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Abstract

Automated vehicles (AVs) are expected to shape the future of transportation and to improve
traffic flow and safety. Studies have focused on AVs effects on traffic flow during the
transition to full automation, with few examining their influence on human-driven vehicles
(HDVs). This study investigated potential changes in HDVs’ driving behavior induced by
the presence of AVs with different driving styles (aggressive vs. cautious) at varying market
penetration rates (MPRs) (0%, 25%, 50%, and 75%). First, a driving simulator experiment
with 160 people (56 females, 104 males) was conducted to collect HDV trajectory data. Then,
a microsimulation model was implemented in VISSIM, where HDV behavioral parameters
were calibrated using the driving simulator data. Average time headway (THW), relative
velocity (RelVel), average acceleration (Acc), average deceleration (Dec), and lane change
frequency (LnCh) were used as behavioral metrics. A two-way ANOVA was applied for
analysis. Results showed that higher AVs’ MPRs decreased THW, Acc, and Dec in HDVs,
while RelVel increased with cautious AVs and decreased with aggressive AVs. Similar
trends were observed for LnCh. These findings highlight the need to consider potential
HDVs behavioral adaptation during the transition phase, as neglecting it may lead to
inaccurate traffic assessments and ineffective policies.

Keywords: behavioral adaptation; driving simulator; VISSIM; mixed traffic; car following;
microsimulation analysis; smart mobility

1. Introduction

Automated vehicles (AVs), equipped with sophisticated technological capabilities, are
believed to shape the future of transportation and transform current traffic trends into safer
and smoother systems [1,2]. However, the advantages of these promises depend on the
extensive implementation of AVs, as at low penetration rates, referred to as the transition
phase, when human-driven vehicles (HDVs) largely operate in the network, the impact of
AVs is minimal [1-4].

The shift to completely automated traffic situations will be somewhat prolonged due to
the requisite infrastructure and technical advancements necessary for the extensive deploy-
ment of highly AVs [5,6]. These vehicle types are classified into six categories by the Society
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of Automotive Engineers (SAE) based on their performance and driving tasks. According to
this classification, HDVs are classified as Level 0 when lacking automation, Level 1 denotes
driver assistance, Levels 2 and 3 represent partial and conditional AVs, while Levels 4 and 5
signify highly and fully automated or connected AVs (CAVs), respectively [7].

With the availability of commercial Level 2 and Level 3 AVs in the market and the
increasing interest in using these vehicles, the transition phase has already started. A preva-
lent element of these AVs is adaptive cruise control (ACC), which allows drivers to set and
maintain a safe distance from the vehicle ahead [8,9]. However, the driving styles of human
drivers varies due to effects of their psychological and biological characteristics [10,11].
These differences, in turn, shape their preferences for AVs’ driving styles, with human
drivers tending to prefer AVs that either mirror their own style or adopt a more defensive
driving approach [9]. Consequently, ACC headway configurations in AVs are designed to
somewhat improve their acceptability and enhance user satisfaction by accommodating
diverse driving styles through a broad range of adjustable headway settings.

The broad range of ACC headway settings in AVs complicates the mixed traffic flow
of AVs and HDVs during the transitional phase, whereby conventional vehicle drivers
and AVs with different driving styles interact. The intrinsic differences in the behavior of
HDVs and their fellow AVs may influence human drivers’ behavior, hence exacerbating
the complexity of mixed traffic flow. Therefore, it is important to examine the possible
changes in human drivers’ behavior while interacting with AVs of different driving styles
at varying market penetration rates (MPRs).

2. Review of Existing Literature

Prior studies have investigated mixed traffic comprising AVs and HDVs from the fol-
lowing two principal perspectives: (1) the network-level perspective and (2) the individual-
level perspective, primarily emphasizing the viewpoint of human drivers.

2.1. Network-Level Impacts of Mixed Traffic

Studies focusing on the mixed traffic flow of AVs and HDVs utilized microsimulation
methodology as a helpful tool to simulate the gradual increase in the penetration rates of
AVs and its influence on traffic efficiency at the network level throughout the transition
phase. They simulated various types of AVs and CAVs and evaluated their impacts on
traffic performance, safety, and environmental outcomes under mixed traffic conditions.

Manjunatha et al. [12] simulated the behavior of AVs and CAVs based on literature
findings and reported that while CAVs considerably reduce delays and improve travel
time and speed, they do not reduce emissions, and AVs without connectivity fail to achieve
these improvements. Gemma et al. [13] modeled CAVs based on their assumptions and
found these AV types are effective in congested traffic situations and improve road capacity
and average speed. Sekar et al. [14], relying on VISSIM default behavioral parameters for
AVs, concluded that cautious AVs reduce both travel time and safety risks.

Focusing on the driving styles of AVs, Aria et al. [15] simulated AVs to drive aggres-
sively based on the recommended behavioral parameters by the literature and reported
that AVs increase average density by 8.09%, travel speed by 8.48%, and reduce travel time
by 9% during peak hours, thereby improving both traffic performance and safety. Szimba
and Hartmann [16] modeled AVs based on their assumptions and reported that Level 4
and Level 5 AVs improve travel time by 20% and 27%, respectively. Similarly, Ma et al. [17]
reported that AVs positively affect traffic flow and reduce average travel time, with CAVs
outperforming Level 2 AVs in improving travel time.

In addition, Lu et al. [18] utilized real-world data to model the behavior of AVs in
their study. They found that AVs with cautious, normal, and aggressive driving styles
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show different speed distributions, with aggressive AVs resulting in higher speeds and
smaller travel times. Similarly, Saljoqi et al. [19] simulated AVs of different driving styles
considering the real-world driving styles of the AVs’ users and found that Level 2 AVs
increase travel time (1.08-4.09%), delay (13.22-99.28%), and slightly improve flow rate
(0.09-0.26%). Likewise, Shang and Stern [20], evaluating the impacts of theoretical and
commercially available AVs (Level 2) on traffic flow, found that while theoretical AVs
improve capacity by up to 7%, Level 2 AVs may reduce capacity by as much as 35%.

Since the performance of the whole traffic network is made up of countless local
interactions, it may be essential to move beyond the large perspective. Therefore, the
following section examines the interactions between HDVs and AVs on a smaller scale,
evaluating the dynamics of individual interactions between them. These studies give
us a better idea of the social and behavioral mechanisms that ultimately shape network-
level outcomes.

