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Abstract: The lack of seedling emergence uniformity in corn (Zea mays L.) is concerning for producers
in the Midwestern U.S. These producers believe that just a few hours delay in emergence can
increase interplant competition and decrease single-plant yield, thus reducing overall crop yield. It
is speculated that lack of uniformity in seedling emergence occurs due to a variation in seed size
within a commercial bag of seed, and variation in seed depth placement at sowing throughout the
field. Due to these concerns, producers evaluate size seed variation within the bag before sowing.
To date, research has investigated sowing dates, growing degree days, or varying sowing depths to
simulate a delay in seedling emergence. These studies are important for understanding the effects of
delayed emergence on overall yield, but they fail to examine the effect of inter-plant competition on
single-plant yield. The objective of this study was to understand the effect of seed size and sowing
depth on emergence and subsequent single-plant yield in a bare soil and a perennial groundcover
(PGC) cropping system. Commercially sized seed and seed sized further in the laboratory to obtain
a narrower seed size distribution were sown in Kentucky bluegrass and bare soil systems and at
two sowing depths of 3.18 and 6.35 cm. The two-year experiment was planted in a split-plot design
with four replications. Individual plants were flagged at emergence, and harvested individually.
Seed placement was crucial to uniform emergence in both cropping systems, while seed size did
not affect emergence in either system. The PGC cropping system delayed seed corn emergence and
reduced grain yield as much as 50%. Single-plant yield decreased with delayed corn emergence in
both cropping systems. Yield decrease as a function of emergence date followed either a quadratic or
linear trend in each growing season, likely related to post emergence environmental factors. This
information is important for producers and seed companies to understand the effect of seed size and
sowing depth on yield and emergence. This study demonstrates that uniform sowing depth is more
important than seed size distribution.

Keywords: emergence; single-plant yield; perennial groundcover (PGC); Kentucky bluegrass (KBG)

1. Introduction

A delay in seedling emergence of just a few hours in corn (Zea mays L.) may contribute
to decreased plant yield. Producers believe that this uneven emergence is associated with
the variation of seed size within a bag of seed and uneven sowing depth. While most
studies have shown that genetic potential is crucial to corn grain yield and seed size has
very little effect, producers remain concerned about seedling emergence when sowing small
seeds [1,2]. However, variable sowing depths for both large and small seed sizes can play a
role on emergence uniformity. Seed sown deeper and sown earlier, when environmental
conditions are unfavorable for germination and growth, had slower seedling emergence
rate regardless of seed size [3,4]. Corn yield studies to date have focused on the effect
of delayed seedling emergence on a whole plot level, and producers are interested in
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assessing its effect on single-plant yield. To our knowledge, the combined effects of delayed
emergence, seed size, and sowing depth on single-plant yield have not been studied.

Producers are interested in new conservation cropping systems, but they are also
concerned about their effects on crop emergence and yield. Understanding the effect of
uneven emergence on cash crop yield is essential for promoting producer’s adoption of
these new cropping systems. Corn planted directly into cover crops such as white clover
and mixed grasses has decreased emergence rate and delayed development [5]. This
reduction in corn development is partially the result of lower soil temperatures and slower
increase in those temperatures in a perennial cover crop system. When cover crop growth
is suppressed using strip tillage or herbicide suppression, soil temperature increases faster
and its negative effect on the cash crop emergence and stand is limited [6,7]. The use of
moderate tillage practices allows normal cash crop emergence while allowing the perennial
groundcover to provide its environmental benefits. Seed size, sowing depth, and hybrid
characteristics also could play a critical role on emergence depending on how the perennial
groundcover or cover crop affects the soil and the environment in which the seed is placed.
The single-plant yield decrease from a daily emergence delay of additional crop plants in a
perennial groundcover system are little understood.

As corn breeders have steadily enhanced the genetic potential for hybrids to withstand
greater competition at higher plant density, yields have continued to increase. Many studies
have shown that breeders have increased corn yield potential by increasing adaptability
of newer hybrids to perform under higher plant density stress [8–10]. Grain yield is a
function of the number of plants per acre, kernels per plant, and weight per kernel. Of
these factors, producers have most control over the number of plants per acre. With the
average United States corn plant density increasing 300 plants per acre per year, it is crucial
to understand the impact of plant-to-plant spacing and its effect on single-plant yield [11].
These higher-plant-density sowings may increase yield, but the economic optimum balance
of cost and benefits is unknown and varies with seed cost and grain market value. It
is crucial for researchers, breeders, and producers to work together to understand the
impact of these higher plant density sowings and determine where the optimum balance
is achieved.

Research into the effect of plant-to-plant spacing in corn has yielded mixed results.
Some of the early research into plant-to-plant spacing within a row reported losses of up
to 302.63 kg ha−1 for every 2.54 cm of deviation from the proper placement of the seed
depending on population density [12]. Further research investigating higher-plant-density
populations of newer hybrids saw a yield decrease of up to 228.65 kg ha−1 when the
seed was placed ahead or behind the proper location by 2.54 cm [13,14]. Even with the
advances in new sowing equipment, plant-to-plant spacing can vary and it is important to
understand the effect of spacing on yield variation.

Currently, all research on plant-to-plant spacing variation has been conducted in
conventional tillage systems. Plant-to-plant spacing effects could differ in a cover crop
system, depending on how cover crop species affect competition with the cash crop. Our
studies will help determine the effects of plant spacing in corn under a Kentucky bluegrass
(KBG) perennial groundcover and a conventional system.

Understanding the effect of uneven emergence and plant-to-plant spacing of a cash
crop grown with a perennial ground cover and a conventional tillage system could lead to
increased crop yields and encourage producers to adopt these new conservation cropping
systems. The objective of this study was to understand the effect of seed size and sowing
depth on emergence and subsequent single-plant yield in a bare soil and on a Kentucky
bluegrass (KBG) groundcover system.

