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Abstract

Strategic fleet renewal represents a fundamental challenge for small and medium-sized
enterprises (SMEs) and public entities seeking to align their operational objectives with
sustainable mobility practices. This paper proposes a hybrid decision support model
based on fuzzy logic, combining the Fuzzy Technique for Order Preference by Similar-
ity to Ideal Solution (TOPSIS) method with the Fleet Renewal Priority Index (FRPI). The
model evaluates and prioritizes different vehicle alternatives based on multiple economic,
environmental, and operational criteria, including total cost of operation, CO, emissions,
maintenance, autonomy, infrastructure compatibility, and energy independence. The crite-
ria are evaluated by linguistic judgments converted into triangular fuzzy numbers (TFN),
allowing uncertainty and subjectivity to be addressed. A simulated case study illustrates
the application of the model, identifying the vehicles most aligned with a sustainability
and efficiency strategy, as well as those that present a greater urgency for replacement.
The results demonstrate the potential of the approach to support rational, transparent and
sustainable decisions in fleet modernization.

Keywords: fleet management; sustainable mobility; strategic decision-making; Fuzzy
TOPSIS; electric vehicles; multi-criteria evaluation; TFN

1. Introduction

Sustainable mobility is a crucial component in the transition to clean energy globally.
It impacts public policy, logistics, and business strategy. The transport industry accounts
for approximately 14% of greenhouse emissions globally through road transport [1,2].
As a result, replacing fleet cars is necessary since it enables substituting regular cars
for cleaner alternatives, such as electric or EVs, and plug-in hybrids or PHEVs. Both
technologies can significantly reduce emissions directly since they emit less carbon than
cars that rely on fossil fuels [3,4]. Additionally, installing renewable energy-powered
charging stations, particularly solar power, can enhance environmental benefits through
the decline in using regular electricity grids and fossil fuels when using EVs [5,6]. This
combination of renewable energy and electric cars effectively reduces carbon emissions for
transport and encourages more environmentally friendly travel practices [7].

However, the decision to renew a fleet is not trivial [8]. In addition to the direct costs
associated with vehicle acquisition and operation, managers face a complex set of factors
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to consider, from vehicle autonomy and infrastructure requirements to the availability
of tax incentives and specific environmental regulations [9]. In the case of small and
medium-sized enterprises (SMEs) and local public entities, these decisions are particularly
sensitive, since financial and technical resources are limited and decisions need to be
justified regarding economic, operational, and environmental viability [10,11].

The literature on fleet management has grown in recent decades, emphasizing ap-
proaches focused on route optimization, life cycle cost (LCC) analysis, and maintenance
planning [12-14]. However, many of these studies assume ideal conditions [12,15], with
accurate and fully quantifiable information, which rarely corresponds to the reality of
decision makers [16]. Furthermore, few studies simultaneously integrate the three critical
dimensions—economic, environmental, and strategic—that shape decision-making on fleet
renewal in organizational contexts [17].

Several authors have proposed decision support models based on multicriteria tech-
niques (MCDM) [18,19], which allow the integration of multiple factors, assigning them
relative weights according to the preferences of decision makers [20-23]. This situation
can be helpful in fleet management analysis. Among others, fuzzy techniques have been
proven to manage uncertainty, ambiguity, and subjectivity, which mainly characterize lin-
guistic evaluation criteria, e.g., “low cost”, “high autonomy”, and “moderate environmental
impact” [24-27].

The Fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)
method [22] has been widely used to rank alternatives based on their proximity to the ideal
solution and distance from the undesirable solution, considering imprecise data represented
by triangular fuzzy numbers (TFNSs) [28]. This method has proven applications in several
areas [29-32] such as supplier selection, environmental performance assessment, and risk
analysis [33-35], but its direct application to sustainable fleet management remains limited.

Most existing work on electric vehicles focuses on technical aspects (such as battery
capacity and autonomy), consumer acceptance studies, or public policy analyses [36,37].
However, there is a lack of studies that offer concrete tools for organizational decision-
makers facing strategic choices under multiple criteria and high uncertainty, particularly
for SMEs or municipalities with their fleet [38,39]. This gap is even more evident when it
comes to evaluating not only the technical attributes of vehicles, but also their alignment
with organizations’ strategic and environmental objectives.

This paper proposes a fuzzy-based decision support model for strategically managing
sustainable fleets. This model allows for evaluating different vehicle technologies based
on six criteria distributed across three dimensions (economic, environmental, and opera-
tional). In addition to the proximity index to the ideal technological solution for vehicles
resulting from Fuzzy TOPSIS, the Fleet Renewal Priority Index (FRPI) is introduced, a new
indicator that considers vehicle age, maintenance cost, and environmental performance,
allowing the identification of current vehicles in a given fleet that require the greatest
urgency for replacement. This dual approach not only supports the selection of future
technologies but also fills a methodological gap by introducing a practical and interpretable
index—the FRPI—designed to prioritize fleet vehicle replacement when traditional meth-
ods such as LCC or Condition-Based Maintenance (CBM) are impractical due to data or
resource limitations.

The model is applied in a simulated case study representative of an SME with a
mixed fleet, enabling the validation of its contribution to sustained decisions aligned with
sustainability and efficiency objectives. The work differs from the existing literature by
uniting, in a single model, the prioritization of substitutions and the selection of technologi-
cal alternatives, integrating technical, operational, and strategic factors in a practical and
replicable approach.
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The remainder of this paper is organized as follows: Section 2 presents the multi-
criteria decision support model, outlining the integration of Fuzzy TOPSIS and the Fleet
Renewal Priority Index (FRPI). Section 3 details the evaluation of technological alternatives
using Fuzzy TOPSIS. Section 4 applies the FRPI to assess the replacement priority of existing
fleet vehicles. Section 5 discusses the strategic implications of the results and provides
practical recommendations. Finally, Section 6 concludes the paper and highlights its main
contributions and limitations.