2.2. Individual-Level Impacts of Mixed Traffic

The individual interactions between HDVs and AVs have been studied mostly using
driving simulators or field experiments. Researchers have primarily focused on the individ-
ual interactions of these two vehicle types to analyze the car-following behavior of human
drivers due to its critical effect on traffic flow and safety [21,22].

In a field experiment involving one AV and one HDV and focusing on the car-following
behavior of drivers, Rahmati et al. [23] found that human drivers follow an AV closer with
a shorter distance as compared to an HDV. Wen et al. [24], utilizing the Waymo Open
Dataset and focusing on the car-following behavior of drivers in their interactions with AVs,
reported that, although the average time headway of human drivers behind an AV is smaller
as compared with an HDV, their acceleration and speeding behaviors improved when
following the AV. Similarly, Mahdinia et al. [25] in a field experiment found that human
drivers show a smoother acceleration and speeding behavior behind an AV compared to
an HDV, improving driving stability.

Similar results have been reported by the studies using driving simulator experiments.
Joetal. [26] modeled an AV and an HDV with different driving logics to study the behavior
of human drivers in interaction with one AV and one HDV under different scenarios. They
found that the behavior of human drivers varied when following the AV as compared to the
HDV. They tend to decrease their maximum acceleration and average deceleration behind
the AV by 44.45% and 4.89%, respectively. Addressing the safety aspect of interactions
between AVs and HDVs, Chand et al. [27] found that human drivers experienced lower
stress levels when following an AV compared to an HDV, resulting in safer interactions
and fewer accidents.

A limited number of studies have gone beyond examining one-on-one interactions
between AVs and HDVs, instead have focused on the social interactions of human drivers
with AVs at various MPRs during the transition phase. These studies employed driving
simulator experiments to observe human drivers’ behavior when interacting with AVs in
virtual environments. Aramrattana et al. [28] found that 90% of human drivers adapted
their driving behavior when driving among AVs compared to HDVs. Stange et al. [29]
studied the behavior of human drivers when driving among a mixed traffic of cautious AVs
(with minimum time headway of 2.75 s) and HDVs (with minimum time headway of 1.2 s).
They increased the MPRs of AVs from 0% to 75% with an increment of 25% and found
that human drivers decreased their average time headway and average speed as the MPR
of AVs increased. Similarly, de Zwart et al. [30] modeled AVs with an aggressive driving
style (minimum time headway: 0.5 s), while HDVs exhibited more defensive behavior
(minimum time headway: 1.1 s). They examined human driver behavior under three AV
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MPRs (0%, 50%, and 100%) and found that, as the MPR of AVs increased, human drivers
tended to maintain a smaller average time headway and reduce their relative speed.
Research on the behavioral adaptation of human drivers during the transition phase
offers valuable insights into the field. However, researchers’ reliance on assumptions about
AVs’ behavior, coupled with the neglect of variability in HDVs’ behavior, may influence
the validity and accuracy of the outcomes. Therefore, further studies incorporating a wider
range of behavioral metrics are needed to better understand how HDVs adapt their driving
behavior when interacting with both aggressive and cautious AVs at varying MPRs.

3. Objectives and Contributions

This study aimed to examine the driving behavior of HDVs when interacting with AVs
at varying MPRs, ranging from 0% to 75% in 25% increments and different driving styles
(aggressive vs. cautious), within a microsimulation context. Average time headway (THW),
relative velocity (RelVel), average acceleration (Acc), average deceleration (Dec), and the
lane change frequency (LnCh) of HDVs were used as indicators of driving behavior.

More specifically, the study offers the following contributions to the field:

e Simulating AVs’ behavior based on their practical capabilities rather than relying
on assumptions;

e  Modeling HDVs’ behavior using observed data from simulations to account for the
heterogeneity in the driving behavior of human drivers;

e  Examining the behavioral adaptation of HDVs during interactions with both aggres-
sive and cautious AVs across varying MPRs.

The study addresses the following two research questions:

e RQ1: Does the presence of AVs cause HDVs to adapt their driving behavior when
interacting with AVs at varying MPRs?

e  RQ2: To what extent do the driving styles of AVs (i.e., aggressive vs. cautious) influence
the driving behavior of HDVs?

Based on the findings of previous studies, we hypothesized that with the increase in
the MPR of AVs, HDVs adapt their driving behavior by maintaining a smaller THW (H1),
decreasing RelVel (H2), decreasing Acc (H3), reducing Dec (H4), and reducing LnCh (H5).

Moreover, we expect that these adaptations will be influenced by the driving style of
AVs; cautious AVs, by maintaining larger gaps and providing more predictable environ-
ment for HDVs maneuvers, may result in more significant reductions in these behavioral
indicators, as HDVs are likely to follow them more closely and with reduced necessity for
abrupt maneuvers. Conversely, aggressive AVs may cause fewer significant changes in
HDVs’ behavior, as their more assertive driving behavior requires that HDVs keep larger
safety margins.

4. Materials and Methods

The study used both a driving simulator and a microsimulation tool to examine the
evolution of human drivers’ behavior during interactions with AVs. VISSIM 25 (SP 0.7), a
powerful and widely used microsimulation software for assessing AVs’ behavior [31], was
used to analyze the behavior of HDVs under various scenarios. The software allows the
calibration of ten behavioral parameters (CC0-CC9), which requires detailed trajectory data
for the calibration purposes. Calibrating all of these parameters is essential, as they interact
with one another [32]. Therefore, we employed the driving simulator tool, which provided
detailed trajectory information on the spacing and speeding behavior of HDVs, enabling
the calibration of all relevant behavioral parameters in VISSIM, so that more realistic results
could be obtained.
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4.1. Driving Simulator Experiment
4.1.1. Participants

A total of 178 participants were recruited, of whom 18 participants withdrew from the
experiment due to motion sickness, leaving 160 people (56 females and 104 males) who
completed the driving simulator experiment. All participants held a valid Italian driving
license, had at least one year of driving experience, and lacked prior experience in driving
simulator experiments. The participants’ ages ranged from 19 to 65 years (mean = 25.7 years,
SD = 7.8 years). The experimental procedure received approval from the Ethics Committee
of the Human Inspired Technology (HIT) Research Center at the University of Padua
(ID: 2023_223R3).

4.1.2. Apparatus

The experiment was performed at the Transportation Laboratory of the University of
Padua utilizing a dynamic driving simulator developed by STSoftware® (Figure 1). The
simulator features a cockpit with an adjustable car seat and a gaming steering wheel that
provides dynamic force feedback and allows a 900-degree rotation, accompanied by gas,
brake, and clutch pedals.

