [9] has been considered the major soil organic carbon (SOC) reducing factor in
rainfed agriculture, which has resulted in the decline of soil fertility [8] and the produc-
tivity of agricultural systems. Intensive tillage and inversion of the soil profile promote
loss of SOC via the breakdown of crop residues [10]. Animal manure and crop residue
management [11,12] have been proposed as the most suitable practices to improve soil
health by enhancing SOC density and infiltration capacity, decreasing soil bulk density, as
well as promoting the stability of soil aggregates and SOC [10].

Agricultural systems have a complex nature as they involve the interaction among
crops, soil, the atmosphere, and management practices. Understanding these interactions is
not an easy task; however, dynamic models are effective tools to integrate the components
and processes of whole systems for easy understanding. These models can also be applied
to understanding the mechanisms and necessary approaches to predict crop yield, as well
as contribute to agricultural policy formulation [13]. Several researchers [14–17] have
published their work to highlight the importance of biogeochemical models in simulating
SOC dynamics in response to different management strategies. These process-based models
include Roth-C, CENTURY, LPJ-DGVM, GEFSOC, AMG, and CEVSA which have been used
to examine the potential effects of management practices within agricultural systems [18].
But these models are only good at predicting soil processes.

The denitrification and decomposition (DNDC) model is a process-based model which
has the potential to simulate carbon (C) and nitrogen (N) cycling, including trace gas
emissions, global warming potential (GWP) of major greenhouse gases (CO2, CH4, and
N2O), soil carbon sequestration, crop growth, water use efficiency, and N leaching in
agroecosystems [19]. The DNDC model also has the capability to simulate soils, crops, and
environmental processes, and can integrate a multitude of factors to simulate at both a
site-scale as well as at a regional level [20–22]. Additionally, the DNDC model can predict
C/N balance, C sequestration potential of soils, and GWP of GHG emissions at regional or
national scales [19,23].

To the best of our knowledge, there is still no study that has been conducted to
simulate SOC dynamics and crop production in response to organic and inorganic fertil-
ization using both conventional and reduced tillage practices in a rice–wheat system in
Pakistan. This study was planned with the following objectives: (1) to capture trends in
harvestable C-biomass of rice and wheat using the DNDC model under different organo-
mineral fertilization and tillage systems, and (2) to model the changes in SOC dynamics



Crops 2023, 3 222

under these different organo-mineral fertilization and tillage systems in soils used for
rice–wheat production.

2. Materials and Methods
2.1. Experimental Description

A two-year field study was carried out at the agronomic research station of the Uni-
versity of Agriculture in Faisalabad, Pakistan to study the effects of organic and mineral
fertilization on soil organic carbon sequestration and harvestable C-biomass in a rice–wheat
rotation. Detailed information about the experimental setup, crop management, measure-
ment methods, and soil analysis is available in Shaukat et al. [24]. Tillage systems during
the rice season and the wheat season were the (1) conventional tillage (CT) treatment
(two cultivations with a tractor-drawn cultivator along with one rotavator pass followed
by planking for rice, and three cultivations along with one rotavator pass followed by
planking for wheat) and the (2) reduced tillage (RT) treatment (one cultivation along with
one rotavator for both crops). The fertilization management treatments were as follows:
(1) control (T1); (2) treatment 2 (T2, NPK) which had recommended doses of mineral
nitrogen (N), phosphorus (P), and potassium (K) applied; (3) treatment 3 (T3) with animal
manure (M at 20 Mg ha−1) applied at area farmers’ recommended dose; (4) treatment 4 (T4)
with 100% of crop residue incorporated that left over from the previous crop(s); (5) treat-
ment 5 (T5; NPKM5/5) with 50% NPK and 50% manure (10 Mg ha−1); (6) treatment 6 (T6;
NPKS5/5) with 50% NPK and 50% crop residue; (7) treatment 7 (T7, 0.25NPKM + 0.5S)
which had 25% NPK, 25% manure (5 Mg ha−1), and 50% crop residue; and (8) treatment 8
(T8, 0.25NPKS + 0.5M) with 25% NPK, 25% crop residue, and 50% manure (10 Mg ha−1).
Tillage treatments were randomly allocated in main plots, and nutrient management treat-
ments were randomized in sub-plots of a split-plot design. Each treatment was replicated
three times.

