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Abstract: Treating plants with elevated carbon dioxide (eCO2) can increase their drought tolerance.
Increased atmospheric CO2, a fundamental factor in climate change, may compensate for the drought-
induced reduction in crop growth and yield. Basil, being moderately sensitive to drought stress
(DS), experiences several morphological changes under DS. Thus, we designed an experiment that
addresses how DS and different levels of CO2 affect the overall morphological growth patterns during
basil’s early and late-season growth. The experiment was conducted under four different growth
conditions: two water treatments, (1) a full-strength Hoagland’s solution was added to the basil plants
at 120% of the evapotranspiration each day, and (2) 50% of the full-strength Hoagland’s solution was
added to basil plants for the drought treatment, alongside two levels of CO2 application [ambient 420
ppm (aCO2) and elevated 720 ppm (eCO2)]). The DS had a severe impact on the morphological traits
of the shoot and root systems. Compared to control, DS reduced the marketable fresh mass (FM)
by 31.6% and 55.2% in the early and late stages of growth. FM was highest under control + eCO2

(94.4–613.7 g) and lowest under DS + aCO2 (67.9–275.5 g). Plant height under DS + aCO2 and
DS + eCO2 reduced by 16.8% and 10.6% during the late season. On the other hand, dry mass percent
(DM%) increased by 31.6% and 55.2% under DS + eCO2 compared to control in the early and late
stages of growth, respectively. This study suggested that eCO2 during DS significantly impacts basil
morphological traits compared to aCO2. Besides, anthocyanin decreased by 10% in DS + aCO2 and
increased by 12.6% in DS + aCO2 compared to control. Similarly, nitrogen balance index, a ratio of
chlorophyll and flavonoids, was recorded to be the highest in DS + aCO2 (40.8) compared to any
other treatments. Overall, this study indicates that the suppression of basil’s morphophysiological
traits by DS is more prominent in its later growth stage than in the earlier stages, and eCO2 played
an important role in alleviating the negative effect of DS by increasing the DM% by 55%.

Keywords: climate change; physiology; ambient carbon dioxide; root image analysis; chlorophyll;
flavonoids; nitrogen balance index

1. Introduction

The progression of climate change has made the global agricultural system vulnerable
and has negatively impacted overall agrarian production [1]. The increasing linear warming
trend of 0.74 ◦C over 100 years (1906–2005) and an expected increment of 1.1 to 6.4 ◦C by
the end of the 21st century have become a massive threat to agriculture [2,3]. Likewise,
the increased atmospheric carbon dioxide (CO2) is a fundamental factor in climate change
and may compensate for the environmentally induced reduction in crop growth and
yield [4]. The increasing level of global atmospheric CO2 (increased by 40% in 2011, i.e.,
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278–390.5 ppm, and 413.35 ppm in 2020) and its projected rise to 970 ppm by the 21st century
suggests a disturbance in climatic resilience to these stress factors [3]. The difference in
rainfall patterns comprises a decline in rainwater and increased rainfall intensity over a
short period [5]. Thus, it is unequivocal that higher temperatures and uncertain rainfall
patterns will increase drying conditions worldwide [1]. Moreover, the anticipated growing
drought due to elevated atmospheric CO2 and temperature will affect crops’ growth and
development, including basil (Ocimum basilicum L.) [6]. Therefore, it is crucial to assess
climate change’s influence on drought stress (DS) conditions for effective DS mitigation
and crop adaptation [7,8].

Basil is a culinary and medicinal herb that grows best under warm climatic condi-
tions [9], with an optimal temperature range of 25–30 ◦C [10]. However, a supplemental
water supply is mandatory for the successful commercial production of basil. Several
studies on the irrigation of basil have reported sensitivity to DS [11,12]. In general, basil
(C3 plants) is grown under a wide range of environmental conditions. The plant reacts
to DS via a series of morphological and cellular responses [13]. Previous research has
indicated that DS decreases the number and branching of the stems, decreases internode
length size, and reduces plant height (Ht), leaf area (LA), nodal length, stem diameter, root,
and shoot yield in basil [14,15].