2. Materials and Methods
2.1. Field Plot Design and Sowing

The field experiments for this study were conducted at the Bruner Research Station
(42◦00′44.8” N 93◦43′57.3” W) in Boone, Iowa, in 2019 and 2020. Soil at the research site is a
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Nicollet loam (Aquic Hapludolls, 85%), Clarion loam (Typic Hapludolls, 10%), and Webster
loam (Typic Endoaquolls, 5%) which are somewhat poorly drained and have 1–3% slopes.

The field experiment used a split-plot design consisting of four 0.036 ha blocks (repli-
cations), that were split into two whole plot treatments: ‘Midnight’ Kentucky bluegrass
(KBG) groundcover, or bare soil (Figure 1).
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Figure 1. Schematic representation of field split-plot design in bare soils (white plots) and Kentucky
bluegrass (KBG) groundcover (green plots) systems. The entire experiment was surrounded by KBG
groundcover (green). Plots were numbered as follow: first number represents blocks (1 through 4)
and second and third number represents plots within blocks (01 to 16). Hybrids and treatment
combinations were randomly assigned to plots both, within the bare soils and KBG groundcover. The
graph represents the eight treatment/factor combinations, including: two hybrids (P and BR); two
seed sizes in the commercial bag of seed and a smaller seed size distribution obtained by re-sizing
seed in the laboratory (denominated as IB and SD, respectively); and two sowing depths of 3.18 and
6.35 cm (denominated as 1.25 and 2.5, respectively).

The KBG groundcover was seeded and established on 12 September 2018 in prepa-
ration for the 2019 and 2020 experiments. All plots were disked twice with a 4.57 m John
Deere 210 disk (conical blades on 22.86 cm spacing) prior to seeding of the KBG. The initial
pass was parallel to the length of field, and the second pass was performed at a 45◦ angle
diagonally. All plots were tilled with John Deere 680 three-point mounted rotary tiller to
a 15.24 cm depth. All plots were then rolled with a Brillion PPD-7 soil pulverizer/roller
after tillage. KBG was planted at 48.2 kg ha−1 using a Tye Pasture Pleaser (model 104-4204)
three-point mounted grain drill with 10 rows on 20.32 cm spacings at 0.64 cm depth. An
additional 48.2 kg ha−1 KBG was planted using a Brillion Sure Stand Seeder (model SSPT-
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604) three-point mounted broadcast drill. Seeds were broadcast and packed into the upper
0.32–0.64 cm of soil. Total amount of KBG planted was 96.4 kg ha−1.

Eight subplot treatments were planted into each whole plot treatment (KBG cover or
bare soil). The eight subplot treatments consisted of two different hybrids subdivided into
two different seed sizes and planted at two sowing depths (3.18 and 6.35 cm). All subplot
treatments were tested in combination with other subplot treatments.

Corn was established in the KBG cover using strip tillage to create a cover-crop free
sowing area. Strip tillage was accomplished by first using a Unverferth model 330 Ripper
Stripper (Unverferth Manufacturing Co., Shell Rock, IA, USA) (four-row, 76.2 cm spacing)
with the ripper shanks running at a 30.45 cm depth and the coulters running at 10.16 cm
depth. The total strip width was 38.1 cm. Following the Unverferth, a Maschio PTO
(Maschio-Gaspardo North America Inc., DeWitt, IA, USA) driven gang tiller was used. The
gang tiller has three gangs on 76.2 cm spacings. The gang tiller was placed directly over
the original tillage strips and tilled to a 10.16 cm depth.

Tillage occurred perpendicular to the direction in which the KBG was planted. Each
subplot was 3.05 m wide by 7.62 m long consisting of 4 rows (0.76 m spacing). Corn was
planted with a four-row Kinze 3000 pull type planter (Kinze Mfg., Inc., Williamsburg, IA,
USA) at 86,000 seeds ha−1. Corn was planted on 24 April 2019 and 24 April 2020. All seed
samples were treated with Apron XL (Mefenoxam) (Syngenta) at 5.21mL kg−1 of seed and
Maxium 4FS (Fludioxonil) (Syngenta) at 10.43 mL kg−1 of seed prior to sowing. Data were
collected in 3.05 m from the middle of each of the two central rows of each subplot.

Fertilizer was applied seven days prior to corn sowing. Fertilizer was a combination
of diammonium phosphate (DAP) and muriate of potash (MOP) blended together and
applied at a rate of 33.63 kg N, 89.67 kg P, and 112.09 kg K ha−1. An additional 168.13 kg
N ha−1 in the form of sulfur coated urea was applied as a band placed on the afternoon
following corn sowing in the morning.

2.2. Seed

Seed graded as “Medium Flat” seed was used in this study, from two commonly
grown hybrids in central Iowa: 70N16 CNV (Blue River Organic Hybrids, Ames, IA, USA)
and P1197 (Corteva, Johnston, IA, USA). 70N16 CNV is a 114-day relative maturity and
P1197 is a 111-day relative maturity hybrid. The same seed lot of 70N16 CNV was used
in both 2019 and 2020. Different seed lots of P1197 were used in 2019 and 2020. Seed
from each of these lots was resized using an AEC Hand Screen Shaker—TSV 90 (Applied
Electronics Corporation, Saint Charles, IA, USA). Both seed lots were sized by using first
the seed dimension of width and second by thickness. Seed sizes with width of 8.33 mm
and 8.73 mm, and thickness of 4.76 mm and 5.16 mm from both hybrids were used as the
“sized seed” category. For this study, two seed sizes per hybrid were used, either “unsorted
seed” in the bag, or “sized seed” with a narrower seed size distribution.

2.3. Field Emergence

Emerged seedlings from the central 3.05 m of the inner two rows of each plot were
flagged daily, and the emergence date was recorded. A seedling was considered emerged
when its coleoptile emerged at least 1.25 cm above the soil surface. Flags used were
color-coded to facilitate visual identification of emergence date throughout the experiment
(Figure 2). Emergence was considered complete after 16 days following the first emergence
date recorded for each plot. Any additional plants emerging after day 16 were grouped
with day 16 during data analysis. Total days to emergence was computed as the number
of days after sowing until no further plants emerged. Final emergence percentage was
calculated based on the number of seedlings emerged as a percentage of seeds planted.
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plant-to-plant spacing (c) in the field.