For the RT NPK treatment, the rates of N, P, and K were 140, 80, and 86 kg ha−1, re-
spectively, for rice, and in the case of wheat, these were 120, 80, and 60 kg ha−1, respectively.
Similarly, the doses of N, P, and K for the remaining treatments were calculated as per their
proportionate application. In this experiment, all P, K, and one-third of N were applied at
sowing or transplanting of both crops. Next, one-third of N was applied at the tillering
stage for both rice and wheat. The remaining one-third of N was applied during the booting
stage for both crops. The nutrient analysis for fertilizers (% N-P-K) was specified for urea
(46-0-0), diammonium phosphate (18-46-0), and potassium sulfate (0-0-50).

For the 100% CRI treatment, the aboveground crop stubbles were collected from
pre-existing rice grown under RT NPK after harvest. The rice stubbles per unit area were
estimated (n = 3) and ranged from 6000 to 7200 kg ha−1. About 6000 kg ha−1 of rice straw
was applied. This experiment started with the sowing of wheat, and rice stubbles already
collected were cut into 3 cm sections [24] and returned to the field. After the harvest
of wheat, wheat stubble yield under the RT NPK treatment (n = 3) was calculated, and
this ranged from 5500 to 6500 kg ha−1. An application of 5500 kg wheat straw ha−1 was
incorporated into the soil before transplanting rice. Prior to this experiment, soil analyses
indicated that the proportions of clay, silt, and sand at 15 cm soil depth were 27%, 54%,
and 19%, respectively. Other soil characteristics were bulk density (1.49 g m−3), pH (8.21),
organic matter (0.51%), total N content (0.41 g kg−1), total P content (0.44 g kg−1), and total
K content (31.11 g kg−1).

Organic materials were also analyzed in the laboratory for their nutrient status. Char-
acteristics of manure were contents (%) of moisture (39.5%), carbon (29.6%), N (0.8%), P
(0.21%), and K (0.61%). Similarly, the wheat straw contents (%) were measured for moisture
(10.5%), carbon (39.5%), N (1.13%), P (0.40%), and K (2.02%). Rice straw was 15.5% moisture,
41.31% carbon, 0.98% N, 0.18% P, and 1.62% K. In this study, the soil volumetric water
contents (%) were also determined at 60 and 120 days after sowing or transplanting of
wheat and rice during both years. These measurements were taken at a depth of 10 cm in
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each replicate of treatments using TDR-100 time-domain reflectometer probes (Field scout
TDR-100 system, Spectrum Technologies, Inc. Aurora, IL, USA).

2.2. DNDC Model Setup

The DNDC model (version 9.5 downloaded from http://www.dndc.sr.unh.edu/, ac-
cessed on 15 February 2022) [25] was calibrated to capture the soil organic carbon dynamics
as a function of weather, soil, crop growth, and management inputs. DNDC is a good tool
to simulate C and N cycling in agroecosystems because it has both physio-chemical and
biochemical components [9,25,26]. The conceptual framework and flowchart of the DNDC
model are summarized in Figure 1.

There are a number of ecological drivers such as climate, soil, vegetation, and human
activities that affect the physio-chemical components of agricultural systems (e.g., soil
climate, crop growth, and decomposition rate). These physio-chemical components within
DNDC are linked with soil environmental attributes including, soil temperature, soil
moisture, soil pH, redox potential, and available substrates in the form of ammonium ion
(NH4+), nitrate ion (NO3

−) and dissolved organic carbon. The biochemical components
of DNDC include nitrification, fermentation, and denitrification which predict N and C
transformation that are mediated by soil microbes and are governed by the aforementioned
soil environmental factors [27]. These sub-modules in DNDC control the prediction of CH4,
NH3, N2O, dinitrogen (N2), and CO2 emissions from soil–plant systems to the atmosphere.
The soil organic carbon patterns are governed by soil environmental variables-(e.g., soil
moisture and temperature). The latter variables are linked with ecological drivers (e.g., soil
characteristics, climate, vegetation, and management activities).