2. Multicriteria Decision Support Model
2.1. General Structure of the Model

This study proposes a decision support model to assist small and medium-sized
enterprises (SMEs) and public entities in selecting and prioritizing vehicle alternatives
for fleet renewal. The model was developed to deal with the subjective and uncertain
nature of assessments carried out by decision-makers, incorporating multiple economic,
environmental, and operational criteria.

The developed model (Figure 1) combines two main components: the evaluation of
vehicle technological alternatives based on the Fuzzy TOPSIS method and the calculation
of an auxiliary priority index (FRPI) to support the renewal of the existing fleet. The goal is
to provide a complete decision-making tool for fleet managers who face multiple decision
criteria in a context of uncertainty.

ﬁdata ; \
(crisp values) Operational data for

Technical and L. .
> Oraratioalicts existing vehicles
d (fleet)
L Alternative Technologies ] LAge, annual maintenance costs, etcj
A 4 \ 4
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\\ { Integrated fleet renewal decisions

Figure 1. Multicriteria decision support model.

/

The proposed model aims to support strategic fleet renewal decisions by combining

two complementary approaches:

=  Multicriteria evaluation of vehicle technological alternatives, based on the Fuzzy
TOPSIS method (Technique for Order Preference by Similarity to Ideal Solution),
allows for comparing different replacement options according to multiple criteria.
Fuzzy methods can transform linguistic evaluations into quantifiable values in the
form of fuzzy numbers, representing the uncertainty and ambiguity inherent in
human preferences. The Fuzzy TOPSIS method ranks alternatives based on their
relative distance to the ideal (most desirable) and anti-ideal (least desirable) solutions.

=  Calculate the FRPI (Fleet Renewal Priority Index), which prioritizes current fleet
vehicles that must be replaced, based on real data such as age, maintenance, and
environmental impact.
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The model was developed to deal with the subjective and uncertain nature of assess-
ments carried out by decision-makers, incorporating multiple economic, environmental,
and operational criteria.

The Fuzzy TOPSIS method supports evaluating external acquisition options, whereas
the FRPI index prioritizes existing fleet replacements. This articulation promotes an inte-
grated approach that transcends simple technical and economic considerations of vehicles
by offering a structured decision solution with flexibility for diverse organizational contexts,
mainly SMEs and public entities.

2.2. Fuzzy TOPSIS Steps

The Fuzzy TOPSIS method is an extension of the classic TOPSIS method that incorpo-
rates the uncertainty and subjectivity of human evaluations. Its application in this model
aims to compare different technological vehicle alternatives based on multiple criteria,
expressed in linguistic terms.

The process consists of the following steps:

In this model (Table 1), the method is used to compare different vehicle technology
alternatives based on multiple criteria expressed in linguistic terms. Each alternative is eval-
uated according to the defined criteria, and these evaluations are converted into triangular
fuzzy numbers (TENs) (1) and organized in a fuzzy decision matrix (2). The fuzzy matrix is
normalized to allow comparability between criteria. In the case of maximization criteria
(such as energy independence or ease of loading), the values are normalized about the
highest observed value. For criteria to be minimized (such as costs and emissions), a pro-
portional inversion is applied. This step corresponds to expression (3). After normalization,
each fuzzy value is multiplied by the corresponding criterion weight through scalar-fuzzy
multiplication, generating the weighted fuzzy matrix that reflects the relative importance
of each criterion in the decision (4). Then, two reference solutions are determined: the
Fuzzy Positive Ideal Solution (FPIS), composed of the best TFN values in all criteria, and
the Fuzzy Negative Ideal Solution (FNIS), composed of the worst ones. For each alternative,
its fuzzy distance to the ideal solution (5) and the anti-ideal solution (6) is then calculated,
using the Euclidean distance between TENSs. Finally, the degree of relative proximity of
each alternative (7) to the ideal solution is calculated, allowing its ordering. The closer this
value is to 1, the more appropriate the alternative is for the decision. Table 1 summarizes
the process mathematically.

To justify the selection of Fuzzy TOPSIS in this study, a brief comparison with alterna-
tive MCDM methods is presented below.

While MCDM offers a wide array of techniques [37]—hierarchical methods, such as
Fuzzy AHP and Fuzzy ANP [40], compromise ranking methods, such as VIKOR [41], and
outranking approaches, such as ELECTRE and PROMETHEE [42]—Fuzzy TOPSIS was
chosen because it practically aligned with the capacities and needs of the organization for
decision-making. From a computational standpoint, Fuzzy TOPSIS is easier and concep-
tually much more straightforward than Fuzzy AHP, which requires thorough pairwise
comparisons and consistency checking [43]. This makes it especially suitable for SME and
public entities with limited analytical resources, while still producing a clear, standardized
ranking of alternatives based on proximity to ideal and anti-ideal solutions.

A further advantage arises with Fuzzy TOPSIS in the evaluation of automotive tech-
nologies, as these involve criteria that are often not strictly numeric; these include perceived
environmental impact, expectations of autonomy, or operational risk. The method formal-
izes qualitative judgments using fuzzy triangular membership functions to form a coherent
decision matrix [44—46]. This type of liberty lends further sophistication in simulating
decision contexts and accounting for economic, environmental, and operational aspects
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within one evaluation framework. By contrast, compromise-based methods like VIKOR
prioritize balancing conflicting objectives but yield results that can be less transparent
and more sensitive to weight adjustments [41,47]. ELECTRE, on the other hand, handles
discordant and incomparable alternatives using outranking thresholds, but requires careful
tuning of concordance-discordance parameters and results in partial orderings which may
complicate operational interpretation [48].