Basil’s response to elevated CO2 (eCO2) has not been appropriately explored in the
past. However, eCO2 is considered an innovative approach to improve plants’ vegetative
growth and nutritional value [16]. For example, eCO2 increased the yield of leafy vegetables
by 38% and stem vegetables by 17% [17]. eCO2 also improves the biomass production in
basil by 48% (Al Jaouni et al., 2018) and enhances chlorophyll content in the leaves [18]. A
study on several leafy and stem vegetables reported that eCO2 enhanced the total biomass,
yield, and dry matter content [17]. These morphological and nutritional benefits in basil
due to eCO2 could help to increase its production efficiencies and nutritional value.

Many multidisciplinary approaches have reported the role and effect of DS and
eCO2 levels on crops under global climate change scenarios in recent years. However,
very few studies have investigated the interactive effects of DS and eCO2 on growth and
basil development. Our understanding of the underlying implication of eCO2 under DS
conditions in basil is still inconclusive. A previous study reported that basil production
increased up to 80%, increasing CO2 levels from 360 to 620 ppm [4]. Similarly, the potential
of DS tolerance in basil makes it an excellent alternative crop in dry regions [15,19] due to its
high economic value. Besides, the study of basil’s morphophysiological parameters under
DS will help identify basil traits resistant to DS [20]. Thus, the current study’s primary
purpose is to understand the effect of DS coupled with eCO2 on morpho-physiological
attributes in basil.

2. Materials and Methods
2.1. Plant Materials and Growing Condition

Basil’ Genovese (Johnny’s Selected Seeds, Winslow, ME) seeds were sown in polyvinyl-
chloride pots (15.2 cm diameter by 30.5 cm height) filled with a soil medium consisting
of 3:1 sand/soil classified as a sandy loam (87% sand, 2% clay, and 11% silt) with a
500 g of gravel at the bottom of each pot. Six seeds were sown in each pot, and the
plants were thinned to one plant per pot approximately seven days after emergence. Pots
were organized in a randomized complete block design within a three-by-two factorial
arrangement with temperature and CO2 treatments. A total of four Soil-Plant-Atmosphere-
Research (SPAR) chambers represents two blocks (ten replications each). Each SPAR
chamber consisted of 3 rows of pots (ten pots per row). All environmental growing
conditions were kept the same throughout the experiment except for irrigation volumes
and CO2. More detailed information on the SPAR chamber was earlier described by Reddy
et al. [21] and Wijewardana et al. [22].

Basil plants were irrigated three times per day using an automated computer-controlled
drip system with full-strength Hoagland’s nutrient solution [23]. Irrigation was provided
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at 700, 1200, and 1700 h, based on evapotranspiration values. Evapotranspiration rates
expressed on the ground area (L·d-1) throughout the treatment period were measured in
each SPAR unit as the rate at which the cooling coils removed the condensate at 900-s
intervals [21,24,25]. They were obtained by measuring the mass of water in collection
devices connected to a calibrated pressure transducer.

2.2. Treatments Application

Basil plants were randomly assigned to each chamber consisting of 30/22 (day/night),
in combination with ambient (420 ppm) (aCO2) or elevated (720 ppm) (eCO2) carbon
dioxide concentrations. The daytime temperatures were initiated at sunrise and nighttime
temperatures 1 h after sunset. There were two water treatments, imposed at 14 days
after sowing (DAS) for the experiments: (1) a full-strength Hoagland’s solution [23] was
added to the basil plants at 120% of the evapotranspiration each day, and (2) 50% of the
full-strength Hoagland’s solution was added to basil plants for the DS treatment.

2.3. Phenology and Growth

Basil plants from each treatment combination were harvested to obtain phenotype
and growth data on early and late-stage growth effects of DS and CO2 at 17 and 38 days
after treatment (DAT). Basil phenotypic data of Ht, node number (NN), branch number
(BN), fresh mass (FM) were measured. Dry mass (DM) of the leaf (LDM), stem (SDM),
root (RDM), shoot (ShDM), and whole plant (TDM) were measured for each treatment
combination. Root to Shoot Ratio (RS) was measured using the ratio of RDM and ShDM.

LA was measured using the LI-3100 leaf-area meter (Li-Cor Bioscience, Lincoln, NE).
Using a weighing scale, plant component FM was extracted from all basil plants. The plant
FM samples were then dried for two days at 75 ◦C in a forced-air oven to yield basil DM.
The DM percent (DM%) was calculated using (Shoot DM/FM) × 100%.