Figure 1. Conceptual framework of the DNDC model and its components [28].

http://www.dndc.sr.unh.edu/
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Input Dataset for DNDC

To gather the necessary data to run the DNDC model, a two-year study was executed,
and measurements on crop growth, harvested C-biomass, and soil organic carbon (SOC)
were made and applied to calibrate and validate the DNDC model. DNDC’s simulations
were carried out using daily climate data (e.g., maximum temperature (Tmax), minimum
temperature (Tmin), rainfall, and incident solar energy), edaphic parameters (soil organic
C, bulk density, soil texture, clay fraction, pH, field capacity, etc.), as well as agronomic
management practices employed at the study site. The DNDC model was run to estimate
SOC dynamics, crop growth processes (e.g., leaf area index), leaf plus stem biomass, and
harvested grain biomass for each crop.

2.3. DNDC Parameterization

In terms of crop parameters for the wheat crop, the default values from DNDC’s
crop library were modified for spring wheat (Table 1). However, crop parameters for
rice were adjusted with the measurements recorded at the experimental site under the
conventional tillage (CT) NPKM 5/5 treatment. DNDC was calibrated with this best-
performing treatment for both wheat and rice.

Table 1. Crop parameters for rice and wheat used in crop library of the DNDC model [25].

Parameters
Rice Wheat

Default Value Modified Value Default Value Modified Value

Max. grain production 8443.95 4602 7800 5492.34
Grain fraction 0.41 0.31 0.4 0.40
Leaf fraction 0.23 0.30 0.22 0.27
Stem fraction 0.24 0.31 0.22 0.27
C/N ratio for grain 45.0 45.0 50.0 37.0
C/N ratio for leaf 85.0 65.0 80.0 66.0
C/N ratio for stem 85.0 65.0 80.0 69.0
C/N ratio for root 85.0 30.0 80.0 39.0
N fixation index 1.05 1.19 1.0 1.39
Water requirement 508 430 300 300
Optimum temperature (◦C) 25.0 25.0 22.0 18.0
Total degree days (◦C-days) 2000 2300 1500 1500

A spin-up period of 10 years was established in DNDC prior to the main experimental
study in order to stabilize the partitioning of the carbon (C) and nitrogen (N) pools, which
was used for previously reported studies [22,29]. First, the DNDC model was run with
measured soil parameters (e.g., SOC, clay fraction, pH, bulk density, field capacity, and
wilting point) and crop parameters (e.g., biomass and its fraction, total degree days) under
each treatment. The calibration of DNDC was conducted under the conventional tillage
(CT) NPKM 5/5 treatment by changing the values of biomass C/N ratio, total degree days
(◦C-days), N fixation index (plant N/N from soil), water demand (g H2O/g DM), and
optimum temperature (◦C; Table 2).

Table 2. Soil parameters tested in DNDC for the current study.

Value Unit

Soil Parameter Initial Setup Modified Setup

Land-use type Upland crop field Rice paddy field
Soil texture Silt loam Silt loam

Soil organic carbon (kg C kg−1 soil) 0.03 0.003
Bulk density (cm−3) 1.04 1.51

Soil pH 8.23 7.1
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Table 2. Cont.

Value Unit

Soil Parameter Initial Setup Modified Setup

Field capacity (%) 40.0 43.3
Wilting point (%) 20.0 17.0

Clay fraction 0.14 0.42
Hydrological conductivity (mh−1) 0.0259 0.0259

Drainage efficiency (0–1) 1 0.85

2.4. Model Evaluation Indices

Six statistical indices including mean percent difference (MPD), root mean square
error (RMSE), normalized RMSE (nRMSE), mean absolute error (MAE), index of agreement
(d), and modeling efficiency (ME) were used for both model calibration and evaluation
as well as during model validation. The significance of each index has been documented
by Yang et al. 2014 [30] and Li et al. 1997 [20]. Each index assesses only an aspect of the
performance of the model. Applying each of the six indices would be useful to quantify the
performances of model simulations. The six statistical indices were computed by using the
following equations:

MPD =

[
n

∑
i =1

[
|Oi− Pi|

Oi

]
× 100

]
/n (1)

RMSE =

√
∑n

i =1 (Pi −Oi)
2

n
(2)

nRMSE =
RMSE

O
∣∣ × 100 (3)

MAE =
1
n
×∑n

i =1 |Oi − Pi| (4)

d = 1− ∑n
i =1 (Pi − Oi )

2

∑n
i =1 ( |Pi − O

∣∣+ |Oi − O
∣∣)2 (5)

ME = 1− ∑n
i =1 (Pi − Oi)

2

∑n
i =1 (Oi − O

∣∣)2 (6)

where Pi is the predicted value, Oi is the observed value, n is the number of observed
values, and Oi is the mean of observed values.