Table 1. Fuzzy TOPSIS method: Equations Summary *.

No. Step Expression
€)) Triangular Fuzzy Number (TFN) Xx=(,mu)
(2) Fuzzy Decision Matrix X = [fij}
~ lij mij wij
3) Normalization for Benefit Criteria rij = (ui, %, ';J)
i
4) Weighted Fuzzy Matrix vij =Tij X W;
+_ v (5. &t
5) Distance to Ideal Solution (FPIS) D" = ,Zl d (Uij, 0] >
]:
— n ~ ~
6) Distance to Negative-Ideal Solution (FNIS) D; = '21 d (Uz‘j, v; )
]:
. - _ D;
7 Relative Closeness Coefficient ¢ = D7 D-

*1, m, u: lower limit, modal value, and upper limit of a TEN; ?ij : normalized fuzzy value of iij AGE weight
assigned to criterion j; Vj;: weighted fuzzy value of alternative i for criterion j; Gj'*' ,Vj : ideal and anti-ideal fuzzy

values for criterion j; Di"' , Dy : distance from alternative i to the ideal and anti-ideal solutions; C;: relative closeness
coefficient of alternative i.

While these methods offer analytical depth, their relative complexity and reduced
interpretability led us to choose Fuzzy TOPSIS as the most effective balance of robustness
and ease-of-use, particularly in sustainability-oriented decision-making environments with
limited expertise.

Although some of the alternative MCDM methods discussed do not natively operate
under fuzzy logic, they are commonly compared in the literature with fuzzy extensions,
and their methodological characteristics offer valuable points of contrast when evaluating
decision-making suitability under uncertainty.

2.3. Fleet Renewal Priority Index

An organizational fleet management decision involves the analysis of future tech-
nological alternatives and determining which vehicles should be replaced as a matter of
urgency, all while simultaneously considering operational, economic, and environmental
factors. While there are standard methods, such as Life Cycle Cost (LCC) or predictive
maintenance methods (Condition-Based Maintenance), many require detailed data, long
histories, or onboard sensors, limiting their applicability to SMEs or public entities with
limited resources.

Moreover, Life Cycle Sustainability Assessment (LCSA) approaches are also confronted
with significant methodological challenges [49]. In a systematic review of the automotive
industry, inconsistencies in the choice of functional units, system boundaries, and indicators
are highlighted that affect the balanced integration of the three pillars of sustainability:
economic, environmental, and social. This lack of harmonization leads to the impossibility
of utilizing models like LCC or LCSA in strategic-level asset replacement management.

On the other hand, traditional fleet renewal models based on economic metrics, such
as the EUAC (Uniform Annual Equivalent Cost), are often used to identify the optimal
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timing for vehicle or equipment replacement based on minimizing the equivalent annual
cost. Studies such as those by Almobarek et al. [50] and Kauffmann et al. [51] demonstrate
their usefulness in asset management but also reveal a significant limitation: their exclusive
focus on the financial dimension, without integrating environmental impact or operational
functional wear and tear.

In this context, the Fleet Renewal Priority Index (FRPI) is proposed as a complemen-
tary and accessible approach that allows for the simultaneous incorporation of three critical
dimensions—vehicle age, annual maintenance cost, and average CO, emissions—in a
continuous, weighted, and interpretable manner. FRPI aims to support strategic vehicle
replacement decisions based on readily available data, adapting to the reality of organi-
zations with technical and financial constraints, and thus complementing more complex
models such as Fuzzy TOPSIS, which focus on future technology selection.

A fleet management research background is used as a basis for choosing the criteria
included in the FRPI. These indicators are widely recognized as relevant to supporting
strategic operational efficiency, cost-effectiveness, or environmental responsibility decisions.
Combined, they attempt to provide as much vehicle condition and renewal requirement
assessment as feasible without resorting to an advanced system or some sensor-based
data. Together, they provide for a realistic priority model that often suffers from practical
constraints and objectives of many organizations.

The vehicle age is a main determinant of fleet assets’ functional and financial per-
formance [3,52]. Operating and maintenance costs increase with age, whereas vehicle
reliability and fuel efficiency tend to decline. Boudart and Figliozzi [53] found that older
buses suffer much higher operating and maintenance costs for each mile, thus highlighting
the urgency for timely replacement to minimize lifecycle costs. Conversely, pollution
emissions tend to increase with older vehicles, with the degradation of the engines over
time [54]. These lines of reasoning justify considering the age in the FRPI model.

The annual maintenance cost criterion captures the financial burden of operating aging
or underperforming vehicles. Maintenance costs are a significant component of the total
cost of ownership and are often used as a proxy for mechanical degradation. According to
the recent research carried out by Crespo del Castillo and Parlikad [55], combining the two
approaches—predictive and preventive maintenance—can optimize asset management
and at the same time lessen unforeseen expenses. Without advanced monitoring systems,
annual cost summaries are the basis for deciding which equipment to replace first. This is
especially relevant for SMEs and public entities that lack the infrastructure to implement
condition-based maintenance systems.

The CO, emissions criterion reflects growing concerns over environmental perfor-
mance and regulatory compliance. Integrating emissions into strategic fleet decisions aligns
with sustainability goals and regulatory standards. Studies by Castillo and Alvarez [56]
and Corazza et al. [54] encourage incorporating emissions models to track and manage
environmental impact. These models support emission reduction strategies and are widely
used in fleet sustainability planning. Although this paper does not rely on sophisticated
simulation tools, emission bands allow for realistic approximations of vehicle environ-
mental performance. Moreover, while the FRPI framework has not yet undergone formal
expert panel validation, its structure was reviewed informally with fleet managers from
both private and public organizations. Their feedback confirmed the practical relevance
and interpretability of the three criteria used, supporting the real-world applicability of the
proposed index.

