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Abstract: Categorical data derived from qualitative classifications or countable quantitative data are
common in biological scientific work and crop breeding. Categorical data analyses are important for
drawing correct inferences from experiments. However, categorical data can introduce unique issues
in data analysis. This paper discusses common problems arising from categorical variable analysis
and modeling, demonstrates the issues or risks of misapplying analysis, and suggests approaches to
address data analysis challenges using two data sets from alfalfa breeding programs. For each data
set, we present several analysis methods, e.g., simple t-test, analysis of variance (ANOVA), split plot
analysis, generalized linear model (glm), generalized linear mixed model (glmm) using R with R
markdown, and with the standard statistical analysis software SAS/JMP. The goal is to demonstrate
good analysis practices for categorical data by comparing the potential ‘bad’ analyses with better
ones, avoiding too much reliance on reaching a significant p-value of 0.05, and navigating the morass
of ever-increasing numbers of potential R functions. The three main aspects of this research focus on
choosing the right data distribution to use, using the correct error terms for hypothesis test p-values
including the right type of sum of the squares (Type I, II, and III), and proper statistical models for
categorical data analysis. Our results show the importance of good statistical analysis practice to help
agronomists, breeders, and other researchers apply appropriate statistical approaches to draw more
accurate conclusions from their data.

Keywords: categorical data analysis (CDA); Poisson; binomial; generalized linear model (glm);
generalized linear mixed model (glmm)

1. Introduction

The purpose of this article is to show statistical issues faced in the analysis of exper-
iments with categorical data and approaches to solve these issues. We highlight some
faulty analyses and demonstrate other, better solutions. Although the statistical methods
presented here are not new, this guide for practitioners provides two relevant examples
and presents categorical data analysis (CDA) methods not usually given in initial statistics
courses for agronomists.

Explanations for each example begin with an outline of the approach used to analyze
the data, show issues which arise in data analyses for the two alfalfa (Medicago sativa L.)
example data sets, and help readers understand good statistical practices to complete
solutions and draw conclusions. The two examples are a nodules per root experiment (N/R
experiment) with underlying Poisson distribution and a phosphorous winter-survival
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experiment (P_WS experiment) as an example of data having a binomial distribution.
Throughout the analyses, we compare results from the programming language R with
output from JMP, a Statistical Analysis Systems (SAS Institute, 2017, JMP software, Ver-
sion 13, SAS Inst., Cary, NC, USA) [1,2] product which has an emphasis on interactive
statistical graphics.

The characteristics of CDA are shown in the context of building upon a previous
statistics course that many agronomists and plant breeders take in graduate school. Such a
course usually assumes observations from normal, independent, identically distributed
(NID) random variables and teaches analysis of variance (anova) and multiple linear
regression. This article describes modifications when distributions differ from the NID
assumptions because underlying distributions are Poisson or binomial. The approach used
in analyzing data for each example is to first use the more familiar linear models with NID
assumptions, next use data transformations or averages to improve these linear models,
and finally to use generalized linear models (glms) to better account for response variables
which do not follow the normal distribution. Other potential pitfalls are presented in the
analyses of these experiments and ways to avoid pitfalls and perform proper analyses
are shown.

The first question is: “Why use CDA?” The normal distribution is very important in
statistical analyses because it has well-established theory for estimating treatment effects or
testing hypotheses in designed experiments, it is the distribution that sample means from
other distributions approach as sample size increases, and there are many good examples of
traits, such as crop yield and plant height, which seem to fit this distribution well ([3], p. 40).
However, there are other important distributions in agronomy and plant breeding which
may not at all be well described by the normal distribution, such as proportion data from a
binomial distribution, e.g., winter-survival yes-no binary data. Agresti notes that if sample
sizes are not large, a normal probability model might predict proportions outside the range
of zero to one, giving a nonsensical result, such as a survival rate of 103% ([4], p. 68). Agresti
also states that effects of explanatory variables on proportion, p, are usually nonlinear,
with the log-odds ratio, log[p/(1−p)], more likely to be linear in the explanatory variables.
If sample size is large, the normal distribution can be used to approximate the binomial,
Snedecor and Cochran giving the rule of thumb that if np and n(1−p) are both greater than
15, the normal approximation is warranted ([3], p. 130). If the binomial proportion is really
small, e.g., with very rare events, they state that the Poisson distribution becomes a more
appropriate model. The Poisson distribution has mean and variance equal and is often
used to model counts, such as the counts of nodules on the roots of an alfalfa plant ([4],
pp. 72–76). Agresti states that such count data often have more variation than expected
with a true Poisson distribution. The direct relation of mean and variance for Poisson in
counts has a modeling advantage compared with the NID assumption when effects are
proportional with proportion constant across treatments, e.g., one cultivar with 22% more
nodules than another.

Categorical data analysis methods are discussed in books such as that by Agresti [4].
The best methods for analyzing these data are continually evolving. Before the advent
of software for generalized linear models, standard practice was to transform the data to
achieve distributions with variance more independent of the mean ([3], pp. 286–291). Often
a first analysis can be performed with a normal approximation. One transformation for
data whose variance is proportional to mean, e.g., Poisson distributed, such as counts of
rare events, is to take the square root of the original data, then run analyses the in same
way as for the NID assumptions. Proportion data traditionally were transformed with
the arcsine(sqrt(p)). If the standard deviation in the original scale varies directly as the
mean, i.e., the coefficient of variation (CV) is constant, data can be log transformed before
running the usual analyses. This not only helps equalize variance for values, but helps
achieve additivity of effects that are proportional in the original scale. In 1972 Nelder and
Wedderburn proposed a better method for analyzing non-normal data using a generalized
linear model (glm; plural glms) [5]. These glms give more precise analyses for the count
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and other non-normal data by utilizing the actual distributions, such as the binomial or
Poisson [6]. This method can be used even for normally distributed variables by applying
an identity link function [4]. The method uses a linear predictor of explanatory variables,
such as replicate and treatment, with a link function of the mean. For binomial data, the
usual link function is the log odds ratio or logit, defined earlier, and for Poisson, it is a
log link. Software to fit these models has only been readily available since the late 1990s.
Stroup [6] recommended use of glms rather than the historical logarithmic or square root
transformations formerly used to model count data. JMP and SAS software (now PROC
GLIMMIX) have routines for analyzing glms, and in R, the glm and glmmTMB functions
are available [2,7,8].