2.4. Field Harvest

In both 2019 and 2020, each ear was harvested by hand, tagged, and dried at 42 ◦C for
48 h. Moisture concentration of each ear was recorded after drying using a SCiO micro-
spectrometer (Consumer Physics Inc., Herzliya, Tel Aviv, Israel). Individual plant yield
was calculated and normalized to 15% moisture. Harvest dates were 23 October 2019 and
1 October 2020.

2.5. Weather

The monthly mean temperature (◦C), rainfall (mm) and growing degree units (GDU)
on a base of 10 ◦C for the corn growing seasons in 2019 and 2020 are presented in Table 1.

Table 1. Monthly mean temperature (◦C), rainfall (mm) and growing degree units (GDU) on a base
of 10 ◦C for the corn growing seasons in 2019 and 2020.

Mean Temperature (◦C) Rainfall (mm) GDU (Base 50)

Month 2019 2020 2019 2020 2019 2020

April 9.4 8.3 24.9 2.3 43.0 85.0
May 13.9 14.4 211.3 134.1 338.5 346.5
June 20.6 22.8 100.8 39.9 622.5 729.5
July 23.3 24.4 117.1 70.9 774.0 778.5

August 21.1 22.8 33.0 25.9 637.5 678.5
September 20.0 16.7 115.8 81.0 609.5 434.0

October 8.3 - 133.1 - 148.0 -
Planting was 24th April in 2019 and 2020, GDU, Rainfall, and Temperature in April are post planting. GDU base
50 calculation: [Daily Maximum Air Temperature (◦F) + Daily Minimum Temperature (◦F)/2–50 ◦F.

Weather patterns varied in each year of the study. The number of growing degree
units base 50 (GDU) accumulated from sowing to harvest, however, were very similar,
with accumulations of 3173 and 3052 GDU in 2019 and 2020, respectively (Table 1). The
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GDU accumulated both years were slightly higher than the average values for the Bruner
research farm of 2825 GDU at harvest. The year 2020 was a dry year, where 38% of the
entire season rainfall occurred in the first six weeks following sowing. Additionally, in
2020, a large wind storm (Derecho) occurred on August 10th. Sustained winds from the
storm in Boone, IA were 80 mph with gusts near 100 mph. The developmental stage of
corn plants in bare soil plots was approximately 3–4 weeks post tasseling (VT) at the time
of the storm and corn in the KBG plots was approximately 2–3 weeks post VT. This wind
storm, coupled with dry conditions, was likely the cause of lower corn grain yields in 2020.
This wind storm delayed corn growth and seed fill by 7–10 days with respect to a normal
growth cycle. Plants in several plots had lodged, but very few plants were completely
snapped. However, all plots were harvested in 2020 following the wind storm.

Precipitation in 2020 was half the amount recorded in 2019. The total precipitation in
2019 was 760.5 mm, while total precipitation in 2020 was only 389.6 mm. In 2019, average
mean air temperature for the six weeks following sowing was below the normal average
temperature typically recorded at the Bruner research farm. Precipitation from sowing to
emergence in 2019 was 62.8 mm of rain and the average temperature was 11.1 ◦C. Low
temperatures and high rainfall are known to stress corn seed and possibly caused the
observed delayed corn emergence of 17 days after sowing. In 2020, the average rainfall
following sowing was 2.3 mm and temperature was 15.9 ◦C and corn emerged at 11 days
after sowing. Seed moisture content decreased earlier in the 2020 season and harvest
occurred 22 days earlier (1st October) than in 2019 (23rd October). This difference in
weather conditions caused a significant year effect and year by treatment interaction in the
model, and some data were analyzed for each year individually.

2.6. Statistical Analysis

The field experimental design was a split plot design. The cropping systems (KBG or
bare soils) were main plot factors; and hybrid, seed size and sowing depth were sub plot
factors. Statistical analysis for field experiments was performed as a split-plot using the
PROC MIXED procedure in SAS (SAS Institute, version 9.4, 2013). Analysis of variance was
computed for data from each year. All factors were considered fixed except for blocks which
were considered random. Mean separations were assessed using an alpha level = 0.05 using
either the least significant difference or contrasts. Interaction terms containing blocks were
pooled into appropriate whole-plot and subplot error terms. All tests of significance were
performed at alpha = 0.05 unless otherwise noted.

Statistical analysis for single-plant yield based on emergence date was done using the
PROC REG and PROC MIXED procedures in SAS [15]. Linear and quadratic regression
models were fitted to yield based on emergence date. Lines were fitted using PROC
REG and PROC NLIN. Intercepts, slopes, and model comparisons of the fitted lines were
compared using PROC MIXED. Estimate statements (t-tests) were used to pull out and
compare specific treatment combinations of interest.

Fitted models of emergence were obtained by using PROC NLIN in SAS. Logistic,
gompertz, and monomolecular models were examined for the best model fit. The logistic
model was chosen, as it fit well with emergence data in which all R2 values were greater
than 0.99 (Tables S1 and S2). The logistic model used was: Single-plant yield = a/(1 + b
∗ EXP(−c ∗ emergence)). The suitability of each model was determined by calculating
the approximate R squared value (1 − (SS Residual/SS Total)) and the standard error of
the difference.

Emergence and yield models were separated by year, cover cropping system, seed
size, and hybrid. Difference in emergence models were determined using PROC MIXED
procedure in SAS. An ANOVA was conducted on the number of additional plants that
emerged each day using a split-plot-in-time model. An alpha level of 0.05 was used to
determine significance of emergence rate differences among main factors and interactions.
Time dependence was assumed on the emergence and yield variables.
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A normalized emergence pattern in addition to the standard emergence pattern was
also analyzed. The normalized emergence was calculated by making the initial emergence
date of both sowing depths patterns coincide. The first emergence day for the deeper
(6.35 cm) sowing depth was set as the first emergence date for both, deeper and shallow
(3.18 cm) sowing depth. This provided a narrower emergence window more similar to that
observed in producers’ fields, and provided more replication for emergence date. The same
statistical analyses were conducted on both standard emergence and normalized emer-
gence.