The FRPI is an auxiliary indicator that supports vehicle replacement decisions in
organizational fleets. Its function systematically identifies vehicles requiring the most
urgent replacement based on multiple performance factors. Instead of a linear weighted
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average, this model uses continuous penalty functions that are better suited to capturing
non-linear variations and cumulative effects over time.

The FRPI value (Table 2) is obtained by the weighted combination of three penalizing
functions, as shown in the general expression (8). The index considers three fundamental
dimensions: vehicle age, annual maintenance cost, and average carbon dioxide (CO;)
emissions. Each of these variables is converted to a scale between 0 and 1 through a specific
function, which simulates the increasing impact of ageing, economic inefficiency, and
environmental impact. The penalty associated with vehicle age is modelled by an increasing
exponential function (9), reflecting that older vehicles represent increased operational risks
and costs. The annual maintenance cost is treated by a limited linear function (10), which
reaches a maximum from a reference value. CO; emissions are treated similarly, increasing
linear penalties from a minimum emissions level (11). The weights assigned to each
criterion may be changed according to the organization’s priorities. The result enables the
classification of fleet vehicles according to the priority of their replacement, thus providing
structured support for decision-making.

Table 2. FRPI calculation: penalty functions and structure.

No. Step Expression

(8) General FRPI, = jé wj- fi(xkj)

©) Vehicle age penalty function fi(Ap) =1 —e 0154

(10) Maintenance cost penalty function f2(My) = min (1, 2%%)

(11) CO, emissions penalty function f3(Ex) = min (1, max (0, Ekz_()éO()))

Ay: Age of vehicle k (years); My: annual maintenance cost of vehicle (Euros); Ey: average CO, emissions of vehicle
(g/km); fj : penalizing function for criterion j and vehicle k; w;: weight assigned to criterion j.

The penalty functions used in the FRPI calculation were defined based on realistic
assumptions and adjusted to fleet management practices. For the age of the vehicle, an
increasing exponential function with a rate of 0.15 was adopted to reflect a progressive
penalty from 10 years onwards, saturating close to the maximum value in vehicles over
15 years old. The annual maintenance cost was treated as a limited linear function, with
a reference value of €2000, which is considered the reasonable upper threshold for light
vehicles in a business context. In terms of CO; emissions, the starting penalty point is set
at 100 g/km, which is in line with current standards of ecological efficiency and rises to
a maximum of 300 g/km, thus including most traditional cars. The bands are adjustable
according to the strategic or regulatory objectives of the company. In relation to carbon
dioxide emissions, the initial threshold for penalties is established at 100 g per kilometre,
which aligns with prevailing ecological efficiency standards, and escalates to a ceiling
of 300 g per kilometre, thereby encompassing most conventional automobiles. These
parameters are subject to modification.

In summary, while alternative indicators exist that individually assess costs, emis-
sions, or operational performance, the FRPI stands out for integrating these dimensions
in an aggregated manner, with adjustable penalty functions, allowing for clear, transpar-
ent, and adaptable prioritization of replacements to each organization’s strategic priori-
ties. This approach makes the FRPI particularly useful for resource-constrained contexts,
such as SMEs, and represents an innovative contribution to supporting sustainable fleet
renewal decisions.
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3. Multi-Criteria Evaluation of Technological Alternatives
(Fuzzy TOPSIS)

3.1. Technological Alternatives

Five typical technological alternatives for vehicles for organizational fleets were con-
sidered (Table 3). These alternatives reflect the technological diversity currently available
on the market and allow us to evaluate solutions with different levels of sustainability,
cost, and technological maturity. The comparison between technologies with different sus-
tainability profiles, life cycle costs, levels of external energy dependence, and operational
requirements may be particularly relevant for strategic decisions in SMEs or public entities.

Table 3. Technological vehicle alternatives.

Code Technological Alternative
Al BEV—Battery Electric Vehicle (no solar)
A2 BEV + PV—BEV with photovoltaic charging system
A3 PHEV—Plug-in Hybrid Electric Vehicle
A4 Diesel—Diesel combustion engine vehicle
A5 Gasoline—Gasoline combustion engine vehicle

3.2. Evaluation Criteria

The evaluation of technological alternatives was based on multidimensional crite-
ria, defined from a literature review [57] and consultation with fleet management and
sustainability experts. The choice of criteria accounts for economic, environmental, and
operational aspects to see a balanced view between total cost, environmental impact, and
logistical feasibility. Table 4 lists the four criteria used, with the type of data (quantitative
or qualitative) for each, as well as their preferred orientations (maximize or minimize).

Table 4. Evaluation criteria.

Code Criterion Type Trend
C1 Total Cost of Ownership (TCO, €) Quantitative Minimize
C2 CO; Emissions (g/km) Quantitative Minimize
C3 Energy Independence (0-1) Quantitative Maximize
C4 Charging Infrastructure Ease Qualitative Maximize

Criterion C1 (TCO) represents the total cost of ownership over 10 years, including
acquisition, energy consumption, maintenance, and depreciation. Criterion C2 assesses
the direct environmental impact of alternatives. Criterion C3 measures the relative en-
ergy autonomy of the solution—for example, electric vehicles charged using renewable
energies such as photovoltaics obtain higher values. Criterion C4, of a qualitative na-
ture, reflects the ease of implementation and operation of the charging infrastructure in
organizational contexts.