Our objectives are:

1. To raise awareness of categorical data analysis methods.
2. To demonstrate proper CDA analyses.
3. To highlight potential pitfalls and corrections in statistical analyses for the example

data sets.

2. Literature Review

Some examples of pitfalls in running analyses of agronomic data which we address are:
Pitfall 1. Using too simple an analysis, e.g., a simple t-test when we need to include

other recognizable sources of variation in the model. There is always a delicate balance
between over-simplifying and including too many independent variables in a statistical
model. James et al. discuss the bias-variance trade-off in statistical modeling, stating that
neither over-simplified nor too-complicated models (which can even over-fit to the point
of zero error degrees of freedom) are good for prediction ([9], pp. 33–36). For example,
suppose we have an experiment with two cultivars and three other treatments in a 2 × 3
factorial. An over-simplified initial t-test can give a misleading first impression. All sources
of variation other than that due to cultivar would be grouped into the error variance
estimate, but important factors such as the other treatment and perhaps a blocking factor
should have been recognized and not included in residual error. Without these sources
of variation accounted for in the model, the error term would be greatly inflated, a major
pitfall. The relation F = t2 should hold for analysis of variance with a single two-level
factor ([3], p. 224), and in this instance, such a single-factor anova model would be faulty
because important other factors would be left out. Failure to include all important terms
makes an overly-simple model less flexible, potentially resulting in large prediction bias [9].

Pitfall 2. Using the wrong error term for desired inference. A common mistake
in analyses with “cookbook” methods is to use an error term having inflated degrees of
freedom to test for statistical significance. For example, in a cultivar yield trial experiment
with eight locations, each having a randomized complete block experiment, we generally
wish to infer results to a new environment or set of environments. Running a linear model
with location, cultivar, and location-cultivar interaction is reasonable, but using the residual
error term from this model to test for cultivar differences can be misleading because we
want to infer results not just to the exact environments tested, but to new ones, potentially
in a future year or on a different field of which the environments are a sample ([2], p. 12).
One approach which avoids the problem of having the wrong error term is to first obtain
cultivar averages or least squares means for each location and then use these means in an
across-locations analysis with cultivar and location as terms in the model [10]. Mohring
and Piepho call this a two-stage analysis. These two-stage analyses typically require using
standard errors from the first stage for weighting the averages in the second stage, but
equal variances are often assumed when all first-stage means have the same or nearly the
same numbers of observations. Split-plot experiment designs require the use of models
with complicated error terms ([11], pp. 174–175). Stroup discusses the error structure
in split-plot experiments, including an error component for whole-plots and another for
subplots ([6], p. 821). Crawley even discusses a three-level split-split plot example ([11],
p. 174). Expected values of mean squares guide researchers on error terms for hypothesis
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tests in these split-plot designs ([3], pp. 322–323). Automatic tests of treatment effects in
nested designs may differ in R functions from those in SAS and JMP, and it is important to
realize if Type I, Type II, or Type III sums of squares are being used for these tests. The Type
I, or sequential sums of squares in R functions, are used in aov and anova, for example in
the command anova(lm(y~A*B, data = D), and differ from the Type III sums of squares
and mean squares in the function Anova, for distinction written with capital A, in the R
car package [12,13]. Type III sums of squares are the default in JMP [1]. The Type I sums
of squares are helpful to analyze split-plot experiments, as Crawley illustrates in the R
function aov ([11], p. 174). For a split-plot design with whole-plot factor A and subplot
factor B, both nested in rep R, the split-plot analysis command is:

aov(y~A*B + Error(R + R:A), data = D). (1)

An equivalent statement is aov(y~A*B + Error(R/A), data = D).
Pitfall 3. Placing too much emphasis on achieving probabilities less than 0.05 in

hypothesis tests. Scientists and other practitioners seem obsessed with obtaining statisti-
cally significant test results, generally meaning finding a probability below 0.05 for their
particular hypothesis test. Not only is this a dangerous practice in which results which
are important but show no statistically significant difference in, for example, treatment
versus control are not even published, but also many times the real point of the experiment
is missed. For example, we may want to know the optimum phosphorous fertilizer rate
for maximizing alfalfa plant over-winter survival, but simple hypothesis tests of each
treatment versus control might not even be statistically significant when there is possibly a
true quadratic relationship.

Pitfall 4. Confusion in choosing the correct software function to analyze data. There
are so many available functions in a programming language such as R that it is hard for
scientists to decide which to use. The number of available R packages to download is
over 10,000 [14]. This makes it difficult for practitioners to decide which programs or
subroutines to use when writing a program to analyze their data. Examples of well-vetted
R functions are available in good textbooks which describe statistical procedures and give
examples which illustrate how to use commands; for example, Agresti [4] and James at
all [9]. Another guiding principle is to always check with your statistician, who is an expert
in the area of data analyses, in the same way you would check with a plant pathologist if
you found a new unfamiliar disease on your crop of interest.

3. Examples to Illustrate Good Statistical Practices in Categorical Data

Outline of analysis of our two alfalfa experiments, the nodules per root (N/R) and
phosphorus-winter survival (P_WS). The structured approach to the analysis of data from
these experiments includes determining the objective, detailing the experiment design,
carefully determining quantities measured, specifying analyses and potential analysis
issues, and finally making conclusions and communicating results. We give this outline
for each of the experiments, first with the alfalfa nodules/root (N/R) experiment and next
with the phosphorous winter survival (P_WS) experiment.