2.4. Root Image Acquisition and Analysis

Roots were cut and separated from the stems and washed thoroughly. The total root
length (TRL) was determined using a ruler. The cleaned individual root systems were
floated in 5 mm of water in a 0.3- by 0.2-m Plexiglas tray. Roots were untangled and
separated with a plastic paintbrush to minimize root overlap. The tray was placed on top
of a specialized dual-scan optical scanner (Regent Instruments, Inc., Quebec, QC, Canada)
linked to a computer. Gray-scale root images were acquired by setting the parameters to
high accuracy (resolution 800 × 800 dpi). Acquired images were analyzed for the lateral
root length (LRL), root surface area (RSA), average root diameter (RAD), root volume (RV),
number of root tips (RT), root forks (RF), and root crossings (RC) using WinRHIZO Pro
software (Regent Instruments).

2.5. Morpho-Physiological Measurements

Leaf chlorophyll content (chlorophyll), epidermal flavonoids, epidermal anthocyanin,
and nitrogen balance index (NBI) were measured on the second uppermost recently fully
expanded leaf, second from the top, under each of three temperature treatments with
a Dualex® Scientific Polyphenols and Chlorophyll Meter (FORCE-A, Orsay, France) at
38 DAT.

2.6. Data Analysis

Statistical analysis of the data was performed using SAS (version 9.4; SAS Institute,
Cary, NC, USA). Data were analyzed using the PROC GLIMMIX analysis of variance
(ANOVA) followed by mean separation. The experimental design was a randomized
complete block in a factorial arrangement with two water and two CO2 treatments, three-
block, and ten replications. The standard errors were based on the pooled error term
from the ANOVA table. Duncan’s multiple range test (p ≤ 0.05) was used to differentiate
treatment classifications when F values were significant for main effects. Model-based
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values were reported rather than the unequal standard error from a data-based calculation
because pooled errors reflect the statistical testing. Diagnostic tests were conducted to
ensure that treatment variances were statistically equal before pooling.

3. Results and Discussion
3.1. Morphological Traits

It is widely understood that basil thrives well under a 70% soil water capacity [26].
Our result indicated that the DS (water supply at 50% or less than 50% soil water capacity)
affects the Ht, LA, and FM, as well as several other basil’s morphological traits. A report on
basil demonstrated that TDM yield and Ht decreased by 31.6% and 26%, respectively, due
to DS [15]. Forouzandeh et al. [15] also reported several other morphological parameters
such as that FM, ShDM, and RDM decreased by 42.2–60.1% under the DS with 60% soil
water capacity in basil. Like DS, eCO2 is also considered an important environmental factor
in affecting the economic yield of C3 plants such as basil [4]. Since these two factors occur
concurrently, it is important to study the individual and combined factors to investigate
potential interaction among factors. Morphological responses to DS in basil and most
agronomic and horticultural crops include slow growth rate, reduced LA and LN, and
increased RV and RS [27]. At 17 DAT, the interactive effect (p < 0.001) between DS + eCO2
as well as DS + aCO2 was observed on the Ht (Table 1). There was a significant decrease in
Ht by 9.6% (p < 0.05) under DS + aCO2 compared to control on 17 DAT. However, there
was no difference for Ht of DS + eCO2 compared to the control on 17 DAT. The decrease
in Ht under DS + aCO2 and DS + eCO2 was observed by 16.8% and 10.6%, respectively,
on 38 DAT, compared to control. Previous research indicated that DS in commercial basil
cultivars significantly reduced Ht [28]. However, the eCO2 can increase the Ht of basil by
8.5%, as reported by Singh et al. [29]. Consequently, the observed reduction in Ht in this
study may be due to the disturbance in the basil metabolic process leading to poor cell
division and elongation [30].

Table 1. Dry mass percent (DM%), plant height (Ht), node number (NN), branch number (BN), and
leaf area (LA) of basil plants grown without drought stress (Control) and with drought stress at two
levels of CO2 (420 and 720 ppm) after 17 days of treatment.