Figure 1. Configuration of the driving simulator.

It is operated by three networked computers and uses five full HD screens
(1920 x 1080 pixels each) to provide a 330° horizontal and 45° vertical sight range. Ad-
ditionally, it is equipped with a Dolby Surround® sound system consisting of three front
speakers, two rear speakers, and a subwoofer. The validity and reliability of the driving
simulator have been supported by prior investigations [33,34], and it effectively simulated
the mixed traffic flow of AVs and HDVs [35].

4.1.3. Experiment Environment and Traffic Conditions

The participants’ car-following data were collected on a 12 km straight highway
segment with two lanes, each 3.75 m wide. A one-meter median divider was used to
separate the oncoming traffic flow. The participants were asked to drive, as they would
in the real world, allowing them to perform lane changes and overtaking maneuvers
during the experiment. The total duration of the experiment varied between 12 and 15 min
depending on the participants’ driving speed. The speed limit varied during the experiment,
with the first 5 km and the last 4 km at a speed limit of 130 km/h and the 3 km middle
segment of the roadway at a speed limit of 100 km/h.

Data from the initial 2 km were excluded from analysis, because this part was consid-
ered to enable participants to attain their desired speed, and the final 0.5 km was omitted
to prevent behavioral deviations near the end of the route.
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To address the heterogeneity of human drivers in simulating HDVs, empirical time
headway data were collected on a weekday from a two-lane highway segment in the Veneto
region of Italy. The chosen time headways for HDVs varied from 0.3 s to 2.73 s, with a mean
of 1.33 s, optimally modeled by a Johnson SB distribution due to its improved goodness-of-
fit relative to other distributions. The maximum velocity of HDVs was represented using
a uniform distribution within +10 km/h of the designated speed limit. Furthermore, a
moderate traffic flow of 2400 vehicles per hour was simulated to replicate realistic highway
conditions and ensure consistent car-following interactions during the experiment.

4.2. Microsimulation Analysis

The trajectory data obtained from the driving simulator experiment, recorded at a
frequency of 50 Hz and containing detailed information on participants” speed and spacing
behaviors, were used to calibrate HDVs’ car-following behavior in VISSIM. The software
provides a wide range of behavioral parameters for the calibration of vehicles’ behavior,
requiring highly detailed data for an accurate calibration. The trajectory data obtained
from our driving simulator experiment offered the proper detail for this, but real-world
data frequently lacked the appropriate detail for calibration of all behavioral parameters.
In the simulation, the car-following behavior of HDVs and AVs agents was modeled by
two distinct car-following models.

4.2.1. Modeling the Behavior of HDVs

The car-following behavior of the participants from the driving simulator experiment
was analyzed based on the Wiedemann’s 99 car-following model provided in VISSIM. As a
psycho-physical model, it controls a vehicle’s acceleration and deceleration based on the
driver’s perception of changes in relative speed and distance to the vehicle ahead [36,37].
In VISSIM, ten calibration parameters (CCO-CC9) are available for modeling vehicles’ car-
following behavior. A detailed explanation of these parameters is given in [38]. We adopted
the same approach as described in [39] for extracting these parameters, with the exception
that CC1 was modeled using a distribution derived from observed data in the driving
simulator experiment rather than a fixed value. Moreover, the desired speed distribution
was defined based on the participants’ observed speeds in the driving simulator experiment
under conditions where no leading vehicle was present. Table 1 presents the values used
for each parameter.

Table 1. Calibrated behavioral parameters used in the simulation.

Parameter Default Value Calibrated Value
CCo 1.50 m 1.50 m
CC1 0.90s Empirical distribution (median: 0.91 s)
cC2 4.00 m 1.34m
CC3 —8.00s —6.57 s
CC4 —0.35m/s —0.98m/s
CCh 0.35m/s 1.05m/s
CCeé 11.44L/m.s 422 L/m.s
cc7 0.25m/s? 0.49 m/s?
CC8 3.50 m/s? 1.28 m/s?
CC9 1.50 m/s? 0.83 m/s?

4.2.2. Modeling the Behavior of AVs

The available adaptive cruise control (ACC) car-following model in VISSIM was em-
ployed to simulate AVs’ behavior. This model governs the longitudinal movement of
vehicles, mimicking a typical ACC system that adjusts based on the distance to the leading
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vehicle, with deterministic behavior. It ensures smooth and safe acceleration and decelera-
tion depending on the lead vehicle’s movement. The model allows the configuration of a
desired distance, representing the ACC headway setting, which determines the preferred
time headway for AVs. Among its 16 calibration parameters, we used Min_gap_time to
represent the desired headway. A time headway of 1 s was applied to simulate aggres-
sive AVs, as this is the minimum setting offered by many commercially available ACC
systems [40,41], while a 3 s headway was used for cautious AVs, reflecting the maximum
preferred headway by ACC users [42]. These two driving styles were used because they are
widely used extreme end-points for AV driving style in human-AV studies when examining
trust, acceptance, comfort, and takeover behavior of human drivers [43-45]. Additionally,
the maximum desired speed for AVs was set to 130 km/h, aligning with the speed limit, as
AVs are expected to strictly adhere to traffic regulations. Further details on the ACC model
and its parameters can be found in [46].

4.2.3. Simulation Setup and Procedure

A 12 km two-lane one-way highway segment was implemented in the simulation,
mirroring the network used in the driving simulator experiment. The analysis was based
on the results of ten simulation runs, each lasting one hour (excluding the 30 min warm-up
and cooldown periods), conducted under four AV MPRs (0%, 25%, 50%, and 75%) and
two AVs'’ driving styles (cautious and aggressive). The total traffic flow of HDVs and AVs
was set to simulate LOS D traffic conditions. Table 2 illustrates the simulation scenarios.

Table 2. Simulation scenarios.