Example 1. Nodules/root (N/R) experiment to compare alfalfa cultivars and nodu-
lation strains

Ex1.1. Objective. Objectives of the alfalfa nodules study were: (1) to test whether
there is a difference in mean number of nodules on roots between two alfalfa cultivars, one
with branching or fibrous root and the other with taproot architecture; (2) to test whether
there are differences for different nodulation strains.

Ex1.2. Experiment Design. The design of this experiment is a randomized complete
block for six treatments in a (2 × 3) factorial, two cultivars each having three inoculation
treatments (two nodulation strains plus a control). The three blocks are repeats of green-
house runs undertaken at different dates (called Times), with eight plants per treatment,
each grown in separate pots, all completely randomized within the greenhouse. This results
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in 3 × 2 × 3 × 8 = 144 total plants. However, six plants are missing due to plant death, so
the total number of plants on which measurements are made is 138.

Ex1.3. Data. Nodules are counted on the roots of each plant after plants have been
established and grown for 14 days (original data in supplemental file “nodules.csv” for
detail). Nodule numbers range from 0 to 78, with 4 of the plants having 0 nodules. We
note that the counts are likely to have a higher variance for higher mean count numbers, a
potential issue for the data analysis if we use the NID assumptions. This type of count data
are often considered to be Poisson-distributed [3,15].

Ex1.4. Statistical Analysis. The first analysis for this experiment uses the nodule
count data (Y) in a linear model assuming normal independent distribution (NID), an
analysis familiar to many scientists. Models in these statistical analysis subsections are
written in the same way for both JMP and R, except for interactions (in JMP the A-B
interaction is depicted as A*B and in R as A:B. In R, A*B means A + B + A:B). The model,
written in R, is:

Y = Time + Cultivar * Inoculum + Time:Cultivar + Time:Inoculum + Time:Cultivar:Inoculum (2)

where Time (=greenhouse run considered as a Rep), its interactions are assumed random
effects, and Cultivar and Inoculum are fixed.

The second analysis uses the square-root data transformation and averages over pots
to obtain an anova to test the null hypothesis of equal cultivar means and to estimate
cultivar and inoculum treatment means, as well as to test the cultivar-inoculum interaction.
Its model, written in JMP, is:

Avg(sqrt(Y)) = Time + Cultivar + Inoculum + Cultivar * Inoculum, (3)

where all factors, including the nuisance factor, Time, are considered fixed.
The third analysis has a generalized linear mixed model for Poisson distributed Y,

with a model equation similar to that in Equation (2), except using glmer (see R Markdown
supplement), and for this glmm, there is a normal random effect for pot to account for
this recognized source of variation. This model also has omitted terms not statistically
significant.

Y = Time + Cultivar + Inoculum + Pot, (4)

where Time and Pot are random and other factors are fixed. This equation refers to modeling
the standard Poisson log link function on these explanatory variables.

There are several issues related to these statistical analyses. We examine proper error
terms for testing treatments in this design for different scopes of inference. Count data
do not fit the usual anova normal independently distributed (NID) assumptions, and we
have categorical data analysis software in R and JMP available for glm analyses for the
Poisson distributed count data. We used the glmer function to fit the glmm (4) with log
link and independent normal pot error term. The R codes can be found in a R markdown
file “nodules.rmd”, and the line-by-line results can be found in the supplemental file
“nodules.docx” for details.

Ex1.5. Interpretation. A difference in numbers of nodules per plant may be associated
with higher nitrogen (N) fixation, and it is important to find if a difference in nodules
exists. A 95% confidence interval (CI) for the cultivar mean nodule difference would be
valuable scientific information. These results might influence the direction of an alfalfa
breeding program.

Example 1 Results of Nodules/Root (N/R) Experiment

Over-simplified analyses can give misleading first impressions. A researcher had
requested a simple independent-sample t-test for cultivar difference. An issue with this
test is that the p-value for cultivar difference from this did not agree with probabilities
from a linear model analysis-of-variance. The anova table of the nodule counts, using
Equation (2), is shown in Table 1. This table has a cultivar null hypothesis probability of
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0.026, which differed from the independent sample t-test with probability of 0.19. The
independent-sample t-test for cultivar differences was shown to be equivalent to a one-
factor (cultivar) anova (see Figure 1), as discussed in the literature review. This example
illustrates that the independent sample t-test comparing cultivars, because it does not
take account of important sources of variation, inflates the error term. These sources of
variation include blocks (greenhouse runs) and inoculum treatments, which, when part of
the residual, makes the error term too high for the independent sample t-test compared
with the multi-factor anova model.

Table 1. ANOVA table for nodule numbers, assumed with a normal distribution, from R code
executed with multi-way ANOVA analysis.

Terms * Df Sum
Square

Mean
Square F Value p Value Exp

(MS)

Time (T) 2 102.07 51.03 45.51 2.20 × 10−14

Cultivar
(C) 1 5.75 5.75 5.13 0.0259 (σ2 + 8σ2

TC) + κ2
C

Inoculum
(I) 2 45.17 22.59 20.141 5.90 × 10−8

T:C 2 0.76 0.38 0.341 0.7121 σ2 + 8σ2TC

T: 4 3.95 0.99 0.881 0.4785

C:I 2 0.48 0.24 0.212 0.8092

T:I:C 4 1.36 0.34 0.303 0.8751

Residuals 90 100.92 1.12 σ2

* Note: Table is for all fixed effects, but really there are random blocks (=Time) and interactions. In addition, it
uses an incorrect error term. We should test Cultivar Mean Sq with Cultivar-Time interaction Mean Sq, but that
Mean Sq is less than Residual Mean Sq and only has 2 df.
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Figure 1. Under-fitted model of the data. One-way ANOVA with cultivar (two levels) gives same
probability of test of equal means as independent-sample t-test. Cultivar_3233 and Cultivar_3234
stand for the nodule data from cultivar # 3233 and 3234; noduleSD is for the data from both cultivars.