Treatment DM% 1,3 Ht NN BN LA

420 ppm
Control 8.269 b 36.56 a 7.1 a 15.33 a 1223.60 ab

Drought 10.101 ab 33.05 b 6.9 a 13.56 a 997.72 c

720 ppm
Control 8.981 b 36.61 a 7.0 a 15.33 a 1321.09 a

Drought 11.823 a 35.44 a 7.0 a 14.22 a 1070.67 bc

Treatment 2,4 ** *** ns * ***
CO2 ns * ns ns ns

Treatment × CO2 ns * ns ns ns
1 Dry mass in percentage (%); Height in centimeters (cm); Node number and branch number on a per plant basis;
Leaf area units in centimeters squared. 2 Mean separation within the column by Duncan’s multiple range tests;
ns, *, **, *** indicates non-significant or significant at p ≤ 0.05, 0.01, and 0.001, respectively. 3 Values followed by
the same letter are not significantly different. 4 SE-Standard error of the mean, DM% = 0.7, Ht = 0.6, NN = 0.1,
BN = 0.8, and LA = 59.4.

A previous study reported that DS reduced DM% by 31.5% in basil [15,28]. On the
other hand, Singh et al. [29] demonstrated that DM increases by 34.4% in basil treated
with 800 ppm CO2. Moreover, eCO2 decreases stomatal conductance and increases pho-
tosynthetic rates, reducing transpiration and higher water use efficiency [31,32]. Also, it
was reported that CO2 use becomes more efficient under DS when there is more supply of
CO2 [33]. As reported earlier, an increase in water use efficiency under DS due to eCO2
also increases DM [34]. In support, eCO2 under DS is expected to start carbon fixation and
prolong active growth by maintaining the soil water reserved for longer [35]. Likewise, in
the current study, the DM% increased significantly by 31.6% and 55.2% under DS + eCO2
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compared to control on 17 DAT and 38 DAT, respectively (Tables 1 and 2). Thus, it can be
suggested that eCO2 ameliorated the adverse effect of DS on DM by increasing the water
use efficiency in basil through more carbon assimilation, which leads to more biomass
accumulation.

Table 2. Dry mass percent (DM%), height (Ht), node number (NN), branch number (BN), and leaf
area (LA) of basil plants grown without drought stress (Control) and with drought stress at two
levels of CO2 (420 and 720 ppm) after 38 days of treatment.

Treatment DM% 1,3 Ht NN BN LA

420 ppm
Control 11.733 b 61.67 a 10.0 a 29.87 a 6946.3 a

Drought 16.265 a 51.27 b 9.8 a 31.27 a 3913.3 b

720 ppm
Control 10.677 b 60.93 a 10.1 a 29.67 a 8078.9 a

Drought 16.571 a 54.47 b 10.0 a 29.67 a 3978.7 b

Treatment 2,4 *** *** ns ns ***
CO2 ns ns ns ns ns

Treatment × CO2 ns ns ns ns ns
1 Dry mass in percentage (%); Height in centimeters (cm); Node number and branch number on a per plant basis;
Leaf area units in centimeters squared. 2 Mean separation within the column by Duncan’s multiple range test; ns
and *** indicates non-significant or significant at p ≤ 0.05 and 0.001, respectively; 3 Values followed by the same
letter are not significantly different. 4 SE-Standard error of the mean, DM% = 0.5, Ht = 1.7, NN = 0.1, BN = 1.1,
and LA = 581.36.

The leaf is considered the most drought-sensitive part of the plant [31]. It is also
responsible for reducing water loss and promoting water use efficiency during DS [36]. In
the current study, LA decreased by 19% under both DS + aCO2 and DS + eCO2 treatment
on 17 DAT compared to control. Similarly, LA decreased by 43.6% and 50.8% under both
DS + aCO2 and DS + eCO2 treatment on 38 DAT compared to control. Previous research
indicated that basil LA decreased under DS [37]. Similarly, an experiment conducted on
sunflowers also demonstrated a significant reduction in LA under the DS [38].

Conversely, different fruits, vegetables, basil, and several other C3 plants treated with
eCO2 have demonstrated an increase in LA [29]. In the present study, eCO2 fails to amend
the effect of DS on LA, further supported by soybean reports [39]. In plants subjected to DS,
their cell weakens, leading to low water potential and low turgor pressure and, ultimately,
reduced growth [28], thus demonstrating that these factors are behind LA’s reduction in
basil [40].