3.3. Input Data and Language Conversion

The technological alternatives were evaluated based on quantitative and qualitative
data that reflect realistic operating conditions in a business context. The values correspond
to usage estimates over a 10-year cycle, considering an average distance of 100 km per
day. The data for criterion C1 (TCO—Total Cost of Ownership) were adapted from a
previous study [10], which considered acquisition, loading, maintenance, depreciation, and
infrastructure installation costs.

Table 5 presents the quantitative values used for the three objective criteria (C1, C2,
and C3) and the qualitative value attributed to the subjective criterion C4 (ease of loading).
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Experts evaluated this last criterion based on the availability of infrastructure, ease of
installation, and operational compatibility using a five-level linguistic scale.

Table 5. Quantitative and qualitative input data.

Alternative C1 C2 C3 C4
A1—BEV 48,737 0 0.70 High
A2—BEV + PV 45,787 0 0.95 Very High
A3—PHEV 65,036 60 0.50 Medium
A4—Diesel 74,703 135 0.35 High

Ab—Gasoline 91,516 145 0.20 High

To apply the Fuzzy TOPSIS method, the quantitative values of criteria C1, C2, and
C3 were converted into linguistic terms, using ranges defined based on market standards
and organizational practices. Table 6 presents the corresponding values in linguistic terms
for all criteria. This step allows the data to be standardized, facilitating representation by
triangular fuzzy numbers (TFNs) in the next step.

Table 6. Linguistic representation of evaluation criteria.

Alternative C1—TCO C2—CO;, C3—Energy = C4—Charging
Al—BEV Very Low Very Low Medium High
A2—BEV + PV Very Low Very Low Very High Very High
A3—PHEV Low Medium Low Medium
A4—Diesel Medium High Low High
A5—Gasoline Very High Very High Very Low High

The linguistic classifications presented in Table 6 result from the comparative analysis
of the values attributed to each alternative based on four multidimensional criteria. In
criterion C1—Total Cost of Ownership (TCO), BEV (A1), and BEV + PV (A2) vehicles were
classified as “Very Low” due to their reduced operating costs, low maintenance charges,
and, in the case of A2, the virtual elimination of energy costs through solar charging. The
C2—CO;, Emissions criterion directly reflects the local emissions of each technology; 100%
electric vehicles (Al and A2) have zero emissions and were therefore classified as “Very
Low”, plug-in hybrids were classified (A3) as “Media”, and combustion vehicles (A4 and
Ab) as “High” and “Very High”, respectively, due to their high environmental impact. In
criterion C3—Energy Independence, BEV + PV (A2) obtained the “Very High” classification
for guaranteeing energy autonomy through local renewable sources, while BEV (Al)
depends on the electricity grid and was classified as “Medium”; conventional vehicles (A4
and Ab) show a high dependence on fossil fuels and were, therefore, classified as “Low” or
“Very Low”. Finally, criterion C4—Charging Infrastructure Ease, of a qualitative nature,
assessed the ease of implementing the charging infrastructure in the organizational context.
The BEV + PV (A2) received the highest rating (“Very High”) due to the integration of the
solar charging. At the same time, the other electric and hybrid vehicles were evaluated
based on availability and ease of installation, receiving ratings of “High” (Al and A4),
“Medium” (A3), and “High” (A5) based on the experts” assessment.

3.4. Fuzzy Decision Matrix

To apply the Fuzzy TOPSIS method, the linguistic terms assigned to the evaluation
criteria were converted into TFN. This conversion allows us to represent the uncertainty
and subjectivity inherent in qualitative assessments mathematically. Each linguistic term
corresponds to a TEN of the form X = (I,m, u) where [ is the lower limit, m is the most
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likely value, and u is the upper limit of the evaluation. This study adopted a standardized
five linguistic scale (Table 7). These terms are widely used in multicriteria fuzzy decision
applications. The terms were applied to construct the fuzzy decision matrix based on
the conversion of the values in Table 7. In the practical application of the model to real
contexts, it is recommended that these linguistic terms be assigned by specialists with
adequate technical and operational knowledge, ensuring coherence with the reality of the
organization. Based on this scale, the linguistic terms assigned in Table 6 were converted
into the fuzzy decision matrix shown in Table 8. This matrix forms the basis for the next
steps of the Fuzzy TOPSIS method.

Table 7. Linguistic terms and corresponding TFNs.

Linguistic Term TFN
Very Low (VL) 1,1,3)
Low (L) (1,3,5)
Medium (M) (3,5,7)
High (H) (5,7,9)
Very High (VH) (7,9,9)

Table 8. Fuzzy decision matrix (TFNSs).

Alternative C1—TCO C2—CO;, C3—Energy = C4—Charging
A1—BEV (1,1,3) (1,1,3) (3,5,7) (5,7,9)
A2—BEV+PV (1,1,3) (1,1,3) (7,9,9) (7,9,9)
A3—PHEV (1,3,5) (3,5, 7) (1,3,5) (3,57)
A4—Diesel 3,5,7) (5,7,9) (1,3,5) 5,7,9)
A5—Gasoline (7,9,9) (7,9,9) (1,1, 3) (5,7,9)

3.5. Fuzzy Normalization and Weighting

After constructing the fuzzy decision matrix, the fuzzy numbers associated with each
alternative and criterion are weighted. According to expression (12) in Table 1 (Normaliza-
tion for Benefit Criteria), normalization is generally applied to make the values assigned
to different criteria comparable. However, in this study, all criteria were previously trans-
formed into triangular fuzzy numbers based on a common linguistic scale. For this reason,
the criteria are considered implicitly normalized, allowing weighting to be applied directly.