Scenario MPR of AVs AVs’ Driving Style

S1 0% -

S2 25% Aggressive

S3 50% Aggressive

54 75% Aggressive

S5 25% Cautious

S6 50% Cautious

S7 75% Cautious

4.3. Analyzed Variables

To examine the behavior of HDVs when interacting with AVs of different driving
styles under various MPRs, several behavioral indicators were evaluated. These included
average time headway (THW), relative velocity (RelVel), average acceleration (Acc), average
deceleration (Dec), and the frequency of lane change (LnCh) for each HDV. Most of these
metrics are commonly employed in the literature to assess how human drivers adapt their
driving behavior in the presence of AVs [23,25,29,30,47]. THW represents the spacing
behavior of HDVs, which is a critical behavioral indicator with safety implications [48].
Under free-flow traffic conditions, variations in drivers’ velocity are minimal [49], whereas
in congested traffic, drivers are restricted by the surrounding vehicles, and their RelVel
with respect to the leading vehicle has a significant role in determining their driving safety
and stability [50,51]. Thus, using the RelVel metric indicates the smoothness of drivers’
speed adjustment behavior. Furthermore, research has shown that drivers’ acceleration and
deceleration behavior influence both traffic flow [52,53] and traffic-related emissions [54].
Therefore, we used Acc and Dec to examine how the increase in MPRs of AVs on average
can affect the acceleration and deceleration behavior of HDVs. The LnCh indicator was used
due to its correlation with the driving aggressiveness [55] and safety [56], providing useful
insights in understanding the potential shifts in driving behavior of HDVs induced by the
increasing MPRs of AVs. The data for these variables were collected under traffic conditions
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equivalent to LOS D, as behavioral parameters are more pronounced and informative when
traffic flow operates near roadway capacity rather than free-flow conditions.

4.4. Statistical Analysis

The continues dependent variables were analyzed applying a two-way ANOVA, with
MPR and the driving behavior of AVs as factors. The statistical analyses were performed
employing R 4.5.1 statistical software [57] at the significance level of o = 0.05.

For each dependent variable, the assumption of normality was checked using QQ
plot diagnostics. To improve the strength of the analyses, a Box-Cox transformation [58], a
well-established technique for stabilizing variance and improve normality of residuals in
parametric models [59], was applied to the dependent variables before fitting ANOVA, as
the assumption of normality was not met. This method was used, as it allowed for testing
the interaction effects of the independent variables with the possibility to plot the results
of the model, while with a nonparametric alternative, such as aligned ranked transform
ANOVA [60], the plot will be based on raw data for better interpretability, which are prone
to misinterpretation due to skewness and non-homogenous variances. After transforming
the data, the ANOVA model was re-run, which resulted in residuals that followed a normal
distribution. Subsequently, the marginal means were converted back to their original scale
to ensure easier interpretation.

The analysis was conducted separately for each dependent variable and included
estimating the partial eta squared (17,%) effect size. An 17,? value between 0.01 and 0.06 is
considered a small effect, values from greater than 0.06 up to 0.14 indicate a medium effect,
and values exceeding 0.14 represent a large effect [61].

A post hoc analysis was conducted using Tukey’s HSD adjustment with an estimated
Cohen’s d effect size (d). The effect size d was interpreted according to conventional
thresholds; values around 0.2 indicate a small effect, around 0.5 a medium effect, and 0.8 or
higher a large effect [61]. This approach allowed for pairwise comparisons between groups
while controlling for Type I error, ensuring robust and meaningful interpretation of the
differences observed.

It should be noted that the amount of data available was very large, as observations
were collected for all vehicles across the ten simulation runs for each variable analyzed.
As a result, the statistical power of the analysis was very high. This implies that the
ANOVA could detect statistically significant differences even when the actual differences
were minimal and negligible in practical terms. In such contexts, it is therefore more
appropriate to interpret and discuss the results primarily in terms of effect sizes rather than
p-values [62].

5. Results and Discussion
5.1. Effect of AVs on the Average Time Headway of HDV's

As indicated in Table 3, the results of the two-way ANOVA for the dependent vari-
able of THW showed a main effect of AVs” MPR [F(3, 115,424) = 1776.439, p < 0.001,
17,,2 = 0.044] with a small-to-medium effect size. Similarly, the main effect of AV be-
havior [F(1, 115,424) =9.986, p < 0.001, 17,,2 <0.001] and its interaction with AVs” MPR
[F(3,115,424) = 14.836, p < 0.001, npz < 0.001] was significant with negligible effect sizes.
This suggests that changes in THW of HDVs in their interactions with AVs are minimally
influenced by the driving styles of AVs.

As shown in Figure 2, HDVs significantly decreased their THW when interacting
with both aggressive and cautious AVs. The pairwise comparisons, as provided in Table 4,
showed that, as the MPR of AVs, regardless of their driving styles, increased, HDVs
decreased the THW with effect sizes ranging from small to medium. In addition, the
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difference in THW of HDVs during interactions with aggressive and cautious AVs was
significant only at an MPR of 75% (mean difference = 0.035, t = 7.036, p < 0.001, d = 0.134),
with small-to-medium effect sizes.

Table 3. ANOVA results for the dependent variable THW.

Effect df F p Value ;]pz

MPR 3,115,424 1776.439 <0.001 0.044

AV Behavior 1,115,424 9.986 <0.001 <0.001

MPR*AV Behavior 3,115,424 14.836 <0.050 <0.001
ANOVA was performed on Box-Cox transformed data (A = —0.06); * represents the interaction among the vari-
ables.

[
o5

Avcrage Time Headway (seconds)
(=]
[}

21 AV Behavior

- Aggrossive AVs
- Cautious AV

0 25 50 75
Market Penetration Rate (%)

Figure 2. Effect of MPR and AV behavior on HDVs’ THW.

Table 4. Tukey post hoc comparisons for the dependent variable THW.

Contrast Mean Diff 95% CI t Value p Value Cohen’s d 95% CI d
MPR_0%-MPR_25% A 0.067 [0.059, 0.075] 25.924 <0.001 0.256 [0.237, 0.275]
MPR_0%-MPR_50% A 0.119 [0.110, 0.127] 42.068 <0.001 0.454 [0.433, 0.475]
MPR_0%-MPR_75% A 0.147 [0.137, 0.157] 43.254 <0.001 0.562 [0.536, 0.588]
MPR_25% A-MPR_50% A 0.052 [0.043, 0.061] 17.619 <0.001 0.198 [0.176, 0.220]
MPR_25% A-MPR_75% A 0.080 [0.069, 0.091] 22.902 <0.001 0.306 [0.280, 0.332]
MPR_50% A-MPR_75% A 0.028 [0.017, 0.039] 7.700 <0.001 0.108 [0.081, 0.136]
MPR_0%-MPR_25% C 0.073 [0.065, 0.081] 27.002 <0.001 0.280 [0.259, 0.300]
MPR_0%-MPR_50% C 0.117 [0.107, 0.126] 36.620 <0.001 0.447 [0.423, 0.471]
MPR_0%-MPR_75% C 0.182 [0.169, 0.195] 41.314 <0.001 0.696 [0.663, 0.730]
MPR_25% C-MPR_50% C 0.044 [0.033, 0.054] 12.911 <0.001 0.168 [0.142, 0.193]
MPR_25% C-MPR_75% C 0.109 [0.095, 0.123] 23.929 <0.001 0.417 [0.383, 0.451]
MPR_50% C-MPR_75% C 0.065 [0.050, 0.080] 13.416 <0.001 0.249 [0.213, 0.286]
MPR_25% A-MPR_25% C 0.006 [—0.002, 0.015] 2.176 >0.050 0.024 [0.002, 0.045]
MPR_50% A-MPR_50% C —0.002 [-0.012, 0.009] —0.505 >0.050 —0.007 [—0.033, 0.019]
MPR_75% A-MPR_75% C 0.035 [0.020, 0.050] 7.036 <0.001 0.134 [0.097, 0.172]

A: aggressive AVs; C: cautious AVs.