3. Results
3.1. Model Calibration

Before calibration, DNDC performance was tested by simulating harvested C-biomass
of rice and wheat under the conventional tillage (CT) NPKM5/5 treatment with default
values of soil and crop parameters. Under this treatment, DNDC predicted the harvestable
straw C-biomass of wheat with a percent difference (PD) of −3.31% (3144.8 kg ha−1 against
3043.75 kg ha−1 which was observed). However, DNDC over-simulated the harvestable
grain C-biomass of wheat with a PD of −55.01%. In the case of rice, DNDC underpredicted
both straw and grain yields (e.g., PD ranged from 29.22 to 42.14; Table 3). The DNDC
model was calibrated using a parameters adjustment approach. After calibration, DNDC
simulated the harvestable straw and grain C biomasses of wheat closely compared to
observed values where PD ranged from −2.81% to −6.17%. Similarly, DNDC also closely
predicted the aboveground biomass of rice where the percent difference ranged from
−6.03% to 19.44% (Table 3).
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Table 3. Simulated harvestable C-biomass of rice and wheat before and after DNDC’s calibration
with percent difference (PD, %) between observed and modeled.

Crop
Leaf + Stem C-Biomass (kg ha−1) Grain C-Biomass (kg ha−1)

Observed Modeled % Difference Observed Modeled % Difference

Before calibration
Wheat 3043.75 3144.8 −3.31 2220.37 3441.84 −55.01

Rice 4012.29 2321.47 42.14 1894.51 1340.76 29.22
After calibration

Wheat 3043.75 3129.43 −2.81 2220.37 2357.55 −6.17
Rice 4012.29 3232.17 19.44 1894.51 2008.76 −6.03

DNDC captured the periodic changes in leaf expansion in terms of leaf area index (LAI)
for both wheat and rice during both years of the experiment. The calibrated treatment’s
predicted and observed values of LAI were very close over the growth period of wheat
(Figure 2). Similarly, DNDC also predicted the LAI of rice very closely to the observed
values of LAI over two growing seasons using the calibrated treatment (Figure 3).

Figure 2. Trends in predicted and observed LAI during the (a) first and the (b) second growing
seasons of wheat under the calibrated treatment using conventional tillage (NPKM 5/5).
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Figure 3. Trends in predicted and observed LAI during the (a) first and the (b) second growing
seasons of rice under the calibrated treatment using conventional tillage (NPKM 5/5).

3.2. Model Evaluation

After calibration, the DNDC model was further evaluated with data collected during
the first year of the experiment from the remaining nutrient management treatments under
both the conventional tillage and the reduced tillage systems. During the evaluation process,
the DNDC model simulated the harvestable grain C-biomass of rice with reasonable
agreement since the d-index varied between 0.85 and 0.86, and the calculated root mean
squared error (RMSE) ranged from 374.98 to 380.69 kg C ha−1. The mean percent difference
(MPD) and normalized RMSE (nRMSE) were at −2.62% to −16.99% and 25.39% to 25.87%,
respectively. The values of the mean error (ME) were very low, ranging from −0.01 to 0.09
(Table 4). Regarding the straw C-biomass of rice, DNDC’s predictions were in agreement
with the field measurements since calculated RMSE ranged from 769.83 to 966.22 kg C ha−1

and d-index at 0.69 to 0.73, MPD and nRMSE were at −17.83% to −28.90% and 26.67% to
31.42%, respectively (Table 4).
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Table 4. Statistical evaluation of DNDC’s performance simulating harvestable grain and straw
C-biomass of rice and wheat under conventional and reduced tillage.