In the current study, basil FM was also significantly (p < 0.01) reduced under the
DS + aCO2 and DS + eCO2 treatment at 17 DAT and 38 DAT, which is further supported
by previous research on basil [41]. It is worth noting that FM was highest under control
condition at eCO2 level and was lowest under DS at both CO2 levels on 17 and 38 DAT
(Tables 3 and 4). It is important to note that the water retention under DS + eCO2 in the
later season was poor, as shown in Table 4. A study in cork oak by Vaz et al. [42] reported
that the effect of eCO2 can deteriorate under any stress in the long run, which can make a
difference in leaf morphology.
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Table 3. Fresh mass (FM), leaf dry mass (LDM), stem dry mass (SDM), root dry mass (RDM), shoot
dry mass (ShDM), total dry mass (TDM), and root-to-shoot ratio (RS) of basil plants grown under
without drought stress (Control) and with drought stress at two levels of CO2 (420 and 720 ppm)
after 17 days of treatment.

Treatment FM 1,4 LDM SDM RDM ShDM TDM RS 2

420 ppm
Control 80.62 b 4.479 bc 2.188 bc 0.941 a 6.667 bc 7.608 bc 0.140 bc

Drought 59.32 c 3.987 c 2.021 c 1.066 a 6.008 c 7.073 c 0.176 a

720 ppm
Control 94.37 a 5.779 a 2.789 a 1.021 a 8.568 a 9.589 a 0.119 c

Drought 67.94 c 5.074 ab 2.642 ab 1.180 a 7.717 ab 8.897 ab 0.163 ab

Treatment 3,5 *** ns ns ns ns ns **
CO2 ** ** ** ns ** ** ns

Treatment × CO2 ns ns ns ns ns ns ns
1 Fresh weight, leaf dry weight, stem dry weight, root dry weight, shoot dry weight, and total dry weight units on
a gram per plant basis. 2 RS- Root to Shoot Ratio (Root Dry Mass/Shoot Dry Mass) 3 Mean separation within the
column by Duncan’s multiple range test; ns, **, *** indicates non-significant or significant at p ≤ 0.05, 0.01, and
0.001, respectively. 4 Values followed by the same letter are not significantly different. 5 SE-Standard error of the
mean, FM = 3.9; LDM = 0.3; SDM = 0.2; RDM = 0.1; ShDM = 0.5; TDM = 0.5; RS ratio = 0.01.

Table 4. Fresh mass (FM), leaf dry mass (LDM), stem dry mass (SDM), root dry mass (RDM), shoot
dry mass (ShDM), total dry mass (TDM), and root-to-shoot ratio (RS) of basil plants grown under
without drought stress (Control) and with drought stress at two levels of CO2 (420 and 720 ppm)
after 38 days of treatment.

Treatment FM 1,4 LDM SDM RDM ShDM TDM RS 2

420 ppm
Control 486.33 b 25.032 a 33.049 ab 6.840 ab 58.081 ab 64.922 ab 0.116 b

Drought 284.30 c 17.591 b 27.591 b 5.343 b 45.182 b 50.525 b 0.120 b

720 ppm
Control 613.71 a 28.393 a 38.733 a 8.511 a 67.126 a 75.637 a 0.128 ab

Drought 275.46 c 17.060 b 29.756 b 6.388 b 46.816 b 53.204 b 0.140 a

Treatment 3,5 *** *** * ** ** ** ns
CO2 ns ns ns * ns ns *

Treatment × CO2 ns ns ns ns ns ns ns
1 Fresh weight, leaf dry weight, stem dry weight, root dry weight, shoot dry weight, and total dry weight units on
a gram per plant basis. 2 RS- Root to Shoot Ratio (Root Dry Mass/Shoot Dry Mass) 3 Mean separation within the
column by Duncan’s multiple range test; ns, *, **, *** indicates non-significant or significant at p ≤ 0.05, 0.01, and
0.001, respectively. 4 Values followed by the same letter are not significantly different. 5 SE-Standard error of the
mean, FM = 38.2; LDM = 2.1; SDM = 3.0; RDM = 0.7; ShDM = 5.0; TDM = 5.7; RS ratio = 0.006.