3. Results
3.1. Field Emergence
3.1.1. Bare Soil vs. KBG-PGC Cropping System

The cropping system showed a significant effect on emergence and grain yield. Be-
cause of this interaction, results are presented for each cropping system separately. Emer-
gence patterns for corn plants in the bare soil and KBG cropping systems were significantly
different in 2019 and 2020 as described by the logistic model. Table 2 includes the daily
accumulated Growing Degree Units (GDU/Base 50) from sowing to emergence of all
seedlings recorded in research plots for 2019 and 2020. GDU base 50 were calculated as:
[Daily Maximum Air Temperature (◦F) + Daily Minimum Temperature (◦F)/2] − 50 ◦F.

Table 2. Daily accumulated Growing Degree Units (GDU, Base 50) from days after sowing to
completed seedling emergence recorded in research plots for 2019 and 2020.

Growing Season

2019 2020
Day after Planting (DAP) Accumulated GDU Accumulated GDU

11 112
12 126
13 129
14 129
15 134
16 141
17 147 145
18 154 153
19 156 155
20 159 160
21 168 166
22 177 169
23 193 177
24 216 189
25 230 203
26 248 209
27 251 218

Average GDU/day 10.4 6.6
Emergence began 17 days after sowing in 2019 and 11 days after sowing in 2020. GDU base 50 calculation: [Daily
Maximum Air Temperature (◦F) + Daily Minimum Temperature (◦F)/2] − 50 ◦F

Visual inspection and analysis of variance indicated that in 2019 bare soil and KBG
plots had similar emergence patterns, with plants in KBG plots reaching 50% emergence
0.53 days (5 GDU) faster than in the bare soil plots. Even though corn plants in the bare
soil plots were slower to emerge compared to KBG, they reached 95% emergence at the
same time as the KBG plots (Figure 3). Parameter estimates for the logistic equations
(Table S1) were similar in 2019, but differences were observed in 2020. Year 2020 provided
a longer emergence window than 2019. In 2020, corn plants in the bare soil plots reached
50% emergence 3.02 days (11 GDU) faster than those in the KBG plots. The same trend
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continued as additional plants emerged, where corn plants in bare soil plots reached 95%
emergence 5.62 days (30 GDU) faster than those in KBG plots (Figure 3).
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Figure 3. Cumulative emergence in 2019 and 2020 in each cropping system. KBG is a Kentucky
bluegrass perennial ground cover system and Bare Soil is conventional system. T50 and T95 are days
to 50% and 95% emergence, respectively. Observed vs. predicted regression lines calculated using
logistic model. Approximate R-squared values calculated by (1 − (SS Residual/SS Total)).

3.1.2. Seed Size in Bare Soil vs. KBG-PGC Cropping System

Seed size did not have a significant effect on seedling emergence parameters in both
cropping systems. Logistic models and analysis of variance indicated small differences
among emergence rates in bare soil plots in both 2019 and 2020. A slightly faster rate to
50% emergence (0.43 days, 4 GDU) for seed from the bag was observed in 2019 (Figure 4a).
Conversely, there were no significant differences in 2020 as sized seed and unsorted seed
from the bag reached 50% emergence at the same rate (Figure 4a). In KBG plots, there
were very small emergence differences associated with seed-size. There were no emergence
differences between seed sizes in 2019 (Figure 4b). In 2020; however, sized seed reached
50% emergence 0.87 days (5 GDU) earlier than unsorted seed from the bag (Figure 4b).
Confirmation of this different emergence trend was observed in the logistic fitted equations
(Table S1). Equations were very similar in both 2019 and 2020, but analysis of variance
indicated differences in 2020.
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Figure 4. Cumulative emergence in 2019 and 2020 based on seed size in (a) bare soil and (b) KBG,
a Kentucky bluegrass perennial ground cover cropping system. IB is “unsorted” seed size distri-
bution in a commercials bag of seed and SD is a “sized” narrower seed size distribution used in
this experiment. T50 and T95 are days to 50% and 95% emergence, respectively. Observed vs. pre-
dicted regression lines calculated using logistic model. Approximate R-squared values calculated by
(1 − (SS Residual/SS Total)).



Crops 2022, 2 71

3.1.3. Hybrid and Seed Size Interaction in a Bare Soil vs. KBG-PGC Cropping System

Emergence rate based on hybrid and seed size were significantly different. These
results showed evidence of an interaction between genotype and seed size. Nonlinear
regression and analysis of variance indicated no emergence differences based on seed
size for hybrid 1197 in the bare soil cropping system in 2020. A small difference was
observed in 2019, where unsorted seed from the bag emerged 0.41 days (4 GDU) faster
than sized seed. Visual confirmation of these results showed a near overlap of the logistic
fitted models (Figure 5a). However, significant differences in emergence were observed
for hybrid 7016CNV. Unsorted seed from the bag of 7016CNV reached 50% emergence
0.41 days in 2019 and 0.19 days in 2020 earlier (3 and 1 GDU, respectively) in the bare soil
cropping system. Figure 5a represents the total number of plants to emergence in 2019 and
2020. Both years some of the early emerging seedlings were lost due to ground squirrels.
Smaller differences in emergence patterns were observed in KBG plots compared to bare
soil plots. Following the same trend as the bare soil plots, no differences were observed for
1197 emergence in 2019. Conversely, in 2020 sized seed reached 50% emergence 1.31 days
(7 GDU) faster, and 95% emergence 1.90 days (9 GDU) faster (Figure 5b). There were
very small differences in emergence for 7016CNV based on seed size in KBG plots. Model
parameter comparison and analysis of variance indicated no significant differences in
2020 between seed size. In 2019, a very small difference was observed in which unsorted
seed from the bag reached 95% emergence 0.21 days (4 GDU) faster than sized seed. This
was confirmed by analysis of variance. However, there were no differences in the rate to
50% emergence.
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(b) KBG, a Kentucky bluegrass perennial ground cover cropping system. IB is “unsorted” seed size
distribution in a commercials bag of seed and SD is a “sized” narrower seed size distribution used
in this experiment. T50 and T95 are days to 50% and 95% emergence, respectively. Observed vs.
predicted regression lines calculated using logistic model. Approximate R-squared values calculated
by (1 − (SS Residual/SS Total)).