Figure 1 below contains two R programs, one being the anova with a single two-level
factor, cultivar, and the other a simple independent-sample t-test for differences of the
two cultivars. Both programs output the same results. However, as we mentioned earlier,
this analysis is faulty because it does not take into account important contributions to the
variance from blocks (Times of greenhouse runs) and inoculum treatment differences. We
present these incorrect analyses to illustrate a pitfall and to show equality of the results of
the two methods.

The desired inference requires a proper error term. The analysis of variance with
fixed effects in Table 1 also has the problem that the test of cultivars uses a residual
mean square based on 90 degrees of freedom (df), which is not the proper error term for
inferring results to new greenhouse environments. Crawley ([11], pp. 173–182) discusses
considerations in random vs. fixed effects, and Stroup et al. ([2], p. 10) discuss the scope
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of inference when making this choice in models. Plants are nested within each replication
or greenhouse run (Time), and to infer results to future greenhouse conditions, we need
to assume the greenhouse runs are a random sample from a population of such runs. The
error needed for this broader inference should include the Time interaction with treatment
combinations. This can be seen in the expected values of mean squares in the analysis
of variance table, assuming a random Time-cultivar interaction. (Our example has the
anomaly that the cultivar-block mean square is smaller than that of residual even though it
is expected to be larger). The main issue is that the residual error term in Table 1 measures
plant-to-plant variation, which has inflated degrees of freedom (df). Many researchers
mistakenly use such error terms with degrees of freedom (df) higher than warranted by the
experiment design, called pseudoreplication by Crawley ([11], pp. 176–182). With mixed
model analysis designating the block-treatment interactions as random, some software
packages such as JMP automatically perform correct tests of treatment differences for
broader inference.

Another learning point about the error term in the analysis of this experiment is the
difference in testing with type I and type III sums of squares for cultivars. Type I sum
of squares refers to sequential testing of each successive factor in the model and is the
default method for R anova. On the other hand, JMP and SAS use Type III sums of squares,
which account for all other factors in the model, including interactions. Consequently, it
is necessary to consider the default F-tests for cultivar differences when using different
software for analyses.

The data do not fit the usual anova assumptions. A third issue is that data are
counts of nodules on the alfalfa roots, and count data do not usually follow a normal
distribution. This leads first to the question of whether to transform the data to solve this
issue. Later we also explore using generalized linear models (glm) for analysis. The square
root (sqrt) transformation is recommended by Snedecor and Cochran to better approximate
the NID anova assumptions ([3], pp. 287–289). Data distributions for original data y and
recommended transformation sqrt(y) are given in Figure 2 below. JMP graphically depicts
the data distributions, including the original nodule count data and the square root of
nodule count. Tests of goodness of fit for normal distributions are below the histograms and
normal quantile plots, and the square-root transformation distribution does not significantly
differ from the normal distribution.
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We know that taking averages of the eight plants per treatment combination results
in means that are more normally distributed than the original count data. Analysis using
averages of the original data is performed with Time (=block factor), cultivar, inoculum,
and cultivar-inoculum interaction, given in Figure 3. The same analysis with the averages
of square root-transformed nodule counts is also shown. These type analyses are called
two-stage analyses [10]. From the output, we see two different estimates of probability of
the null hypothesis that cultivars are equal, p = 0.029 for the averages of sqrt transformed
and p = 0.134 for the averages of original data.
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Using Equation (3) with the sqrt transformation and averages of the eight plants, the
cultivars are statistically significantly different (p-value = 0.029). More important to report
is the 95% confidence interval for the difference between cultivars, for which cultivar 3233
has an average of 3.2 more nodules per root than cultivar 3234, and 95% CI (3.31 to 4.13).
This difference is computed by squaring the square-root-transformed cultivar means and
subtracting. The standard error of the difference (SED) of means is found by squaring and
adding the standard errors of means to obtain the variance of a difference, and taking the
square root. However, this is the SED of transformed values, and so must be squared to
obtain the SED in the original scale.

The best methods for analyzing non-normal data continue to evolve. The general-
ized linear model in JMP for nodule counts was modeled on fixed Time (greenhouse runs),
Cultivar, Rhizobium inoculants, and Cultivar-Rhizobium interaction. This generalized
linear model option is found in the upper right corner of the Fit Model window labeled
“personality”. We use the Poisson distribution with log link and the output is presented
in Figure 4. The same analysis in R using the function glm is shown in Figure 5, with the
same probability for a test of cultivar differences, 0.000004. These figures indicate very
high statistical significance, i.e., a low probability of cultivars having the same average
counts of nodules, but this uses an error term with inflated degrees of freedom with the
narrow inference restricted to the three fixed greenhouse runs (Times) of this experiment
instead of the broader inference across future greenhouse environments. A correct error
term for this broader inference uses the random time-cultivar interaction term as specified
in expected values of mean squares in Table 1. With this term in the linear R model, we
obtain a probability of 0.0259 for the test of cultivar differences, and in the glmm model in
Equation (4) this probability is 0.0234 (see the R markdown file).
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Summary of the results from different N/R example analyses. Results of the anal-
yses performed for our example are consolidated in Table 2, which shows the model
type, number of data points (either 138 individual or 18 averages for the nodulation data,
advantages and disadvantages of each model method, and cultivar p-value to illustrate
similarities or differences of the software and methods.
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Table 2. Consolidation of results for models from the nodulation data, including cultivar p-values, to
show difference in models.