From a microsimulation perspective, at 75% MPR, the traffic flow is largely governed
by the behavioral model of AVs. In the aggressive AVs scenario, these vehicles with
smaller desired time headway limit the maneuverability for HDVs, resulting in HDVs’ car-
following model reacting by maintaining slightly larger THW. In contrast, in the cautious
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AVs scenario, the availability of larger gaps created by AVs allow HDVs to follow them
more closely and perform more lane changes. The differences in maneuverability to some
extent explain the differences observed at 75% MPR of AVs. However, more investigations
about the behavior of human drivers are required to confirm such a difference.

In general, these findings are consistent with the literature, reporting a smaller average
time headway for human drivers when interacting with AVs at varying MPRs [30,31].
Additionally, studies focusing on individual interactions between AVs and HDVs have also
reported a reduced average time headway for HDVs [24,25].

5.2. Effect of AVs on the Relative Velocity of HDV's

The results of analysis, as shown in Table 5, revealed a main effect of AVs” MPR on the
RelVel of HDVs with a very small effect size [F(3, 115,424) = 100.935, p < 0.001, 17,,2 =0.003].
In addition, a significant main effect of AV behavior [F(1, 115,424) = 1615.139, p < 0.001,
17,,2 = 0.014] and its interaction with AVs” MPR [F(3, 115,424) = 589.452, p < 0.001,
11p* = 0.015] on the RelVel of HDVs was present with small effect sizes.

Table 5. ANOVA results for the dependent variable RelVel.

Effect df F p Value 11,,2

MPR 3,115,424 100.935 <0.001 0.003
AV Behavior 1,115,424 1615.139 <0.001 0.014
MPR*AV Behavior 3,115,424 589.452 <0.001 0.015

ANOVA was performed on Box—Cox transformed data (A = 1.63); * represents the interaction among the variables.

As indicated in Figure 3, the changes in the RelVel of HDVs follow two different trends
when interacting with aggressive and cautious AVs. The post hoc analyses showed that these
visual differences are statistically significant at MPRs of 25% (mean difference = —7.771,
t=—18.789, p <0.001, d = —0.203), 50% (mean difference = —21.740, t = —42.645, p < 0.001,
d = —0.568), and 75% (mean difference = —25.45, t = —34.812, p < 0.001, d = —0.665), with
the effect sizes varying from small to moderate. Moreover, as the AVs” MPR increased, the
reduction in the RelVel of HDVs during interactions with aggressive AVs was significant
across all MPR levels, though with small effect sizes. In contrast, interactions with cautious
AVs at an MPR of 25% did not significantly affect the RelVel of HDVs. However, at higher
MPRs (50% and 75%), the increase in RelVel became significant but still associated with
small effect sizes. Further details are provided in Table 6.

AV Behavior
-+ Aggressive AVs
- Cautious AVs

Avcerage Relative Velocity (km/h)

0 25 50 75
Market Penetration Rate (%)

Figure 3. Effect of MPR and AV behavior on HDVs’ RelVel.
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Table 6. Tukey post hoc comparisons for the dependent variable RelVel.

Contrast Mean. Diff 95% CI t Value p Value Cohen’s d 95% CI d
MPR_0%-MPR_25% A 7.392 [6.247, 8.538] 19.558 <0.001 0.193 [0.174,0.213]
MPR_0%-MPR_50% A 12.793 [11.542,14.044] 30.990 <0.001 0.334 [0.313, 0.356]
MPR_0%-MPR_75% A 13.268 [11.761,14.775] 26.687 <0.001 0.347 [0.321, 0.372]
MPR_25% A-MPR_50% A 5.401 [4.099, 6.703] 12.574 <0.001 0.141 [0.119, 0.163]
MPR_25% A-MPR_75% A 5.876 [4.326, 7.425] 11.495 <0.001 0.154 [0.127, 0.180]
MPR_50% A-MPR_75% A 0.475 [—1.154, 2.104] 0.883 >0.050 0.012 [—0.015, 0.040]
MPR_0%-MPR_25% C —0.379 [—1.580, 0.822] —0.956 >0.050 —0.010 [—0.030, 0.010]
MPR_0%-MPR_50% C —8.948 [—10.364, —7.532] —19.153 <0.001 —0.234 [—0.258, —0.210]
MPR_0%-MPR_75% C —12.18 [—14.14, —10.226] —18.886 <0.001 —0.318 [-0.351, —0.285]
MPR_25% C-MPR_50% C —8.570 [—10.074, —7.065] —17.261 <0.001 —0.224 [—0.249, —0.199]
MPR_25% C-MPR_75% C —11.80 [—13.823, —9.783] —17.708 <0.050 —0.308 [—0.343, —0.274]
MPR_50% C-MPR_75% C —3.233 [—5.388, —1.078] —4.547 <0.001 —0.084 [—0.121, —0.048]
MPR_25% A-MPR_25% C —7.771 [—9.025, —6.517] —18.789 <0.001 —0.203 [—0.224, —0.182]
MPR_50% A-MPR_50% C —21.74 [—23.29, —20.196] —42.645 <0.001 —0.568 [—0.594, —0.542]
MPR_75% A-MPR_75% C —25.45 [—27.67, —23.233] —34.812 <0.001 —0.665 [-0.703, —0.628]

A: aggressive AVs; C: cautious AVs.

The observed decrease in the RelVel of HDVs when interacting with aggressive AVs
aligns with the findings of de Zwart et al. [31], who found that human drivers’ relative
velocity decreases when interacting with aggressive AVs. This suggests that aggressive
AVs’ driving style may promote more harmonized driving behavior among human drivers.
Conversely, the increase in the RelVel of HDVs in their interaction with cautious AVs
may indicate an exploitation of the cautious behavior of AVs in practice, as found by
Soni et al. [63]. In the context of simulation, the availability of larger gaps when interacting
with cautious AVs provides more opportunities for lane changes. This, in turn, requires
frequent speed adjustments relative to the leading vehicle, resulting in higher RelVel values
for HDVs.