3.1.4. Sowing Depth in Bare Soil vs. KBG Cropping Systems

The logistic model for sowing depth showed a difference in emergence pattern. Deeper
sowing depth in both 2019 and 2020 showed a delay to 50% emergence in both cropping
systems (Figure 6a,b). In the bare soil system, a deeper sowing depth had a delay of 2.92
and 1.45 days (24 and 4 GDU) in the time to 50% emergence in 2019 and 2020, respectively.
A similar trend was observed in deeper planted seed in the KBG system where delays of
3.26 and 0.95 days (22 and 6 GDU) were observed in each respective year. Differences in
emergence between sowing depths are represented in Figure 6. Parameters in the logistic
fitted models (Table S2) showed a greater difference between sowing depth models, than
between models for any other main factors.
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Figure 6. Cumulative emergence in 2019 and 2020 based on sowing depth in (a) bare soil and (b) KBG,
a Kentucky bluegrass perennial ground cover cropping system. “Shallow” is the 3.18 cm sowing
depth and “Deep” is the 6.35 cm sowing depth. T50 and T95 are days to 50% and 95% emergence,
respectively. Observed vs. predicted regression lines calculated using logistic model. Approximate
R-squared values calculated by (1 − (SS Residual/SS Total)).

3.2. Normalized Emergence
3.2.1. Bare Soil vs. KBG-PGC Cropping System

Normalized emergence patterns in the bare soil and KBG cropping systems were
significantly different in 2019 and 2020. Nonlinear regression (Figure 7) and analysis of
variance indicated that in 2019 bare soil and KBG plots had similar emergence patterns.
KBG plots reached 50% emergence 0.44 days (2 GDU) faster and 95% emergence 0.37 days
(4 GDU) faster than the bare soil plots. In 2020, corn in bare soil plots reached 50%
emergence 2.93 days (8 GDU) faster than in the KBG plots. The same trend continued
throughout emergence, where corn seedlings in bare soil plots reached 95% emergence
5.83 days (30 GDU) faster than in KBG plots (Figure 7).
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Figure 7. Cumulative normalized emergence in 2019 and 2020 for bare soil and KBG, a Kentucky
bluegrass perennial ground cover cropping system. Normalized emergence was calculated by making
the first emergence date coincide for data from both sowing depths. T50 and T95 are days to 50% and
95% emergence, respectively. Predicted regression lines calculated using logistic model. Approximate
R-squared values calculated by (1 − (SS Residual/SS Total)).

3.2.2. Effect of Seed Size in Bare Soil vs. KBG-PGC Cropping System

When normalizing emergence, seed size did not have an effect on seedling emergence
(Figure 8). Nonlinear regression and analysis of variance indicated small differences among
normalized emergence rates in bare soil and KBG plots in both 2019 and 2020. In bare soil
plots, unsorted seed from the bag reached 50% and 95% emergence 0.29 and 0.38 days
(1 and 3 GDU) faster than sized seed in 2019, respectively (Figure 8a). Conversely, no
differences were observed in 2020 in which sized seed and unsorted seed from the bag
reached 50% and 95% emergence at the same rate (Figure 8a). Similarly, KBG plots had
very small normalized emergence differences based on seed size in both 2019 and 2020.
In 2019, unsorted seed from the bag reached 50% and 95% emergence 0.11 and 0.22 days
(0 and 2GDU) faster than sized seed. In 2020, however, sized seed reached 50% and 95%
emergence 0.93 and 1.79 days (6 and 10 GDU) faster than seed from the bag. Logistic
regression equations showed very similar model fits based on seed size (data not shown).

3.2.3. Hybrid and Seed Size Interaction in Bare Soil vs. KBG-PGC Cropping System

There was a significant hybrid and seed size interaction for normalized emergence.
This significant interaction between genetic characteristic of the hybrids and seed size was
not unexpected. In 2019, unsorted seed from the bag for both hybrids that was planted
in bare soil plots emerged faster to 50% emergence, 0.12 and 0.29 days (1 and 1 GDU),
respectively. This same trend was also observed in 2020 for 7016CNV. However, sized seed
for 1197 was 0.23 days (1 GDU) faster to reach 50% emergence in bare soil in 2020. The
graphs of these results show a near overlap of the logistic fitted models (Figure 9a). In
the KBG system, only hybrid 1197 had a different normalized emergence in 2020. Sized
seed from 1197 reached 50% and 95% emergence 1.22 and 2.00 days (13 and 9 GDU) faster
(Figure 9b) than unsorted seed from the bag. No significant differences were observed for
seed size in both hybrids in the KBG cropping system in 2019, for hybrid 1197 in bare soil
in 2020, and hybrid 7016CNV in KBG in 2020.
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Figure 8. Cumulative normalized emergence in 2019 and 2020 based on seed size in (a) bare soil
and (b) KBG, a Kentucky bluegrass perennial ground cover cropping system. IB is “unsorted”
seed size distribution in bag of seed and SD is a “sized” narrower seed size distribution used in
this experiment. T50 and T95 are days to 50% and 95% emergence, respectively. Observed vs.
predicted regression lines calculated using logistic model. Approximate R-squared values calculated
by (1 − (SS Residual/SS Total)).
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Figure 9. Cumulative normalized emergence in 2019 and 2020 based on seed size in (a) bare soil
and (b) KBG, a Kentucky bluegrass perennial ground cover cropping system. IB is “unsorted”
seed size distribution in a bag of seed and SD is a “sized” narrower seed size distribution used
in this experiment. T50 and T95 are days to 50% and 95% emergence, respectively. Observed vs.
predicted regression lines calculated using logistic model. Approximate R-squared values calculated
by (1 − (SS Residual/SS Total)).