Model Name No. DP Pro Cons Cultivar p-Value R/JMP

Fixed linear model 138 Easy; all means
and CI available

Not correct error if infer
to pop. of runs 0.0237 JMP

Linear Mixed
model 138 Random effects Not best specific

distribution (Poisson) 0.0356 JMP

Avg(Y) linear
model 18 Easy; all means

and CI available
Not best approx. to

normal 0.1338 JMP

Avg(Sqrt(Y)) linear
model 18 Best normal

approximation
Need to back transform

to obtain means 0.0290 JMP

GLM with Poisson 138 Best Specific
distribution

No random term for
broad inference 0.000004 JMP

Group T test 138 For 1 factor Not for >1 factor 0.1447 R
One-factor
ANOVA 138 1 factor Normal distribution 0.1438 R

3-factor ANOVA 138 Can be >1 factors Normal distribution 0.0465 R
Linear Mixed
Model (lme4) 138 Random effects Not best specific

distribution (Poisson) 0.0287 R

GLM w/Poisson 138 Specific
distribution

No random term for
broad inference 0.000004 R

GLMM w/Poisson 138 Specific
distribution With random 0.0234 R

We note in the green highlighted rows that the glm models for JMP and R have the same p-values of 0.000004.
The first three R programs in Table 2 illustrate the equivalence of the independent-sample t-test with one-factor
anova (p = 0.144) and difference with 3-factor anova (p = 0.0465). Further, the two JMP models for averages
(18 observations) show a difference in p-values, 0.1338 and 0.0290 for averages of original data y and sqrt(y),
respectively.

Discussion for Example 1, the Nodules per Root (N/R) Experiment

One point of emphasis statisticians convey to researchers is to not strictly adhere to a
red line p = 0.05 for making decisions for testing hypotheses. A more meaningful method
is to use confidence intervals for the difference in means of counts for the two cultivars.
This difference is an average of 3.7 nodules per root, with 95% CI (3.3, 4.1). We simply use
p-values here as statistics for comparisons of models.

Several lessons were learned in testing the null hypothesis of equal true average nodule
counts for the two cultivars. One is that SAS/JMP generally gives the same results for the
same model and assumptions, as does R. This is illustrated in Table 2 with generalized
linear model fits of the two software programs. Of course, there may be differences due to
different floating-point accuracies of programs, even if the algorithms are the same. Another
lesson learned is that the correct error term for testing treatment differences is dictated
by randomization in the experiment design, the scope of inference desired (e.g., wishing
to infer cultivar differences for a population of potential greenhouse runs), and inherent
testing protocols for the particular software used. A third lesson is that assumptions
for the analysis can affect p-values. For example, averaging nodule counts results in
distributions closer to normal compared with original data. The square root transformation
recommended by Snedecor and Cochran, in our example, has more nearly normal data
than the original observations. Stroup has recommended to use generalized linear models
rather than transformations such as the square root [6]. Finally, we use the generalized
linear model in JMP and glm in R for nodule counts for the 138 plants. For this paper,
these models have fixed effects for Cultivar, Inoculum, and their interaction, but additional
analyses consider Time (of greenhouse run) and its interactions as random, leading to
mixed models (using GLIMMIX in SAS or glmer in R). Generalized linear mixed models
(GLIMMIX in SAS or glmer in R) are helpful for modeling to account for random factors,
and the recommended glmm in R in Equation (4) is in the R markdown supplemental file.
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Using other modeling distributions, such as negative binomial, can handle over-dispersion
relative to the Poisson, whose mean is the same as variance [4,6].

Example 2: Phosphorous fertilizer application and winter-survival (P_WS).
Ex2.1. Objective. The objective of this experiment is to test whether different phos-

phorous treatments will increase winter survival of alfalfa plants. The response variable is
stand count or survival rate. Response of survival to quantitative phosphorous applied (P),
i.e., P-application, for each of two cultivars is to be estimated. Tests of cultivar differences
are not a major objective because we already know they differ.

Ex2.2. Experiment design and conduct. This is a field plot experiment with three
reps whose design may be found in Wang, et al. (2022) [16]. Each plot was thinned
to 1000 plants/plot in the fall. Stand count was determined following the winter after
phosphorous treatments had been applied. Phosphorous treatments applied the previous
year were whole-plot treatments in a split-plot in randomized complete block design with
subplots two alfalfa cultivars, one dormant and one semi-dormant. In September, 0, 50,
100, and 150 kg ha−1P2O5 (P0, P1, P2, and P3) as calcium phosphate was applied and
incorporated into the soil at 5 to 8 cm depth, with irrigation after soil mulching. No harvest
was undertaken in the establishment year. Plants were kept well-watered and weed and
insect control was conducted as necessary.

Ex2.3. Data. These data are an example of a binomially distributed response vari-
able (survival count of n = 1000 plants, see supplemental data “winterSurvival.csv” for
detail). The binomial data are a categorical response data example. The survival count for
1000 plants ranges from low of 682 up to 973. Survival rates are correspondingly 0.682 to
0.973. Categorical explanatory factors are “Reps” (blocks of the Randomized Block Design),
“Treatments” (the four phosphorous rates randomized on the four whole-plots), and “Culti-
vars” (two subplot cultivars). The four nominal phosphorous treatments have quantitative
phosphorous application rates (P = 0, 50, 100, 150 kg/ha) for estimating survival response
to applied phosphorous. Alfalfa yield from the year before the winter survival and its three
component cuttings are included in the data set.