5.3. Effect of AVs on the Acceleration and Deceleration Behavior of HDV's

As indicated in Table 7, the results of ANOVA showed a significant main effect of
MPR of AVs on the acceleration behavior of HDVs (Acc) with a small-to-medium effect
size [F(3, 115,424) = 1826.97, p < 0.001, 17,,2 = 0.045]. There was also a significant main
effect of AV behavior present, but with a very small effect size [F(1, 115,424) = 296.520,
p < 0.001, 17,2 = 0.003]. Additionally, the interaction between MPR and AV behavior was
also significant [F(3, 115,424) = 125.510, p < 0.001, #7,> = 0.003], again with a very small
effect size, suggesting that the effect of MPR on the acceleration of HDVs was only little
affected by AV behavior. As shown in Figure 4, the increase in MPR of AVs, regardless of
their driving styles, leads to a reduction in average acceleration of HDVs.

Table 7. ANOVA results for the dependent variable Acc.

Effect df F p Value 1>

MPR 3,115,424 1826.970 <0.001 0.045
AV Behavior 1,115,424 296.520 <0.001 0.003
MPR*AV Behavior 3,115,424 125.510 <0.001 0.003

ANOVA was performed on Box-Cox transformed data (A = 2.55); * represents the interaction among the variables.

However, the post hoc pairwise comparisons, as shown in Table 8, revealed that the
magnitude of reduction in HDVs” average acceleration was different when interacting
with aggressive and cautious AVs driving styles at MPRs of 25% (mean difference = 0.033,
t=18.220, p < 0.001, d = 0.20) and 50% (mean difference = 0.041, t = 18.224, p < 0.001, d = 0.24).
However, the differences at an MPR of 75% were non-significant (mean difference = —0.010,
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t=—-2991, p>0.050, d = —0.057). This indicates that once reaching an MPR as high as 75%,
the driving styles of AVs have no influence on the acceleration behavior of HDVs, likely
due to the dominant presence of AVs creating a more homogeneous traffic flow where
HDVs adapt to the prevailing AV driving patterns, irrespective of their driving styles. At
lower MPRs of AVs, such as 25% and 50%, interaction with cautious AVs involves less
acceleration by HDVs, because cautious AVs maintain larger headway distances, providing
sufficient space for maneuvers. In contrast, aggressive AVs keep shorter gaps, requiring
HDVs to accelerate more frequently to adjust to tighter traffic conditions. Furthermore, the
results showed that with the increase in MPR of AVs, irrespective of their driving styles, a
progressive larger difference in the average acceleration of HDVs was observed, ranging

from a small-to-moderate effect size (Figure 4).
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Figure 4. Effect of MPR and AV behavior on HDVs’ acceleration.

Table 8. Tukey post hoc comparisons for the dependent variable Acc.

Contrast Mean. Diff 95% CI t Value p Value Cohen’s d 95% CI d
MPR_0%-MPR_25% A 0.023 [0.018, 0.028] 13.617 <0.001 0.135 [0.115, 0.154]
MPR_0%-MPR_50% A 0.046 [0.040, 0.051] 25.182 <0.001 0.272 [0.251, 0.293]
MPR_0%-MPR_75% A 0.121 [0.114, 0.127] 55.026 <0.001 0.715 [0.689, 0.741]
MPR_25% A-MPR_50% A 0.023 [0.017, 0.029] 12.220 <0.001 0.137 [0.115, 0.159]
MPR_25% A-MPR_75% A 0.098 [0.091, 0.105] 43.453 <0.001 0.580 [0.554, 0.607]
MPR_50% A-MPR_75% A 0.075 [0.068, 0.082] 31.561 <0.001 0.443 [0.416,0.471]
MPR_0%-MPR_25% C 0.056 [0.051, 0.061] 32.010 <0.001 0.331 [0.311, 0.352]
MPR_0%-MPR_50% C 0.087 [0.081, 0.093] 42.138 <0.001 0.515 [0.491, 0.539]
MPR_0%-MPR_75% C 0.111 [0.102, 0.120] 39.023 <0.001 0.658 [0.625, 0.691]
MPR_25% C-MPR_50% C 0.031 [0.024, 0.038] 14.107 <0.001 0.183 [0.158, 0.208]
MPR_25% C-MPR_75% C 0.055 [0.046, 0.064] 18.735 <0.001 0.326 [0.292, 0.361]
MPR_50% C-MPR_75% C 0.024 [0.015, 0.034] 7.7120 <0.001 0.143 [0.107, 0.180]
MPR_25% A-MPR_25% C 0.033 [0.028, 0.039] 18.220 <0.001 0.197 [0.176, 0.218]
MPR_50% A-MPR_50% C 0.041 [0.034, 0.048] 18.224 <0.001 0.243 [0.217, 0.269]
MPR_75% A-MPR_75% C —0.010 [—0.019, 0.00] —2.991 >0.050 —0.057 [-0.095, —0.02]

A: aggressive AVs; C: cautious AVs.
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Regarding the deceleration of HDVs, as shown in Table 9, the results of ANOVA
showed a significant main effect of MPR of AVs on the deceleration behavior of HDVs (Dec)
with a large effect size [F(3, 115,424) = 4684.939, p < 0.001, 17,,2 =0.109]. There was also a sig-
nificant main effect of AV behavior with a small effect size present [F(1, 115,424) = 486.316,
p <0.001, 77,> = 0.017] on the deceleration behavior of HDVs. Additionally, the interaction
between MPR and AV behavior was also significant [F(3, 115,424) = 1947.696, p < 0.001,
1y* = 0.012], indicating that the impact of MPR on the deceleration of HDVs varied de-
pending on AV behavior. As shown in Figure 5, the increase in the MPR of AVs leads to a
reduction in the magnitude of deceleration of HDVs, regardless of the driving styles of AVs.

Table 9. ANOVA results for the dependent variable Dec.

Effect df F p Value 1>

MPR 3,115,424 4684.939 <0.001 0.109
AV Behavior 1,115,424 486.316 <0.001 0.017
MPR*AV Behavior 3,115,424 1947.696 <0.001 0.012

ANOVA was performed on Box—Cox transformed data (A = 1.37) after shifting all values by Imin(Dec) | +0.001 to
accommodate non-positive values; * represents the interaction among the variables.