Fuzzy weighting is performed according to expression (13) in Table 1, multiplying each
TEN by the weight assigned to the corresponding criterion. This expression corresponds to
the weighted fuzzy decision matrix, where each normalized fuzzy value is multiplied by
the corresponding criterion weight.

Expressions (12) and (13) are repeated below for convenience and to improve clarity:

- lij mij ujj
rij = <u]*' mi;" E (12)

v =Tij x W (13)
In this study, different weights were assigned to each criterion, reflecting their relative

importance in strategic fleet management:

= Criterion C1—Total Cost of Ownership (TCO) was assigned a relevant weight of 0.30
due to its direct influence on the economic dimension.

= Criterion C2—Carbon Dioxide (CO;) Emissions was assigned a relevant weight of
0.30, due to its immediate influence on ecological dimensions.
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. Criterion C3—Energy Independence was allocated a diminished weight (0.15), signi-
fying its enduring strategic relevance.

= Criterion C4—Ease of Loading received an intermediate weight (0.25) due to its
practical relevance in implementing the technology.

This article does not aim to explore specific methods for defining criteria weights,
which require distinct methodological frameworks. In practical applications, weights can
be assigned by expert judgment [58] or derived through structured fuzzy approaches,
including interval-valued hesitant fuzzy information [31], interval intuitionistic trape-
zoidal fuzzy numbers [58,59], intuitionistic fuzzy sets with scoring functions [60], fuzzy
Pythagorean sets [61] or vague sets [62], and hybrid models such as the fuzzy TOPSIS-
CRITIC method [63].

Table 9 presents the weighted fuzzy matrix resulting from the multiplication of each
TEN of the decision matrix by the weighting attributed to each criterion. Figure 2 illustrates,
for example, the TFN assigned to Criterion C3—Energy Independence, as presented in
Table 9.

Table 9. Weighted fuzzy decision matrix.

Alternative C1—TCO (0.30) C2—CO, (0.30) C3—Energy (0.15)  C4—Charging (0.25)
A1—BEV (0.30, 0.30, 0.90) (0.30, 0.30, 0.90) (045, 0.75, 1.05) (1.25,1.75, 2.25)
A2—BEV + PV (0.30, 0.30, 0.90) (0.30, 0.30, 0.90) (1.05,1.35, 1.35) (1.75,2.25,2.25)
A3—PHEV (0.30, 0.90, 1.50) (0.90, 1.50, 2.10) (0.15, 0.45, 0.75) (0.75,1.25,1.75)
A4—Diesel (0.90, 1.50, 2.10) (1,50, 2.10, 2.70) (0.15, 0.45, 0.75) (1.25,1.75, 2.25)
(

A5—Gasoline

(2.10,2.70, 2.70) (2.10,2.70, 2.70) 0.15,0.15, 0.45) (1.25,1.75, 2.25)

11 -
0.9 - y
0.8 1 /
0.7 /
06 - /
0.5 A /
0.4 - /
0.3 - /
02 -
0.1 1

Pertinence

/
/
' 4
4
y,

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Weighted Energy Independence

A3 — PHEV

A1 - BEV A2 — BEV+PV
e A4 — Diesel A5 — Gasoline

Figure 2. Weighted TFN for Criterion C3—Energy Independence.

3.6. Ideal and Negative-Ideal Solutions and Fuzzy Distances

As described in Section 2.2, the Fuzzy TOPSIS method allows evaluating alterna-
tives based on distance from two reference solutions: FPIS, which represents the most
favourable combination of criteria, and the FNIS, which represents the least desirable
combination. Expressions (14)—Fuzzy Positive Ideal Solution—and (15)—Fuzzy Negative
Ideal Solution—in Table 1 define the calculation of the partial distances of each alternative
to the two solutions, by summing the fuzzy distances for each criterion. For the reader’s
convenience and to improve clarity, these expressions are restated below.

D =Y d(% ) (14)

D =Y, d (o ;) (15)
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Defining the distance metric between two triangular fuzzy numbers (TFNs) is nec-
essary to apply these formulas to the case study. This metric, not included in Table 1, is
introduced here as a fundamental tool for computational calculation. Considering two
TENs @ = (15, mg, 1,), and b= (Iy, my, up), the fuzzy distance between them is given by (16):

4@ 5) = Sl — 1 + O~ )+ g — ) 16)

This metric quantifies the dissimilarity between imprecise evaluations, considering all
components of the fuzzy number. Even though the triangular fuzzy numbers (TFNs) used
follow a regular linguistic scale, the distance calculation remains essential to quantify the
relative position of each alternative concerning the ideal and anti-ideal solutions, ensuring
meaningful ranking under uncertainty.

Once the total distances of each alternative to the FPIS and FNIS have been calculated,
Expression (17) from Table 1 is applied to determine the relative proximity coefficient C;,
which allows the alternatives to be ordered according to their attractiveness. For coherence
and to support the interpretation of the results, Expression (17) is reproduced below:

C. = D (17)
' Df+D;

The following section presents the results obtained for D;*, D;", and C;, and the final

ordering of the evaluated alternatives.

3.7. Fuzzy TOPSIS Results and Alternatives Ranking

Based on the weighted fuzzy matrix presented in Table 9 and using the expressions
described in Sections 2.2 and 3.6, the distances of each technological alternative to the fuzzy
positive (FPIS) and fuzzy negative (FNIS) ideal solutions were calculated. The relative
proximity coefficient (17) was obtained through these distances, which quantifies the global
attractiveness of each alternative in relation to the ideal solution. Table 10 presents the
results obtained. Figure 3 graphically illustrates the Relative Closeness Coefficient.

Table 10. Fuzzy TOPSIS results: distances and relative closeness coefficients.