Other the other hand, a previous study demonstrated an increase in FM in basil by
54.1% under eCO2 (827 ppm) + non-drought conditions (control) [43]. O’Leary et al. [43]
also reported that, although eCO2 helps to mitigate the negative effect of DS on FM
through improved water use efficiency, eCO2 always performs better under water-sufficient
conditions (>70% soil water capacity). For this reason, FM was recorded the lowest under
DS at both CO2 levels in this study.

TDM and yield were reduced by 34% under deficit irrigation in different basil culti-
vars [26]. However, in our study, there was no interaction between DS and CO2 treatments
when analyzing DM%, NN, BN, LDM, SDM, RDM, ShDM, and RS compared to the control
treatment on 17 DAT (Tables 1 and 3). On 38 DAT, there was no interaction effect between
DS and CO2 treatments on any morphological parameters (Table 4).

The root system is responsible for absorbing water and nutrients from the soil, and
it plays an essential role in the plant’s response to DS [36]. Some C3 and C4 plants have
the robust ability to increase root growth at the early stage of DS to absorb water from
the deep soil [44]. This suggests that the density, length, volume, and mass of roots are
directly associated with crop DS resistance [45,46]. The root tissues were measured at
17 DAT (Table 5). However, none of the parameters (LRL, TRL, RSA, RAD, RV, RT, RF,
or RC showed the interactive effects of the DS and CO2 treatments. A treatment effect
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(p < 0.01) was observed in LRL, where there was a significant decrease in LRL by 13.5%
under DS + eCO2 compared to control at 17 DAT. Interestingly, RV, RT, RF, and RC increased
by 13–20% under DS + eCO2 than control under aCO2. A report on cucumber demonstrated
that an increasing CO2 level from 400 to 1200 ppm increases RV and RT by 6–8% [47]. In a
review by Rogers et al. [48], approximately 150 studies concluded that 92% of root growth
increased with eCO2, further supporting the current study’s result.

Table 5. The mean of lateral root length (LRL), total root length (TRL), root surface area (RSA),
average root diameter (RAD), root volume (RV), root tips (RT), root forks (RF), and root crossings
(RC) of basil plants grown under without drought stress (Control) and with drought stress at two
levels of CO2 (420 and 720 ppm) after 17 days of treatment.

Treatment LRL 1,3 TRL RSA RAD RV RT RF RC

420 ppm
Control 45.1 a 4572.9 a 854.3 a 0.597 a 14.00 b 10,052 b 38,545 b 2412.6 b

Drought 43.0 ab 4230.7 a 729.5 a 0.547 a 13.73 b 14,347 a 44,146 b 3255.8 ab

720 ppm
Control 46.7 a 4159.1 a 738.6 a 0.560 a 15.45 ab 12,477 ab 46,580 ab 3287.8 ab

Drought 40.4 b 4265.6 a 765.1 a 0.574 a 17.60 a 15,042 a 55,344 a 3840.4 a

Treatment 2,4 ** ns ns ns ns * ns ns
CO2 ns ns ns ns * ns * *

Treatment × CO2 ns ns ns ns ns ns ns ns
1 Lateral root length, total root length, and root average diameter on a centimeter per plant basis; root surface
area, root volume on a cubic centimeter basis; root tips, root forks, and root crossings on a number per plant
basis. 2 Mean separation within the column by Duncan’s multiple range test; ns, *, ** indicates non-significant
or significant at p ≤ 0.05, 0.01, and 0.001, respectively. 3 Values followed by the same letter are not significantly
different. 4 SE-Standard error of the mean, LRL = 1.5; TRL = 258.3; RSA = 52.9; RAD = 0.02; RV = 1.3; RT = 1723.8;
RF = 4462.6; RC = 370.2.