1.4 AV Behavior
o Aggressive AVs
=@~ Cautious AVs

Average Deceleration (m/s?)
|

0 25 50 75
Market Penetration Rate (%)

Figure 5. Effect of MPR and AV behavior on HDVs’ deceleration.

The results of pairwise comparisons, as shown in Table 10, indicated that AVs’ driving
styles differently influenced the decrease in HDVs’ average deceleration (when expressed
in absolute values). There were significant differences between the aggressive and cau-
tious AVs driving styles at the MPRs of 25% with a small-to-moderate effect size (mean
difference = —0.232, t = —32.458, p < 0.001, d = —0.351), 50% with a moderate-to-large
effect size (mean difference = —0.370, t = —42.065, p < 0.001, d = —0.561), and 75% with
small-to-moderate effect size (mean difference = —0.305, t = —24.158, p < 0.001, d = —0.462).
Moreover, the post hoc analysis showed that with the increasing AVs” MPR, the average
deceleration of HDVs decreased in absolute terms when interacting with aggressive AVs,
exhibiting effect sizes ranging from small to large. In contrast, interactions with cautious
AVs resulted in moderate-to-large effect sizes.
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Table 10. Tukey post hoc comparisons for the dependent variable Dec.

Contrast Mean. Diff 95% CI t Value p Value Cohen’s d 95% CI d

MPR_0%-MPR_25% A —0.109 [—0.129, —0.090] —16.752 <0.001 —0.165 [—0.185, —0.146]
MPR_0%-MPR_50% A —0.256 [—0.278, —0.235] —35.947 <0.001 —0.388 [—0.409, —0.367]
MPR_0%-MPR_75% A —0.621 [—0.647, —0.595] —72.418 <0.001 —0.941 [—0.967, —0.915]
MPR_25% A-MPR_50% A —0.147 [—0.169, —0.124] —19.807 <0.001 —0.222 [—0.244, —0.200]
MPR_25% A-MPR_75% A —0.512 [—0.539, —0.485] —58.052 <0.001 —0.776 [—0.802, —0.749]
MPR_50% A-MPR_75% A —0.365 [—0.393, —0.337] —39.382 <0.001 —0.553 [-0.581, —0.526]
MPR_0%-MPR_25% C —0.341 [—0.362, —0.320] —49.863 <0.001 —0.516 [—0.537, —0.496]
MPR_0%-MPR_50% C —0.626 [—0.651, —0.602] —77.665 <0.001 —0.948 [—0.973, —0.924]
MPR_0%-MPR_75% C —0.926 [—0.960, —0.892] —83.200 <0.001 —1.403 [—1.436, —1.369]
MPR_25% C-MPR_50% C —0.285 [-0.311, —0.259] —33.292 <0.001 —0.432 [—0.457, —0.406]
MPR_25% C-MPR_75% C —0.585 [—0.620, —0.550] —50.874 <0.001 —0.886 [-0.921, —0.852]
MPR_50% C-MPR_75% C —0.300 [—0.337, —0.263] —24.444 <0.001 —0.454 [—0.491, —0.418]
MPR_25% A-MPR_25% C —0.232 [—0.253, —0.210] —32.458 <0.001 —0.351 [-0.372, —0.330]
MPR_50% A-MPR_50% C —0.370 [—0.397, —0.343] —42.065 <0.001 —0.561 [-0.587, —0.534]
MPR_75% A-MPR_75% C —0.305 [—0.343, —0.267] —24.158 <0.001 —0.462 [—0.499, —0.424]

A: aggressive AVs; C: cautious AVs.

Similar to the acceleration behavior, with the increasing AVs” MPR, the magnitude
of deceleration in HDVs decreases, and this is more evident when dealing with cautious
AVs, because their predictable and conservative driving style minimizes sudden braking
events, allowing HDVs to adjust speed gradually and maintain smoother deceleration
profiles. These findings match of those in the literature, reporting the improvement of
human drivers” acceleration and deceleration behaviors in the interaction with AVs [24-26].
The improvement in acceleration and deceleration behavior of vehicles is often linked with
better traffic stability [64] and fuel consumption and vehicle emissions [65]. The positive
effect of AVs on the behavior of HDVs in terms of the average acceleration and deceleration
indicates that the deterministic driving behavior of AVs promotes smoother interactions,
reducing the need for abrupt speed changes by human drivers. This consistency allows
HDVs to anticipate surrounding vehicle movements more accurately, leading to steadier
acceleration/deceleration patterns and enhanced traffic stability.

5.4. Effect of AVs on the Frequency of Lane Change in HDVs

Statistical analysis showed that AVs” MPR had a significant effect on the lane
change frequency of HDVs with a medium-to-large effect size [F(3, 115,424) = 4177.593,
p <0.001, 17p2 =0.098]. A significant main effect of AV behavior with a large effect size
[F(1, 115,424) = 18,316.535, p < 0.001, 17p2 = (0.137] and the interaction effect of MPR and AV
behavior with a medium-to-large effect size [F(3, 115,424) = 5663.996, p < 0.001, 77,,2 =0.128]
existed. This suggests that the impact of AVs” MPR on the LnCh varies depending on
the driving styles of AVs. Table 11 presents the result of the two-way ANOVA for the
dependent variable LnCh.

Table 11. ANOVA results for the dependent variable LnCh.

Effect df F p Value 1p?

MPR 3,115,424 4177.593 <0.001 0.098
AV Behavior 1,115,424 18,316.535 <0.001 0.137
MPR*AV Behavior 3,115,424 5663.996 <0.001 0.128

ANOVA was performed on Box—Cox transformed data (A = 0.79) after shifting all values by | min(LnCh) | + 0.001
to accommodate non-positive values; * represents the interaction among the variables.

As indicated in Figure 6, as the AVs” MPR increases, HDVs make more lane changes
when interacting with cautious AVs but fewer when interacting with aggressive AVs. These
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different trends are statistically significant between aggressive and cautious AVs’ driving
styles at MPRs of 25% (mean difference = —3.441, t = —80.525, p < 0.001, d = —0.870),
50% (mean difference = —6.382, t = —121.158, p < 0.001, d = —1.614), and 75% (mean
difference = —8.983, t = —118.933, p < 0.001, d = —2.272), with large effect sizes at all
MPRs. The reduced number of lane changes in HDVs in the interaction with aggressive
AVs indicates that the shorter gaps discourage HDVs from frequently changing lanes, as
opportunities for safe lane changes are limited. In contrast, the interaction with cautious
AVs, which is associated with a higher number of lane changes, is likely due to the larger
gaps and more accommodating driving behavior of these vehicles, providing HDVs with
more opportunities to execute lane changes. Table 12 provides further details about the
pairwise comparison.
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Lane Change Frequency (number)

AV Behavior
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Figure 6. Effect of MPR and AV behavior on HDV LnCh.