Treatment Observed Simulated n MPD a RMSE nRMSE a MAE d ME

Rice grain C-biomass (kg ha−1)
CT 1449.01 1451.82 7 −2.62 6.74 25.87 2.82 0.85 −0.01
RT 1498.97 1316.18 8 −16.99 380.69 25.39 −182.94 0.86 0.09

Wheat grain C-biomass (kg ha−1)
CT 1601.49 1950.29 7 26.11 510.39 31.87 348.79 0.76 −0.08
RT 1626.25 1995.99 8 27.49 499.98 30.75 369.74 0.77 −0.05

Rice leaf and stem C-biomass (kg ha−1)
CT 2886.03 2402.23 7 −17.83 769.83 26.67 −481.80 0.73 −0.73
RT 3074.85 2277.92 8 −28.90 966.22 31.42 −786.95 0.69 −1.86

Whet leaf and stem C-biomass (kg ha−1)
CT 2215.08 2764.16 7 27.16 657.44 29.68 549.08 0.74 −0.39
RT 2212.02 2856.31 8 33.32 747.15 33.77 644.28 0.65 −0.86

a The units of both mean average error (MAE) and root mean squared error (RMSE) for C-harvest biomass and
soil organic carbon (SOC) are kg ha−1 and g kg−1 of soil, respectively. The units of mean percent difference (MPD)
and normalized RMSE (nRMSE) are percentage (%), while n is the number of observations for both conventional
tillage (CT) and reduced tillage (RT).

DNDC adequately simulated the grain C-biomass of wheat since the d-index varied
from 0.76 to 0.77, and the calculated root mean squared error (RMSE) ranged from 499.98
to 510.39 kg C ha−1. Mean percent difference (MPD) and normalized RMSE (nRMSE) were
26.11% to 27.49% and 30.75% to 31.87%, respectively. The mean error (ME) values were
very low, ranging from −0.05 to −0.08 (Table 4). For straw C-biomass of wheat, DNDC
estimates were in agreement with observed values since the calculated RMSE ranged from
657.44 to 747.15 kg C ha−1, the d-index was 0.65 to 0.74, and MPD and nRMSE ranged from
27.16% to 33.32% and 29.16% to 33.32%, respectively (Table 4).

3.3. Validation of DNDC

It is necessary that a calibrated and evaluated model must be validated with an
independent dataset to assess the accuracy of a model’s predictions by using adjusted
model parameters during the calibration process. Therefore, the DNDC model was further
validated with second-year data for all treatments. Results show that DNDC predicted
the harvestable grain C-biomass of rice well since the d-index varied from 0.76 to 0.84,
calculated RMSE ranged from 360.62 to 494.18 kg C ha−1, and MPD and nRMSE were
−20.62% to −31.05% and 22.96% to 31.26%, respectively (Table 5).

Table 5. Statistical indices for validation of DNDC’s performance to simulate grain and straw
C-biomass for rice and wheat as well as soil organic carbon content under both conventional and
reduced tillage.

Treatment Observed Simulated n MPD RMSE a nRMSE MAE a d ME

Rice grain C-biomass (kg ha−1)
CT 1570.25 1278.45 8 −20.44 360.62 22.96 −292.25 0.84 0.16
RT 1581.05 1147.63 8 −31.05 494.18 31.26 −433.42 0.76 −0.70

Wheat grain C-biomass (kg ha−1)
CT 2016.43 1910.41 8 −3.59 242.33 12.02 −106.02 0.92 0.75
RT 1953.35 1893.17 8 −2.88 165.36 8.47 −60.18 0.96 0.87

Rice leaf and stem C-biomass (kg ha−1)
CT 3175.92 2544.10 8 −20.82 849.65 26.75 −631.83 0.69 −0.93
RT 3331.56 2326.76 8 −32.79 1144.48 34.35 −1004.9 0.63 −2.76
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Table 5. Cont.

Treatment Observed Simulated n MPD RMSE a nRMSE MAE a d ME

Wheat leaf and stem C-biomass (kg ha−1)
CT 2975.76 3011.2 8 2.21 230.85 7.76 35.43 0.95 0.85
RT 2988.75 2961.30 8 −1.71 212.14 7.09 −27.45 0.96 0.86

Soil organic carbon (g kg−1 soil)
CT 6.25 6.59 8 5.77 0.68 10.94 0.34 0.87 0.42
RT 6.51 6.83 8 4.82 1.06 16.26 0.31 0.70 −0.75

a The units for both mean average error (MAE) and root mean squared error (RMSE) for C-harvest biomass and
soil organic carbon are kg ha−1 and g kg−1 of soil, respectively. The unit for both mean percent difference (MPD)
and normalized RMSE (nRMSE) is percentage (%), while n is the number of observations for both conventional
tillage (CT) and reduced tillage (RT).