Alternative D} D; C;
A1—BEV 0.928 5.059 0.845
A2—BEV + PV 0.000 5.916 1.000
A3—PHEV 3.208 2.909 0.476
A4—Diesel 3.885 2.274 0.369
A5—Gasoline 5.458 0.500 0.084

Alternative A2—Electric Vehicle with Photovoltaic System (BEV + PV) presents the
highest value of C; = 1.0, proving to be the option closest to the ideal solution. This re-
sult highlights the positive impact of EV charging from its renewable energy sources. By
eliminating electricity costs and reinforcing energy independence, BEV + PV offers both
economic (lower TCO) and environmental (zero emissions and clean energy) advantages
while benefiting from a high rating for ease of charging. The second position in the ranking
belongs to alternative A1—BEV without a solar system, with C; = 0.845. Despite produc-
ing no direct emissions and involving lower maintenance requirements, dependence on
the electricity grid for charging may reduce the overall attractiveness of this alternative,
particularly in terms of operational costs and energy availability constraints. The third
best option is the A3—Plug-in Hybrid Vehicle (PHEV), with a C; rating of 0.476. Although
it provides partial electrical operation and functionality, this alternative’s emissions and
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ownership costs are considerably greater than those of fully electric vehicles. This alter-
native, nonetheless, may be viewed as a bridge option for fleets without suitable electric
infrastructure or for fleets working in regions with logistic constraints.

Relative Closeness Coefficients
as5-Gasoune [
A4-DIESEL
A3-PHEV

A1-BEV

o

0.2 04 06 0.8 1

Figure 3. Relative closeness coefficients.

On the other hand, the alternatives A4—Diesel and A5—Gasoline recorded the low-
est attractiveness values (Ci = 0.369 and Ci = 0.084, respectively). These results reflect
unfavourable factors, such as high TCO, higher environmental impact (CO, emissions),
dependence on fossil fuels, and limitations in aligning with sustainability and digitaliza-
tion strategies.

These results are significant for SMEs and public entities that intend to align their
mobility strategy with sustainability, operational efficiency, and digitalization principles.
Adopting electric vehicles, especially with photovoltaic solutions, is the most robust option
considering a broad set of technical, economic, and environmental criteria. Furthermore,
fuzzy methods allow the systematic incorporation of subjective assessments and uncertain
factors, contributing to more informed decisions, especially in organizational contexts with
limited resources or incomplete information.

The analysis presented in this section provides objective and structured information
to support the selection of vehicle technologies best aligned with the energy transition and
long-term competitiveness.

4. Fleet Renewal Priority: Application of FRPI

Building on the hybrid approach proposed in Section 2.1, this section focuses on the
second component of the model: the use of the Fleet Renewal Priority Index (FRPI) to
support operational decisions on which vehicles should be prioritized for replacement
in the current fleet. This tool complements the technological analysis of Fuzzy TOPSIS,
offering a perspective oriented towards the concrete management of existing assets.

4.1. Fleet Data and Vehicle Characteristics

A standard fleet of five vehicles used by an SME in the technical-operational sector
(installations, maintenance, and logistics) was considered for demonstration purposes. The
fleet includes gasoline, diesel, and hybrid models, with different levels of wear, operating
costs, and environmental impact. Although the TCO calculation used in the Fuzzy TOPSIS
analysis assumed a standardized usage of 100 km per day—equivalent to approximately
36,500 km per year—the application of FRPI considers values adapted to the operational
reality of each vehicle in the fleet. The variation in kilometres driven annually reflects the
functional diversity of vehicles, their specific missions, and the degree of accumulated wear.
This approach allows for a more realistic and well-founded assessment of the urgency of
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replacement, integrating technical and contextual factors specific to each fleet unit. These
data reflect the typical diversity of an organizational fleet with vehicles from different
technological generations and usage patterns. The corresponding values will be input into
the previously defined membership functions to compute the FRPI index based on vehicle
age, maintenance cost, and CO; emissions. Table 11 presents the technical and operational
characteristics of the simulated vehicles, which will serve as a basis for calculating the FRPL

Table 11. Characteristics of fleet vehicles.

. Annual CO; Emissions Average Distance
Vehicle ID Type Age (Years) Maintenance (€) (g/km) (ki;n/Year)

A\l Diesel 9 1200 135 22,000

V2 Gasoline 6 1000 145 18,000

V3 PHEV 4 850 60 25,000

V4 Diesel 7 1100 130 30,000

V5 Gasoline 10 1300 150 20,000

4.2. Definition of Weights by Experts

Similar to the Fuzzy TOPSIS approach, the calculation of the Fleet Renewal Priority In-
dex (FRPI) requires the assignment of weights to the evaluation criteria: vehicle age, annual
maintenance cost, and CO, emissions. These weights represent the relative importance
attributed to each factor in prioritizing the replacement of fleet vehicles.

Assigning weights to multicriteria criteria is, by nature, a process sensitive to the
context and preferences of decision-makers. Thus, as mentioned in Section 2.2, weights can
be defined by fleet management, automotive engineering, and sustainability experts or by
formal decision support methods, such as the Analytic Hierarchy Process (AHP) or Delphi
consensus techniques.

In the present study, the weights were obtained through consultation with experts
with practical experience in small and medium-sized organizational contexts and reflect a
balance between technical (depreciation and maintenance costs) and environmental factors.

4.3. FRPI Calculation and Results

Based on the fleet’s operational data (Table 11) and the weights assigned to the cri-
teria (Table 12), the Fleet Renewal Priority Index (FRPI) was calculated for each vehicle.
This index combines, in a weighted manner, three membership functions associated with
the criteria:

= f1(Ag): Vehicle age (increasing exponential function).
= f2(My): Average annual maintenance cost (linear function up to €2000).
= f3(Eg): CO; emissions (linear function up to 200 g/km).