Table 12. Tukey post hoc comparisons for the dependent variable lane change frequency (LnCh).

Contrast Mean. Diff 95% CI t Value p Value Cohen’s d 95% CI d
MPR_0%-MPR_25% A 1.476 [1.357,1.594] 37.789 <0.001 0.373 [0.354, 0.393]
MPR_0%-MPR_50% A 3.610 [3.481, 3.739] 84.642 <0.001 0.913 [0.892, 0.935]
MPR_0%-MPR_75% A 7.283 [7.127,7.438] 141.775 <0.001 1.842 [1.816, 1.869]
MPR_25% A-MPR_50% A 2.134 [2.000, 2.269] 48.095 <0.001 0.540 [0.518, 0.562]
MPR_25% A-MPR_75% A 5.807 [5.647,5.967] 109.957 <0.001 1.469 [1.442,1.496]
MPR_50% A-MPR_75% A 3.672 [3.504, 3.841] 66.139 <0.001 0.929 [0.901, 0.957]
MPR_0%-MPR_25% C —1.965 [—2.089, —1.841] —48.010 <0.001 —0.497 [—0.518, —0.477]
MPR_0%-MPR_50% C —2.772 [—2.918, —2.626] —57.422 <0.001 —0.701 [—0.725, —0.677]
MPR_0%-MPR_75% C —1.701 [—1.903, —1.499] —25.520 <0.001 —0.430 [—0.463, —0.397]
MPR_25% C-MPR_50% C —0.806 [—0.962, —0.651] —15.722 <0.001 —0.204 [—0.229, —0.179]
MPR_25% C-MPR_75% C 0.265 [0.056, 0.473] 3.843 <0.050 0.067 [0.033, 0.101]
MPR_50% C-MPR_75% C 1.071 [0.848, 1.294] 14.580 <0.001 0.271 [0.235, 0.307]
MPR_25% A-MPR_25% C —3.441 [-3.571, —3.312] —80.525 <0.001 —0.870 [—0.892, —0.849]
MPR_50% A-MPR_50% C —6.382 [—6.542, —6.222] —121.158 <0.001 —1.614 [—1.641, —1.587]
MPR_75% A-MPR_75% C —8.983 [—9.212, —8.754] —118.933 <0.001 —2.272 [—2.311, —2.234]

A: aggressive AVs; C: cautious AVs.
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6. Conclusions

The study examined the behavioral adaptation of HDVs induced by AVs with aggres-
sive and cautious driving styles at varying MPRs, ranging from 0% to 75% in 25% incre-
ments. Using driving simulator data enabled us to calibrate all behavioral parameters for
HDVs and to build the baseline scenario in VISSIM. The behavior of AVs was modeled by
considering their practical capabilities. The results indicated that HDVs adapt their driving
behavior when interacting with AVs in the microsimulation context, and this adaptation
varies in certain aspects depending on the AVs’ driving styles. More specifically, the study
concludes the following;:

e  Average time headway of HDVs decreases as the MPR of AVs increases with a small-
to-medium effect size. The cautious driving styles of AVs lead to a higher reduction in
HDVs’ average time headway at an MPR of 75% as compared with aggressive AVs
(supporting H1);

o  The relative speed of HDVs changes during interactions with AVs as the MPR of AVs
increases with a very small effect size. It increases when interacting with cautious AVs,
while decreasing when dealing with aggressive AVs (rejecting H2);

o  The average acceleration of HDVs decreases when interacting with an increasing rate
of AVs with a small-to-medium effect size; the driving styles of AVs did not influence
the reduction in average acceleration (partially supporting H3), and their average
deceleration also decreases in absolute terms with a large effect size. it reduces more
when interacting with cautious AVs as compared with aggressive AVs (supporting H4);

e Anincrease in the MPR of AVs influences the frequency of lane changes in HDVs with
a medium-to-large effect size. However, this effect depends on the AVs’ driving styles,
with aggressive AVs leading to fewer lane changes in HDVs, while interaction with
cautious AVs results in more frequent lane changes (rejecting H5);

Overall, the results suggest that AVs induce HDVs to adapt their driving behavior
in the microsimulation context, which may serve as an indicator of the evolving nature
of future traffic conditions. Among the behavioral indicators examined in this study, an
increase in the MPR of AVs significantly influenced HDV behavior in terms of average
deceleration and frequency of lane changes, with large effect sizes, highlighting that AVs
have the highest impacts on the deceleration and the number of lane changes in HDVs.
Specifically, HDVs adapted their driving behavior by braking less sharply and performing
more lane changes when interacting with cautious AVs but fewer lane changes when
interacting with aggressive AVs.

Additionally, the presence of AVs, regardless of driving style, affected HDVs’ average
time headway and average acceleration, though with small-to-medium effect sizes, sug-
gesting more modest impacts of AVs on spacing and acceleration behavior of HDVs. In
contrast, HDVs' relative velocity was minimally influenced by increasing AV penetration
rates, indicating that AVs influence the relative velocity of HDVs with a minimal real-world
effect. However, the findings of this study are subject to certain limitations, including the
omission of intentional behavior changes among human drivers influenced by their trust
and emotions toward AVs. Further studies involving human drivers, such as human-in-the-
loop experiments, are needed to observe these behavioral dynamics more comprehensively.
In addition, the results of the present study indicate the behavioral adaptation of HDVs
induced by the increasing presence of AVs in a virtual setting. While these results provide
useful insights into the dynamics of the mixed traffic flow of AVs and HDVs, real-world
human driving behavior in the mixed traffic flow remains to be validated in future studies.
Furthermore, the findings are limited to the highway context; in urban settings, the effects
of AVs on the behavior of HDVs may differ due to variations in traffic characteristics, such
as speed limits and stop-and-go conditions. Thus, the investigation of AV effects on the
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behavior of HDVs in urban context remains a topic for future research. Also, in the present
study, we examined the effects of cautious and aggressive AV driving styles on the behavior
of HDVs. However, other driving styles, such as intermediate or adaptive styles, as well as
mixed driving styles for AVs, may influence HDV behavior differently and are directions
for future research.
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