In terms of the harvestable straw C-biomass of rice, the DNDC model simulations
were in agreement as the calculated RMSE varied from 849.65 to 1144.48 kg C ha−1

and the d-index ranged from 0.63 to 0.69, while MPD and nRMSE were −20.82% to
−32.79% and 26.75% to 34.35%, respectively (Table 5). The DNDC model also mod-
eled the harvestable grain C-biomass of wheat well since the d-index varied from 0.92
to 0.96, the calculated RMSE ranged from 165.36 to 242.33 kg C ha−1, and MPD and
nRMSE were at −2.88% to −3.99% and 8.47% to 12.02%, respectively. The ME value
was considerably high, which ranged from 0.75 to 0.87 (Table 5). Furthermore, the
modeled straw C-biomass was in agreement with observed values as the calculated
RMSE ranged from 212.14 to 230.85 kg C ha−1 and the d-index was 0.95 to 0.96, while
−1.71% < MPD < 2.21%, and 7.09% < nRMSE < 7.76% (Table 5). The simulated SOC con-
tents were comparable to measured values, as indicated by several statistical indices
(−0.75 < ME < 0.42; 0.68 g kg−1 < RMSE < 1.06 g kg−1; 0.70 < d < 0.87; 10.94% < nRMSE < 16.26%;
4.82% < MPD < 5.77%; and 0.31 < MAE < 0.34 (Table 5).

3.4. Prediction of Carbon Biomass, Soil Organic Carbon, and Volumetric Water Contents

DNDC predicted grain and straw C-biomasses of wheat close to the measurements
recorded under all treatments during both years (Figures 4 and 5). Maximum values of
C-biomasses of wheat were measured from 0.5RNPK + 0.5M treatment during both seasons.
Similar trends of C-biomass were also captured by DNDC. DNDC predicted grain and
straw C-biomasses of rice in close to the measurements recorded under all treatments
during both years (Figures 6 and 7).

In the case of C-biomasses of rice, DNDC simulations under each treatment were
close to measured values. Further, DNDC also predicted SOC in good agreement with the
observed values under all treatments at soil depths of 0–15 and 15–30 cm (Figure 8). We
observed the maximum value of SOC.

Maximum SOC (7.44 g kg−1) was measured for the 0.25RNPK + 0.50M + 0.5S treat-
ment, and DNDC predicted a value of 7.00 g kg−1 for this treatment. Additionally, DNDC
simulated SOC that was very near to the measured values under each treatment. Further-
more, the DNDC model also captured the soil volumetric water contents in wheat fields
very close to the recorded values under all treatments at soil depths of 10 cm during both
growing seasons (Figure 9).
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Figure 4. Predicted and measured wheat grain C-biomass under conventional (a,c) and reduced tillage
(b,d) affected nutrient management treatments during both seasons. Ck, control; NPK, recommended
dose of mineral N, P, and K; M, animal manure; S, 100% crop residue incorporation; 0.5RNPK + 0.5M,
50% of RNPK and 50% M; 0.5RNPK + 0.5S, 50% of RNPK and 50% crop residue incorporation;
0.25RNPK + 0.25M + 0.5S, 25% of RNPK with 25% M and 50% crop residue incorporation; and
0.25RNPK + 0.50M + 0.5S, 25% of RNPK with 50% M and 25% crop residue incorporation.
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Figure 5. Predicted and measured wheat straw C-biomass under conventional (a,c) and reduced
tillage (b,d) affected by nutrient management treatments during both seasons. Ck, control; NPK,
recommended dose of mineral N, P, and K; M, animal manure; S, 100% crop residue incorporation;
0.5RNPK + 0.5M, 50% of RNPK and 50% M; 0.5RNPK + 0.5S, 50% of RNPK and 50% crop residue in-
corporation; 0.25RNPK + 0.25M + 0.5S, 25% of RNPK with 25% M and 50% crop residue incorporation;
and 0.25RNPK + 0.50M + 0.5S, 25% of RNPK with 50% M and 25% crop residue incorporation.