3.3. Yield
3.3.1. Yield Based on Emergence Date

The decline in single-plant yield with each additional emergence-date delay followed
a quadratic pattern for both cropping systems in 2019 and a linear pattern for plants in
both cropping systems in 2020 (Figure 10). In 2019, quadratic models for each cropping
system were similar and indicated that corn yield was stable for the first seven days of
emergence (up to 193 GDU). After seven days, yield decreased in a linear relationship.
In 2020, corn yield of plants grown in a bare soil system (Figure 10a) decreased by 8.18 g
for each emergence-date delay. In 2020, corn grown in a KBG system was again modeled
by a linear regression (Figure 10b), and each individual plant showed a 4.35 g decrease
in yield for each day of delayed emergence (GDU’s in Table 2). Kentucky bluegrass and
bare soil plots followed similar trends when looking at each growing season individually.
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Overall, yields in the KBG system were lower than those of the bare soil system. Although
lower yields were observed, similar decreases in yield response based on emergence date
was seen in both systems. These similar yield responses indicate that post-emergence
environmental factors have a significant impact on single-plant yield.
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Figure 10. Observed vs. predicted values for single-plant yield based on emergence date in (a) bare
soil and (b) KBG, a Kentucky bluegrass perennial ground cover cropping system. Predicted regression
lines calculated using a linear or and quadratic model. R-squared values calculated to determine
goodness of fit.

3.3.2. Yield Based on Seed Size

The effect of seed size on single-plant yield was best modeled by a quadratic equation
in 2019 and a linear equation in 2020 for both the bare soil and KBG cropping systems
(Figure 11). Seed size did not have an effect on single-plant yield. In 2019, single-plant
yield from both seed sizes r stable for the first 6–7 emergence dates (177–193 GDU) and
then yield decreased rapidly (Figure 11a) with each additional emergence date. This trend
was observed in both cropping systems, bare soil and KBG. A linear yield decline based
on emergence date was observed for both cropping systems in 2020. In both cropping
systems, single-plant yield for unsorted seed from the bag and sized seed declined at similar
rates. Unsorted seed from the bag had a slower rate of yield decline for each subsequent
emergence date than sized seed. Single-plant yield in sized seed decreased 2.26 g, and
0.55 g per day (GDU in Table 2) in the bare soil and KBG cropping system, respectively
(Figure 11b).
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Figure 11. Observed vs. predicted values for single-plant yield based on emergence date and seed
size in 2019 (a) and 2020 (b) in (1) bare soil and (2) KBG, a Kentucky bluegrass perennial ground
cover cropping system. IB = unsorted seed in bag, SD = sized seed with a smaller size distribution.
Predicted regression lines calculated using a linear and quadratic model. R-squared values calculated
to determine goodness of fit.

3.3.3. Yield Based on Sowing Depth

Sowing depth did not significantly affect single-plant yield. Although there was a delay
in emergence for those seeds planted at 6.30 cm compared to 3.15 cm, similar yields were
observed once plants began to emerge. In 2019, a quadratic equation was fit to single-plant
yield based on emergence date for both sowing depths in both cropping systems (Figure 11).
Yield of plants from seed planted at 3.15 cm in the bare soil system were consistent for plants
emerging the first six days (177 GDU from sowing). Yield from seed planted at 6.30 cm
remained constant only for the first 4 days (159 GDU from sowing) before it began to decrease
with each additional date emergence was delayed (Figure 12a). In the KBG system, corn
plants emerged within the first 2–3 emergence dates (154–156 GDU) had similar yields. After
this initial period, a steady decline in single-plant yield was observed with each subsequent
emergence date (Figure 12a). In 2020, both sowing depths in both cropping systems were fit
with linear equations (Figure 12b). Sowing depths did not affect yield. A steady yield decline
of 8.1 g per plant for bare soil plots and 4.5 g per plant for KBG plots was observed for each
subsequent day of delayed emergence (GDU in Table 2).
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Figure 12. Observed vs. predicted values for single-plant yield based on emergence date and sowing
depth in (a) 2019 and (b) 2020 in (1) bare soil and (2) KBG, a Kentucky bluegrass perennial cover
cropping system. Predicted regression lines calculated using a linear and quadratic model. R-squared
values calculated to determine goodness of fit.

3.3.4. Yield Based on Hybrid

Overall, hybrid 7016CNV had lower yield than hybrid 1197 (Table 3).

Table 3. Average single-plant yield in grams at 15% grain moisture content for each hybrid and
cropping system (bare soil and Kentucky bluegrass groundcover (KBG) cropping systems) in 2019
and 2020.

Average Single-Plant Yield at 15% Grain Moisture (g)

2019 2020

Bare Soil
Overall average 191.41 151.39

7016CNV 171.00 152.10
1197 212.35 150.78
KBG

Overall average 138.22 72.97
7016CNV 132.99 63.92

1197 143.25 79.91
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3.3.5. Yield Based on Normalized Emergence Date by Sowing Depth

Yield based on emergence date was normalized based on sowing depth. Figure 13
shows the relationship between single-plant yield based on normalized emergence date.
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Figure 13. Observed vs. predicted values for single-plant yield based on normalized emergence
date in (a) bare soil and (b) KBG, a Kentucky bluegrass perennial ground cover cropping system.
Predicted regression lines calculated using a linear and quadratic model. R-squared values calculated
to determine goodness of fit.

When the emergence date was normalized based on sowing depth, yield decline was
more pronounced as emergence date was delayed. In 2019, corn yields in a bare soil system
were stable for the first five emergence dates (168 GDU from sowing) (Figure 13a,b). After
this initial period, yields of single plants decreased linearly as plants emerged later. A
similar trend was observed for corn grown in KBG plots, but yield was only unchanged
for the first two emergence dates (154 GDU from sowing). After these two days, yield
began to decrease sharply following a linear trend. These normalized emergence models
also showed that a delay in emergence of up to four days (12 GDU) was observed for seed
planted at deeper depth (6.30 cm).
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In 2020, seed planted at 6.30 cm began to emerge with a single-day delay (14 GDU)
compared to seed planted at 3.15 cm. This delay was shorter in terms of days than in
2019, where emergence of the deeper sowing depth started four days after the shallow
sowing depth began to emerge. Although there was a three-day difference in the start of
emergence for the deeper sowing depth for each growing season, it only equated to a two
GDU difference. Due to this smaller difference in emergence in 2020, the trend from yield
based on normalized emergence was very similar to that of non-normalized emergence.
The yield of each individual corn plant in the bare soil system showed a 7.9 g reduction
in yield for each day of delayed emergence (GDU in Table 2). Yield of single corn plants
grown in a KBG system had a 4.4 g decrease in yield for each day of delayed emergence.
As these yield patterns based on emergence are different in the two growing seasons, we
can attribute this to the differing weather patterns seen in each growing season.