The binomial distribution is appropriate for describing the number of successes of a
fixed number n of Bernoulli independent trials, such as coin flips with heads or tails. Here,
the binary data are success (plant survives) or failure (it dies) of the n = 1000 total plants.
The mean, or expected value, of number of plants surviving for the binomial distribution is
np and the variance is npq, where p is probability of success and q = (1 − p). For example,
if the average proportion surviving is 0.852, the mean number of plants surviving per plot
is 852 and the variance is 0.852 × 0.148 × 1000 = 126.096. As you can see, the variance
is not independent of the mean, violating the NID assumption. However, for large n
values, we can often use the normal approximation to the binomial ([3], p. 130). We have a
large enough n (=1000) to meet Snedecor and Cochran’s “rule” of np and nq larger than
15 (discussed on page 130 of their book). For the smallest q, we have nq = 1000 × [1 −
(973/1000)] = 27, which is larger than 15.

The binomial and Poisson distributions are related. S. D. Poisson derived this distribu-
tion ([3], p. 130) for rare events of the binomial distribution by letting n approach infinity as
p approaches zero for np, the mean, being constant [3]. For the Poisson, the mean equals the
variance, both approaching np compared with the binomial distribution where mean = np
and variance = npq. (As n-> infinity and p -> 0, q -> 1, and Poisson variance -> np = mean).
Both distributions approach the normal distribution for n being sufficiently large.

A more practical matter for breeders and scientists is to see what aspects of the
distributions apply to modelling experiment data. Both distributions, binomial and Poisson,
have a relationship of mean to their variance. In the binomial, we often model proportion of
successes, p. Binomial has least variance when p is close to 0 or 1 and highest variance when
p = 0.5. Poisson is useful for modeling counts and has larger variance for larger counts [4].
A potential problem if we try to model survival count using Poisson and we actually have
a fixed number of plants per plot (here, 1000) is that the Poisson distribution has variance
continually increasing as survival increases, but binomial survival count variances decrease
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as we move closer to 1000. Both distributions have variance determined when we estimate
the mean.

In contrast, the normal distribution with variance independent of mean allows es-
timation of mean and variance separately. This is an advantage because we expect soil
and weather error variation in addition to the variance from the relationship with mean
of binomial or Poisson random variables. Therefore, it seems reasonable to use a linear
model with a separate variance parameter when the normal approximation is justified.
Agresti ([4], pp. 75–76) gives examples of the Poisson distribution with overdispersion
when any variables affecting the data are missed, and he proposes the negative binomial
distribution (with mean µ and variance µ + Dµ2 for dispersion parameter D) to model the
extra variance (p. 220). He also illustrates generalized linear mixed models with random
error structures to better capture this variance in Chapter 10 of the book [4].

Other variables measured in this experiment are total alfalfa yield the season prior to
P-treatment and overwintering. Total yield Y = Y1 + Y2 + Y3, the sum of alfalfa yield of the
three cuttings.

Ex2.4. Statistical Analysis
These data analyses are also conducted using R and JMP for comparison, the R codes

can be found in the R markdown file “winterSurvival.rmd”, and the line by line results
from the R codes can be found in the supplemental file “winterSurvival.docx” for details.

We potentially could use total yield or yield for third cutting as a covariate in the
modeling of overwinter survival. This variable might be positively associated with survival,
indicating healthier plants with higher yield which store more photosynthate in the roots
for the winter, or might be negatively related if removal of nutrients from high yield the
previous season weakens plants for winter survival. These models are run, but the yield
covariate is not statistically significant.

Because of the large sample size (1000), we can analyze assuming the normal distribution
(see the criteria quoted above). First, we fit the linear mixed model with JMP as:

Survival_count = Rep + Trt + Rep * Trt + Cultivar + Cultivar * Trt (5)

using Treatment (Trt) and Cultivar as fixed nominal factors, and both Rep and Rep-
Treatment interaction as random. This way of writing a linear model corresponds to
the sequential fitting of factors in a split-plot analysis with whole-plot factor phosphorous
treatment (Trt) having whole-plot error estimated as the Rep-Trt interaction.

Regression of survival on quantitative phosphorous applied (P) provides a response
curve which can be used to estimate ideal amount of applied P for best winter survival.
The 95% CI for optimum rate of applied P is computed from this equation.

The generalized linear mixed model for the binomial variable p = survivalcount/1000
can be fit in R with glmer and model:

p = Rep + Trt + Rep:Trt + Cultivar + Trt:Cultivar + Plot, (6)

where Rep, Rep:Trt, and Plot are considered random and the other factors are fixed. The
equation refers to modeling the proportion on explanatory factors using the binomial
canonical logit link function ([4], p. 67).

Ex2.5. Interpretation. The response of winter survival to applied P gives farmers a
tool for achieving better alfalfa stands and, potentially, a longer-lasting alfalfa stand. With
two cultivars that differ in their inherent survivability, we can see if there is cultivar-P rate
interaction, and if not, may give a more general recommendation. If the optimum P-rate
for survival differs for the cultivars, different optimum rates could be recommended.

Example 2 Results of P Fertilizer Application and Winter-Survival (P_WS) Experiment

By using the model in Equation (5) above, the random-effect variance component
estimate (from JMP) for Treatment*Rep is estimated as 0, as shown (Figure 6) below.
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Figure 6. Summary of the linear mixed model from JMP.

The treatment-rep interaction component is negligible and the residual error term
for testing Cultivar and the Treatment-Cultivar interaction, Error (b) based on eight error
degrees of freedom (df), is 2974.9. In the split-plot experiment, the Treatment effects are
tested with the error (a) term based on six df, the random Rep-Treatment interaction mean
square. However, with this component negative, we pool the error (a) and Error (b) terms
to obtain a single residual error based on 14 df, which includes all the Rep interactions
with other factors. Its estimate is 2476.4. The analysis-of-variance linear model in JMP is
Survival_count = Rep + Treatment + Cultivar*Treatment, with results in Figure 7.
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Figure 7. Summary of the ANOVA from JMP.

The anova has statistically significant rep and cultivar differences, and the test of
phosphorous treatment differences has a probability of 0.09. Because our objective is to find
the survival relationship with applied P, it is better to model the response to the quantitative
Phosphorous applied than to test statistical significance. The treatment-cultivar interaction
is practically nonexistent, and that term is omitted from the model.