Crops 2023, 3 232

Figure 6. Predicted and measured rice grain C-biomass under conventional (a,c) and reduced
tillage (b,d) affected by nutrient management treatments during both seasons. Ck, control; NPK,
recommended dose of mineral N, P, and K; M, animal manure; S, 100% crop residue incorporation;
0.5RNPK + 0.5M, 50% of RNPK and 50% M; 0.5RNPK + 0.5S, 50% of RNPK and 50% crop residue in-
corporation; 0.25RNPK + 0.25M + 0.5S, 25% of RNPK with 25% M and 50% crop residue incorporation;
and 0.25RNPK + 0.50M + 0.5S, 25% of RNPK with 50% M and 25% crop residue incorporation.
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Figure 7. Predicted and measured rice straw C-biomass under conventional (a,c) and reduced tillage
(b,d) affected nutrient management treatments during both seasons. Ck, control; NPK, recommended
dose of mineral N, P and K; M, animal manure; S, 100% crop residue incorporation; 0.5RNPK + 0.5M,
50% of RNPK and 50% M; 0.5RNPK + 0.5S, 50% of RNPK and 50% crop residue incorporation;
0.25RNPK + 0.25M + 0.5S, 25% of RNPK with 25% M and 50% crop residue incorporation; 0.25RNPK
+ 0.50M + 0.5S, 25% of RNPK with 50% M and 25% crop residue incorporation.
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Figure 8. Predicted and measured SOC at soil depth of 0–15 and 15–30 cm under conventional (a,c)
and reduced tillage (b,d) affected nutrient management treatments. Ck, control; NPK, recommended
dose of mineral N, P, and K; M, animal manure; S, 100% crop residue incorporation; 0.5RNPK + 0.5M,
50% of RNPK and 50% M; 0.5RNPK + 0.5S, 50% of RNPK and 50% crop residue incorporation;
0.25RNPK + 0.25M + 0.5S, 25% of RNPK with 25% M and 50% crop residue incorporation; and
0.25RNPK + 0.50M + 0.5S, 25% of RNPK with 50% M and 25% crop residue incorporation.
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Figure 9. Predicted and measured volumetric water contents (%) in wheat at soil depth of 10 cm under
conventional (a,c) and reduced tillage (b,d) affected nutrient management treatments during both
growing seasons. Ck, control; NPK, recommended dose of mineral N, P, and K; M, animal manure; S,
100% crop residue incorporation; 0.5RNPK + 0.5M, 50% of RNPK and 50% M; 0.5RNPK + 0.5S, 50%
of RNPK and 50% crop residue incorporation; 0.25RNPK + 0.25M + 0.5S, 25% of RNPK with 25% M
and 50% crop residue incorporation; and 0.25RNPK + 0.50M + 0.5S, 25% of RNPK with 50% M and
25% crop residue incorporation.
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3.5. Regression Analysis

The regression analysis between modeled and observed SOC was also significant with
R2 ranging from 0.35 to 0.46 (p < 0.01). The intercept ranged from 0.30 to 1.34 (p < 0.65).
Regression line slopes were from −0.59 to 1.48 (p < 0.05; Figure 10).

Figure 10. Comparison of simulated versus measured soil organic carbon at (a) 0–15 and (b) 15–30 cm
soil depths. Each point represents the SOC from a treatment ± SD. The solid line indicates the 1:1
line that could be expected after a perfect fit; solid circles above and below this 1:1 line are over- and
under-simulated SOC, respectively.
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4. Discussion

Understanding the carbon (C) cycle in soils is essential in order to identify the most ap-
propriate management strategy that would optimize this cycle in both space and time. The
DNDC model adopted in this study has been independently applied by several researchers
to estimate C sequestration, crop yield, and greenhouse gas emissions [28,31,32]. For in-
stance, Qiu et al., 2005 [33] assessed soil organic carbon (SOC) storage in China, where
DNDC predicted the SOC dynamics with good correlation with observed values (e.g.,
r = 0.975). Similarly, Han et al. 2014 [32] applied the modified DNDC model by embedding
a new mulching module to estimate corn yield, where the differences between predicted
and observed yields ranged from−55 to 3170 kg ha−1. In our study, the differences between
predicted and observed grain C-biomass of wheat ranged from −909.53 to 374.62 kg ha−1,
while differences for straw C-biomass of wheat ranged from −1651.25 to 163.68 kg ha−1

(Figures 4 and 5). In the case of rice, the differences between predicted and observed grain
C-biomass ranged from 189.63 to 420.80 kg ha−1, while differences for straw C-biomass
ranged from −51.75 to 120.38 kg ha−1 (Figures 6 and 7).