3.2. Physiological Measurements

Drought is a significant factor for damaging the photosynthetic pigments and thy-
lakoid membranes [49]. DS also inhibits plants’ photosynthetic apparatuses by declining
CO2 availability and stomatal closure [50]. To study basil’s leaf physiology changes under
DS, different physiological parameters such as chlorophyll content, flavonoids, antho-
cyanin, and NBI were measured (Table 6). Flavonoid is a ubiquitous secondary metabolite
in plants, which helps to protect the plant from abiotic and biotic stresses, while antho-
cyanin reduces the damage caused by free radical activity [51]. Both anthocyanin and
flavonoid compounds are responsible for antioxidant activity in plants [52]. Both com-
pounds increased under the DS + eCO2 conditions [53,54]. However, in the present findings,
the flavonoid was indifferent to the control treatment under the DS + eCO2 condition, which
contradicts the earlier report on basil by Al Jaouni et al. [4]. Previous research demonstrated
that anthocyanin decreased under DS + aCO2 but increased under DS + eCO2 [53,55]. These
reports support the recent finding where anthocyanin decreased by 10% in DS + aCO2 and
increased by 12.6% in DS + eCO2 compared to control. Similarly, NBI, a ratio of chlorophyll
and flavonoid, was measured, and it was recorded to be the highest in DS + aCO2 (40.8)
compared to any other treatments. A study by Taub and Wang [56] reported that plants
grown under eCO2 had decreased nitrogen concentration compared to plants grown under
aCO2.
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Table 6. The mean of leaf chlorophyll, flavonoid, anthocyanin, and nitrogen balance index (NBI) of
basil plants grown without drought stress (control) and with drought stress at two levels of CO2

(420 and 720 ppm) after 17 days of treatment.

Treatment Chlorophyll 3 Flavonoids Anthocyanin NBI 1

[µg·mL−1] [mg·g−1 DM] [mg·g−1 DM]

420 ppm
Control 21.468 bc 0.6853 ab 0.1144 b 32.415 b

Drought 25.744 a 0.6455 b 0.1028 c 40.890 a

720 ppm
Control 18.978 c 0.7044 ab 0.1126 bc 28.062 c

Drought 22.027 b 0.7394 a 0.1269 a 30.391 bc

Treatment 2,4 *** ns *** ***
CO2 ** * ** ***

Treatment × CO2 ns ns ns *
1 NBI-Nitrogen Balance Index (a ratio of chlorophyll and flavonoid). 2 Mean separation within the column
by Duncan’s multiple range test; ns, *, **, *** indicate non-significant or significant at p ≤ 0.05, 0.01, 0.001,
respectively. 3 Values followed by the same letter are not significantly different. 4 SE-Standard error of the mean,
Chlorophyll = 0.9; Flavonoid = 0.03; Anthocyanin = 0.04; NBI = 1.600.

Similarly, DS is also responsible for decreasing the nitrogen isotope composition and
the transient decrease in chlorophyll, which increases the accumulation of anthocyanin [57].
In the present study, chlorophyll increased by 20% and 16% under DS when aCO2 and
eCO2 were applied, respectively, compared to control. In brief, DS + eCO2 promotes
chlorophyll and inhibits NBI, increasing the accumulation of anthocyanin.

4. Conclusions

This study provides evidence that DS + eCO2 has a significant positive impact on
basil’s overall morphology. eCO2 remarkably reduced the negative effect of DS by pro-
moting several morphological traits such as DM, RV, RT, RF, and RC. The DS had a severe
impact on several morphological traits comprising both shoot and root systems. Compared
to control, the DS reduces the marketable FM remarkably by 31.6% and 55.2% in the early
and late basil season. FM is the highest under control + eCO2 (94.4–613.7 g), while it was
the lowest under DS + aCO2 (67.9–275.5 g). Similarly, Ht reduction under DS + eCO2
(10.6%) is significantly lower than DS + aCO2 (16.8%) during the late season. DM increases
by 31.6% and 55.2% under DS + eCO2 compared to control in the early and late season,
respectively.

This study suggests that eCO2 during DS has a more significant positive effect on
basil morphological traits than aCO2. Also, eCO2 positively impacted and increased the
NBI and chlorophyll by alleviating the negative impact of DS. Conversely, eCO2 failed to
lessen the adverse effect of DS on FM, LA, and Ht. Overall, this study indicates that DS
impacted the basil more strongly in the late rather than in the early season, and eCO2 in
the late season has a more significant impact on some basil’s morphological traits such as
LA, FM, RDM, ShDM, and TDM than aCO2.
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