The three degrees of freedom for treatments can be examined using three orthogonal
contrasts whose sums of squares (SS) will add to the treatment SS in Figure 7 above. We
fit the linear, quadratic, and cubic orthogonal contrasts using JMP, and results are shown
in Table 3. These use the same error term as in the anova Figure 7, and their SS add to
19,262, the same as the three-df treatment SS in Figure 7. The tests of significance for
linear, quadratic, and cubic are given in Table 3 and use our best estimate of error. As
stated previously, do not put too much emphasis on significance tests and a “red line” at a
probability of 0.05. Here, our principal objective is to fit survival response to P-application.
The cubic term is not necessary, so we fit a quadratic response curve.
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Table 3. Summary results of the three contrasts.

Contrast
Type

Sum Square
(SS) Num DF F Ratio Prob > F

Linear Contrast 8267 1 3.3382 0.0891
Quadratic Contrast 10,584 1 4.2739 0.0577

Cubic Contrast 411 1 0.1658 0.6900
Total Treatment 19,262 3

Without treatment-cultivar interaction, we can model survival on quantitative P for
both cultivars. As seen in Figure 8 below, the quadratic fit to the data for cultivars combined is:
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Figure 8. Quadratic regression line between the fertilizer levels and stand counts. The blue dots are
from cultivar number 1, and the red ones are for cultivar number 2. The letter P in the equation is for
the phosphorous rate in kg/ha.

Y (Survival) = 806.4 + 1.592P − 0.0084 P2, where P is kg/ha applied P2O5. Standard
errors for the coefficients of P and P2 are 0.569 and 0.0036, respectively.

To find the optimal rate of P to apply, we set the first derivative of Y with respect to P
to zero, 1.592 − 0.0168 P = 0, and solve for the optimum, which is P = 94.8, or 95 kg/ha
applied P as P2O5. The estimated standard error of the optimum P rate is 1.325, and a 95%
confidence interval for the optimum is (92.0, 97.6).

The figure from JMP shown below has a correct equation in the key in the upper
left, but does not have a proper root mean squared error (RMSE) or significance test. The
model fits the equation correctly but does not remove recognized variance sources reps
and cultivars, inflating the error and rendering p-values too high. The correct anova error
variance is 2476.4, with RMSE = 49.8. The linear and quadratic contrast probabilities given
in Table 3 above are correctly computed, with 0.09 and 0.06 as p-values for linear and
quadratic, respectively. The cubic term is lack of fit for the quadratic equation and is not
significant, with P = 0.69.

The model to fit response to applied P uses the quantitative variable P and quadratic
term P2. This is undertaken for cultivars together (the cultivars had similar response
curves). The result is graphed in Figure 8 below.

Summary of the results from different P_WS analyses. Results of the analyses per-
formed for our example are consolidated in Table 4, which shows the model type, number
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of data points (24 for the winter survival data), advantages and disadvantages of each
model method, and cultivar P values to illustrate similarities or differences of the methods.

Table 4. Consolidation of results for models from the winter survival data, including cultivar p-values,
to show the difference in models.

Model Name No. DP Pros Cons Cultivar
p-Value

LM w/split plot 24

Familiar LM, good
approximation,

accounts for error
structure

Normal
distribution
assumption

needed

0.0875

GLM
w/binomial 24 Specific family

distribution
No random error;
Using inflated df 5.90 × 10−15

GLMM
w/binomial 24

Specific family
distribution accounts

for error structure
Hard to explain 0.0311

Discussion for Example 2, the P Fertilizer Application and Winter Survival (P_WS)
Experiment

The R code for analysis and updates to this analysis is contained in the R markdown
file “winterSurvival.rmd”. We compare models with R analyses and results for the Gaus-
sian linear model, for a generalized linear model (glm) using a binomial distribution with
logit link, and finally for the generalized linear mixed model glmm with random field
variance components for Reps and the Rep-Treatment interaction using binomial distribu-
tion modeling. There are differences in p-values for the test of Treatment mean differences
for these methods. The standard tests for different scopes of inference are dictated by the
model fitting of, for example, the random Rep-Treatment component which has correct
error df for the broader inference (over future reps for which this set is a random sample).
Fang and Loughin used a simulation for a split-plot design and found methods based on
linear mixed models and generalized linear mixed models held Type I error rates better
than generalized linear models [17].

We see many of the same principles illustrated in this binomial data example as were
shown in the Poisson nodule count example, such as the need to pay attention to the scope
of inference and to the error terms for correctly testing hypotheses in deciding fixed versus
random effects ([2], p. 12). Such principles are a main point of emphasis for these examples.

We have seen that there are several ways that statistical models can be specified, some
more true to the underlying distributions, and others which are approximations but may
have more familiarity to the data analyst. For this winter survival example, the normal
approximation turns out to be very good, and is straightforward to use for those trained in
the use of linear model methods, such as regression and analysis of variance. The survival
count data may at first seem to be an example in which the Poisson modeling for count data
seems appropriate, but the experiment is to count surviving plants from an initial stand of
1000. This makes the underlying distribution binomial, which differs from the unbounded
count data which have a mean equal to the variance. In fact, as we discussed earlier, the
closer the counts are to 1000 the less variance they have. The binomial distribution seems a
much better option to match the actual conditions of this experiment.