3.3.6. Yield Based on Seed Size and Normalized Emergence

Data from normalized emergence based on seed size best fitted a linear model in 2020
and a quadratic model in 2019 for both cropping systems (Figure 14). A small effect of sized
seed on the number of days where yield remained stable was observed for plants grown in
KBG plots in 2019. Sized seed that emerged in the first 4–5 days (147–159 GDU) had stable
yields, while yields from plants from unsorted seed from the bag only remained stable for
two days. Sized seed not only had stable yields for a longer emergence window, sized seed
also yielded more than seed from the bag. In the bare soil cropping system in 2019, no
yield differences were observed for sized seed vs. unsorted seed from the bag. Corn yields
remained stable in both seed sizes for the first six emergence dates (177 GDU) before yields
began to decrease.
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date and seed size in (a) 2019 and (b) 2020 in (1) bare soil and (2) KBG, a Kentucky bluegrass
perennial ground cover cropping system. IB = unsorted seed in bag, SD = sized seed with smaller
size distribution. Predicted regression lines calculated using a linear and quadratic model. R-squared
values calculated to determine goodness of fit.

In 2020, no differences were observed between single-plant yield pattern based on
emergence date for the two seed sizes. A linear yield decrease was observed in both
cropping systems and both seed sizes (Figure 14b). Sized seed decreased 2.08 g and 0.81 g
more per day of delayed emergence in the bare soil and KBG cropping system, respectively
(GDU in Table 2). Results from normalized emergence data indicated seed size did not
affect single-plant yield based on seed size.

4. Discussion

Differences in the seed size distribution within the bag were observed for both hybrids.
These size differences could be a result of several factors. For example, companies’ specifi-
cations for acceptable size distribution could be different, hybrid genetics may determine
production of smaller or larger seeds, seed production practices, and the environmental
conditions during seed production influence seed fill [16,17]. Although a producer might
request medium flat sized seed from the seed company, seeds are biological entities, and
seed size within the bag may not be completely uniform [18]. Additionally, producers
searching for the best seed at the best price, may buy seed from different companies each
growing season. The seed size may vary from company to company [19]. Due to this, a
producer’s sowing equipment must be able to handle a wide range of seed sizes to ensure
consistent seed placement during sowing.

The seed lots from both hybrids used in this study were of high quality, as determined
using standard germination and vigor laboratory tests. Further separating the seed lot into
a narrower seed size distribution did not affect seed germination under ideal (standard
germination, and speed of germination tests) or stressful (cold test) conditions. The ability
of a seed lot to perform well under stressful cold germination conditions in the laboratory
indicates that the seed lot is capable of germinating well when placed into non-ideal field
conditions [20]. These results are comparable to other germination studies performed
in the laboratory to assess the effect of seed size on germination [3,21]. However, other
researchers who have tested seed size under stressful field conditions have observed a
positive relationship between larger seed size and emergence rate and plant height [22,23].
In our study, however, seed size, and specifically seed size distribution, did not affect
emergence rate or single-plant yield. Other environmental factors in the field could have
played a role on the relationship between seed size and emergence.

4.1. Field Emergence
4.1.1. Emergence and Sowing Depth

Logistic models best described the emergence pattern of corn observed in both crop-
ping systems. These emergence models follow a similar trend to those observed in other
species [24,25]. Additionally, the logistic models showed that the delay in emergence for
the deeper sowing depth (6.30 cm) was 12–14 GDU compared to the shallow sowing depth
(3.15 cm). This emergence delay has been reported previously for corn and other grass
species based on various sowing depths and soil temperatures [4,26,27]. Although produc-
ers do not typically vary sowing depth, this delay in emergence indicates that sowing depth
is a crucial factor for uniform seedling emergence. Producers should focus on placing seed
at a uniform depth throughout the field to ensure a more uniform emergence pattern and
decrease plant to plant competition. Producers should identify planter technology and
calibrations to ensure that seed is placed at very uniform depth.

Bare Soil vs. KBG Field Emergence

Corn emergence was delayed in the second growing season, 2020, for the KBG system.
This delay in emergence could be associated with greater above and below ground KBG
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biomass volume present in 2020 than in 2019. In 2019, KBG was newly established, and less
biomass was present. The KBG roots and rhizomes were less dense and possibly did not
hold as much water when compared to 2020. Additionally, spring of 2019 had abundant
rainfall and low temperatures post sowing, possibly slowing seed germination and emer-
gence in both, bare soil and KBG plots. Kentucky bluegrass was two years old in 2020 and
only strip tillage was used before sowing. KBG could have competed with corn for available
nutrients and light. When a large amount of biomass is in close proximity to corn plants a
red:far-red response is often observed. A red:far-red wavelength ratio response is known
to slow establishment and growth as shaded plants became stunted [28,29]. Additionally,
cover crop systems can change soil properties, inhibit germination, emergence, and slow
plant development [30–32]. Soil below a suppressed living mulch has better water holding
capacity and can store moisture, which could delay increase in soil temperature and slow
the rate of seed germination and seedling emergence [33,34]. Even though temperatures
post sowing were warmer in 2020, corn planted in KBG plots reached 50% emergence three
days (17 GDU) later, and 95% emergence almost six days (29 GDU) later than corn planted
in bare soil. This difference could be attributed to the slower soil temperature increase in
the presence of a living cover crop mulch [35,36]. This delayed emergence in KBG plots
indicates that balance between soil moisture content and temperature is critical for uniform
corn emergence and establishment in a PGC system.