Simulation of crop growth in good agreement with observed values is crucial to
predicting the carbon biogeochemistry cycle correctly. If DNDC does not simulate the
crop growth process in agreement with measurements, then there are chances of error in
assessing the potential impact of management practices on SOC. According to Tang et al.
2012, soil C sequestration is directly influenced by C inputs in the form of crop residues
or amendments [33]. In our experiment, changes in SOC declined under no fertilization
treatment, and a similar decline in SOC contents with control treatment was also predicted
by the DNDC model. So, DNDC predicted the value of SOC by 2.80 to 2.90 g kg−1 compared
to field measurements, which ranged from 2.67 to 3.15 g kg−1 for the control treatment
under both tillage methods at a soil depth of 0–15 cm (Figure 8).

In this study, an increase in SOC from the combined application of inorganic and or-
ganic amendments could be linked with higher soil moisture contents (Figure 9). Previously
it was documented that SOC was increased by increasing soil water contents through pre-
cipitation [33–36]. Therefore in our study, DNDC experienced no water stress for 50% NPK
and 50% animal manure under the CT treatment as indicated by trends in LAI for wheat and
rice (Figures 2 and 3). Similar results were also reported by Lembaid et al. 2022 [5]. Here,
DNDC predicted an increase in SOC sequestration rate by 12.0 and 21.0 kg C ha−1 yr−1

with an increase in precipitation by 10% and 20%, respectively. The modeled SOC in our
study has a maximum value of 7.00 g kg−1 under RT-0.25NPKS + 0.5M treatment followed
by 0.25NPKM + 0.5S. This could be due to the combined application of inorganic and
organic amendments (organo-mineral fertilization) which resulted in a high supply of N
to stimulate soil microbial activity. Therefore, organo-mineral fertilization enhanced root
biomass and root exudates, leading to more SOC sequestration [37].

In our study, NPK alone and organic amendments alone did not improve SOC se-
questration, and DNDC also captured the similar impacts of these treatments on SOC
sequestration. Kuzyakov et al. 2010 [38] and Fontaine et al. 2003 [39] reported that the
combined use of mineral NPK and animal manure induced the priming effect on soil
microbes to release more nutrients, eventually resulting in higher harvestable C-biomass
and SOC sequestration in soils. By improving the soil fertility status after organo-mineral
fertilization, the other factors, including soil temperature, moisture holding capacity, aggre-
gation formation, etc., may lead to higher crop production and SOC sequestration relative
to organic amendments alone and NPK alone. Darwish et al. 1995 observed that organic
matter influenced crop growth and yield either directly by applying nutrients or indirectly
by changing soil physical characteristics including aggregates stability and porosity [40].

Singh and Benbi 2020 [41] documented excellent agreement between simulated and
measured SOC in a rice–wheat system (R2 = 0.935 **, DNDC; R2 = 0.920 **, RothC,
p < 0.01). In our study, SOC was also significant with R2 ranging from 0.35 to 0.46
(p < 0.01). In a semi-arid region, changes in soil water contents have a potential effect
on SOC stocks [42]. In this study, SOC increased under treatments that resulted in high
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soil water content. These results corroborate prior studies [33–36], which demonstrated
that SOC accumulation increased with increased precipitation. The effect of soil moisture
content on SOC accumulation may be associated with the influence of soil moisture on
plants’ carbon (C) input to soils and the decomposition of these C inputs [43]. In contrast,
loss in SOC was associated with a reduction in soil moisture [5].

5. Conclusions

The DNDC model simulated the harvestable grain and straw C-biomass compared to
experimental field measurements for both wheat and rice in Faisalabad, Pakistan. DNDC
simulated harvestable grain C-biomass for both wheat and rice with only slight underes-
timation (−2.81% to −6.17%) compared to observed values. DNDC results also suggest
that organo-mineral fertilization may be beneficial to encourage higher crop production
along with improved soil health and enhanced soil organic carbon sequestration. In this
study, DNDC adequately modeled soil organic carbon trends for rice–wheat rotation via
verification using several statistical indices. The performance of the DNDC model should
be improved to predict soil organic carbon dynamics in deeper soil layers by validating it
under a variety of long-term experiments.
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