A second consideration in modeling these data is the actual experiment design and spa-
tial variation generating what we assume are random error terms. The (P_WS) experiment
was arranged as a split plot with phosphorous treatments as whole plots and cultivars as
subplots. This subsumes an error structure with one error term for whole plots and another
for the subplots. This leads to random error designations as discussed by Crawley ([11],
pp. 173–184). The generalized linear models, even with random terms (glmms), would
need the random error terms corresponding to those of the linear models which assume
normal distributions. The normal distribution model has a variance parameter as well as
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the parameter for mean, and modeling using glms and glmms is often performed with
some provision for this over-dispersion that is inherent when we assume variance is only
dependent on the mean. Although this extra variance can be modeled with a distribution
such as negative binomial having an extra dispersion parameter, our approach is to include
a random plot variance to account for the residual field variance and random phosphorous
Trt-Rep interaction for the whole-plot error variance. As stated already, the methods for
these CDA analyses are continually evolving.

4. Summary of Analysis Approaches and Models for Both Examples

The overall analysis approach starts with the experiment objective, which, along with
the experiment design, guides the model’s development. For the N/R example, the green-
house runs (Times) are the blocks, and cultivars and inoculum are treatments. Equation (2)
is a linear mixed model with the NID assumptions. It is important to check the data for NID
assumptions, e.g., checking distributions using histograms and testing goodness of fit to a
normal distribution, which can be achieved using either R or the JMP analysis distribution
platform. Count data from this experiment are not expected to be from a normal distribu-
tion and are generally modeled as Poisson. The square-root transformation allows for more
accurate probability statements than just the normal approximation. Averages of individual
plants result in data closer to a normal distribution via the central limit theorem, and in
our nodules per root experiment, means of the original data are not as close to a normal
distribution as means of square root transformed data. The second model, Equation (3), is a
better normal approximation than Equation (2). A disadvantage of the sqrt transformation
approach in Equation (3) is the need to back-transform to obtain means and 95% confidence
interval endpoints in the scale of original counts.

Modeling CDA with a generalized linear model better captures the underlying Poisson
distribution, and glm results are in Table 2. However, random error terms not present in
the glm are important for proper inferences to achieve the objectives of this experiment.
In the N/R example, p-values for the test of cultivar mean differences are much lower
when fixing the scope of inference to the specific three greenhouse runs (Times) than
for a broader inference in which a random Time-cultivar interaction was included. This
broader scope of inference is for a population of potential future greenhouse runs, and we
determined the 95% CI for cultivar difference for this broad inference. Finally, our glmm
model in Equation (4) contains the important treatment terms and models random variation
with normal distributions having zero means and variance parameters to be estimated for
greenhouse pots and for Time. The results of the R program for Equation (4) are in the
R markdown Supplementary Materials, and the p-value for testing cultivar differences,
0.0234, is not much different from the cultivar p-value of 0.0290 from the JMP model run
for Equation (3). In the P_WS example, experiment design factors with fixed effects and
field variation with random effects are modeled. The linear mixed model, Equation (5),
includes the split plot random field effects of replication and replication-phosphorous
treatment interaction, which is the whole-plot error term. For this P_WS example, the
normal approximation is very good, and using quantitative applied phosphorus, we could
estimate the response as a quadratic equation. This allowed estimation of an optimum
phosphorus application rate. Equation (6) is a glmm with the same random field effects as
the normal linear model and an additional random normal effect for the field plot because
the generalized linear equation for binomial with logit link does not have the random error
variance parameter. Some authors, such as Stroup [6], recommend fitting such a glmm
with a negative binomial. In this example, we decided to use the well-recognized normal
distribution for plot error. A drawback of the glmm model in Equation (6) compared with
the approach for Equation (5) is the lack of the assumption of additive treatment effects ([3],
pp. 282–286) when means are related through the glmm link function, in this case the logit.
Data scientists are much more familiar with the whole-plot and split-plot error terms of a
linear model and the ability to decompose phosphorous treatment sums of squares into
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orthogonal contrasts and fit a quadratic equation to applied phosphorous to estimate the
optimum rate for plant survival.

5. Conclusions

Takeaways from the statistical analysis are that SAS or JMP and R give essentially the
same results for the same model with the same assumptions and error terms. The simple,
independent-sample t-test will not agree with the anova when more than one factor is in
the model.

The N/R counts per root is an example of Poisson data. The objective is to determine
the cultivar mean difference. A generalized linear model with fixed time-cultivar interaction
has high significance with low p-value for cultivar difference, but using a random time-
cultivar interaction error term and averages of the square-root transformed data results
in the broader-inference 95% confidence interval for cultivar difference in potential future
greenhouse environments.

In the P_WS binomial example, the objective is to relate phosphorus to winter survival,
knowing that the two cultivars have different winter survival. The 1000 plants per plot
render the normal distribution approximation good, and a linear model fits the split-plot
error structure. A quadratic equation incorporating this structure allows estimation of the
optimum rate of phosphorus to apply.

Methods and software for modeling CDA are continually evolving. The generalized
linear regression models are currently preferred to former methods involving testing with
normal distribution assumptions. Proportion data are almost always modeled as binomial
and count data are generally modeled as Poisson, but modeling may also be performed as
negative binomial because of the over-dispersion problem. Generalized linear models can
account for additional variation from greenhouse pots or field plots.

Our purpose in this article has been to raise the awareness of the reader of the existence
of categorical data, i.e., recognition of binomial and Poisson distributions in their measured
data, and to illustrate newer methods for analysis available in R and JMP. Potential pitfalls
in analyses are highlighted to emphasize points that have long been recognized but need
to be continually reviewed. The two example data sets using alfalfa are not atypical of
what crop breeders and agronomists would see in their experiments and help elucidate
categorical data analysis methods as well as stress good statistical practices in the analysis
of agronomic data.

Finally, it is important to consult with experts for help in statistical analyses. For
example, utilize the expertise of a statistician at your university or place of work to ensure
you are using the best statistical methods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/crops2020012/s1. Supplementary Material S1: two data sets
(nodules.csv and winterSurvival.csv), two R markdown files (nodules and winterSurvival.rmd), and
two word documents (nodules.docs and winterSurvival.docx) containing the line by line R code and
their outputs form the R scripts for repeatability.
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