4.1.2. Seed Size

Seed size did not have an effect on emergence pattern in the field. This trend was con-
sistent over both hybrids and both cropping systems. In 2020, moderate drought conditions
occurred post sowing, and in 2019 greater amounts of rainfall and cool temperatures were
recorded post sowing. Although slight differences in emergence patterns were observed,
seed size did not significantly affect emergence patterns in either season. Our research
supports prior findings that environmental conditions at sowing have a larger effect on
seedling emergence patterns than seed size [37,38]. Consequently, producers should not
be concerned with the small variation in seed size within a bag. This small variation in
seed size does not affect single-plant and overall yield in corn [2,3,39]. Additionally, with
the development of flat disk planter technology development, fewer corn seed sizes are
necessary, because newer planters are less sensitive to seed size [40]. Planter calibration
and seed placement at a uniform depth throughout the field are more important to obtain
uniform seed emergence and higher yields than seed size.

4.2. Yield
4.2.1. Yield Based on Emergence Date in Bare Soil

Delayed corn emergence decreased single-plant yield. A uniform decrease in yield of
7.8 g per plant was observed with each additional day of delayed emergence in the 2020
growing season. Each additional day represented a loss of 6 GDU. This yield loss likely
could be attributed to the semi drought conditions recorded in the 2020 growing season.
These drought conditions possibly increased stress for late emerging plants, while earlier
emerging plants were able to adapted due to an earlier seedling establishment and onset of
photosynthesis. This earlier photosynthesis period allowed plants to develop deeper roots,
allowing roots to find moisture, thus reducing stomatal closure due to water stress [41].
These results seem to support the producers’ speculation that just a few hours difference
in corn emergence between plants can increase competition and decrease yield [42,43]
when crops emerge under drought stress conditions. Conversely, a different yield response
based on emergence date was observed in 2019. Weather conditions in 2019 were cold and
wet directly following sowing. Greater amounts of rainfall and soil temperatures below
10 ◦C delayed emergence for a longer period. However, once the seedlings emerged, the
weather conditions improved, and temperature and rainfall patterns were typical of spring
in central Iowa. Under these weather conditions, single-plant yield remained stable for
the first 5–6 days of emergence (21–30 GDU since emergence started). Stable yields for
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the first 5–6 days of emergence in bare soil cropping systems could be to the result of
these ideal growing conditions for corn plants with no limiting factors post emergence in
2019. Consequently, post sowing and post emergence environmental factors seem to play a
larger role on single-plant yield than do emergence date, seed size or sowing depth. Our
results indicate that ideal environmental conditions following sowing and emergence have
a strong influence on the stability of single-plant yields for a wider emergence window.

4.2.2. Yield Based on Emergence Date in the KBG Cropping System

Lower single-plant yield was observed in both 2019 and 2020 for corn plants growing
in KBG plots compared to bare soil plots. In addition to lower yields, plants in these
plots had a slightly faster decrease in single-plant yield for each additional day of delayed
emergence. Lower overall yields and faster yield decline for corn plants in the KBG
cropping system could be attributed to corn’s shade avoidance response associated with
red:far-red wavelength light quality variation in the presence of KBG biomass. Corn
thrives when it grows in full sun, where the visible light electromagnetic spectrum has
about 30 percent more red wavelength light than far-red wavelength light [44]. As light is
filtered through the canopy, light from the red wavelength is absorbed and only far-red
wavelength light filters through, reducing the red:far-red ratio [45]. The higher proportion
of far-red wavelength light converts the plants phytochrome into the inactive form, which
in turn slows growth [28]. When corn is in competition with other biomass, such as in our
study, the greater proportion of far-red wavelength in the light may have caused delayed
growth [46]. This red:far-red response has been shown to slow germination and growth
and lower yields [28,29,47].

4.2.3. Yield Based on Emergence Date and Seed Size

Single-plant yield decreased based on the emergence date, but not based on seed size.
The same trend was observed for both hybrids, in both cropping systems, confirming that
single-plant yield loss was affected by pre- and post-emergence environmental conditions
in each growing season. These results confirm previous studies which reported that seed
size distribution does not play a role on overall corn grain yield in a conventional bare soil
system [1,2]. In the KBG cropping system, differing growing conditions in the two seasons
caused slower emergence post sowing in 2019, but this delayed plant emergence produced
higher single-plant yields. In contrast, the 2020 season had faster emergence rates but
plants had lower yields. This difference could be attributed to the drought conditions post
corn emergence in 2020 and seems to support that single-plant yield is affected more by
post emergence environmental factors rather than by seed size [48,49]. Our results further
indicate that seed size distribution within a bag of seed is ideal for achieving the highest
yield for the producer in a bare soil and a KBG cropping system. The size distribution
currently in a commercial bag of seed is adequate for maximizing single-plant yields. A
wider seed size distribution could possibly have an additional benefit for producers because
seed costs are lower than if seed needed further seed size refinement and greater seed
sizes were discarded. Producers can feel confident in adopting PGC cropping systems
knowing that current seed corn provided by seed companies will perform well in the new
cropping system.

5. Conclusions

The results obtained in this study indicate that seed size does not play a role in corn
emergence and single-plant yield. However, delayed seedling emergence does affect plant
growth, competition and single-plant yield. In the bare soil system, plants emerging
later than 6–30 GDU’s after initial emergence had lower single-plant yields depending on
weather conditions. The window in which single-plant yields remained stable was shorter
(7–9 GDU) for the KBG cropping system than the bare soil system. Producers should be
aware that plants must emerge within these GDU windows for each cropping system, and
that uniformity in emergence is affected by environmental factors rather than seed size.
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Although deeper sowing depth delayed emergence, it did not affect overall yield.
Producers should strive for uniform sowing depth and properly regulate sowing equipment
to avoid delayed emergence and yield loss.

Furthermore, seed size did not affect yield. The seed size fractions currently used
by seed companies are adequate and justified for uniform emergence and maximum
grain yield. Our conclusions apply to common hybrids grown in the upper Midwest
region of the U.S. Future studies should explore the effects of sowing seed corn at greater
densities and the consequent response of red:far-red light ratio on crop yields in a KBG
groundcover system.
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