Table 12. FRPI criteria and assigned weights.

Criterion Symbol Weight (w)
Age of the vehicle w1 0.40
Annual maintenance cost W 0.35
CO; emissions (g/km) w3 0.25

Functions (19)-(21) were normalized within the [0, 1] interval, allowing their ag-
gregation as defined in Expression (22), which unfolds the formulation introduced in
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Expression (18). For clarity, Expressions (18) to (21) are presented again below to support

the interpretation of the indicators used in the evaluation.

3
FRPIy =} . wj fj(xi))

filA) =1 - 0154

. My
= 1 _—
i ( ’2000)

f2 (M)

ﬁww=mm(me@,

FRPI; = wy-f1(Ag) + wa-fo(My) + w3 f3(Ex)

200

)

(18)
(19)

(20)

(21)

(22)

With the weights defined (Table 12), the FRPI calculation is presented below for each

vehicle in the fleet (Table 13).

Table 13. FRPI calculation for each vehicle.

Vehicle f1 (Age) f, (Maint.) f5 (COy) FRPI
V1—Diesel 0.741 0.600 0.175 0.550
V2—Gasoline 0.593 0.500 0.225 0.469
V3—PHEV 0.451 0.425 0.000 0.329
V4—Diesel 0.650 0.550 0.150 0.490
V5—Gasoline 0.777 0.650 0.250 0.601

Analysis of the results (Figure 4) shows that the V5—Gasoline vehicle has the highest
FRPI value (0.601), which indicates that it should be the first candidate for replacement.
This result is justified by its high age (10 years), high maintenance cost, and high level
of CO, emissions. Next comes the V1-diesel vehicle with an FRPI of 0.55 and strong
accumulated wear. V4 and V2 vehicles are in intermediate positions, with reasonable levels
of maintenance and wear. The V3—PHEV vehicle has the lowest index (0.329), reflecting

its good overall performance and low need for replacement in the short term.

0.550

0.469

0.329

V1 - Diesel V2 - Gasoline V3-PHEV

Figure 4. FRPI Calculation for Each Vehicle.

0.450

V4 - Diesel

V5 -Gasoline

These results provide decision-makers with a clear replacement hierarchy, guiding
investments in fleet renewal based on objective criteria. The combination of FRPI and the
analysis of technological alternatives via Fuzzy TOPSIS (Section 3.7) allows for integrated
and sustained management of organizational mobility.
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5. Discussion—Strategic Integration of Results and
Management Recommendations

The results obtained in the previous sections offer an integrated perspective for
decision-making in the renewal of organizational fleets, combining two complementary
levels of analysis.

The multicriteria evaluation of vehicle technology alternatives, carried out using the
Fuzzy TOPSIS method (Section 3), allowed us to identify that the BEV solution with a
photovoltaic system (A2) presents the most attractive performance in terms of total cost,
environmental impact, and energy autonomy.

The analysis of the renewal priority of the current fleet, carried out using the FRPI
index (Section 4), allowed the existing vehicles to be sorted based on objective operational
criteria, highlighting the most urgent replacement cases.

This combined approach allows us to answer the following two critical questions for
strategic fleet management simultaneously:

=  “What kind of vehicles should we purchase in the future?”—answered by Fuzzy
TOPSIS, which pointed out the viability of BEV + PV (A2).
=  “Which current vehicles should we replace first?”—answered by FRPI, which indi-

cated V5 (Gasoline) and V1 (diesel) vehicles as a priority due to their high wear and
environmental impact.

The progressive replacement of internal combustion vehicles with electric alternatives
that guarantee charging with renewable energy is aligned with reducing greenhouse gas
emissions, reducing external energy dependence, and meeting environmental and corporate
social responsibility goals. At the same time, fleet analysis with the FRPI enables the
planning of this transition in a financially balanced manner, thus prioritizing those vehicles
that constitute heightened operational risks and costs. The Fleet Renewal Priority Index
(FRPI) complements already existing methods such as Life Cycle Cost (LCC) and Condition-
Based Maintenance (CBM) by introducing a new lightweight integrated tool designed
for contexts with minimal data or resources. In these situations, the more established
approaches may not be feasible.

Unlike these heavy procedures that demand detailed historical records of faults or
failures, or even advanced online monitoring systems, the FRPI bases its estimation on
operational indicators that straightforward observations can readily obtain. This design
feature makes it most helpful to those SMEs and public entities desirous of evaluating fleet
renewal strategies, given sustainability goals on a tight budget.

Based on this integration, the following practical actions are recommended:

=  Replace the V5 (Gasoline) vehicle with a BEV + PV, aligning the renewal with the
most advantageous alternative identified by TOPSIS.

. Plan the replacement of V1 (Diesel) in the medium term, ideally also with an electric
solution.

= Monitor V2 and V4 vehicles, which have intermediate FRPI, and reassess their opera-
tional condition annually.

= Keep the V3 (PHEV), currently with good performance and low replacement priority.

Integrate periodic analyses with real data, allowing adjustment of weights, and criteria
based on changes in the energy, technological, or regulatory context. This integrated
strategy offers SMEs and public entities a practical and well-founded tool to plan fleet
renewal in a gradual, sustainable, and financially responsible way.
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6. Conclusions

Strategic fleet renewal is a complex challenge that requires the simultaneous consid-
eration of multiple technical, economic, and environmental factors, often assessed under
uncertain conditions and lacking accurate information. In this context, this paper proposed
a hybrid decision support model that combines the Fuzzy TOPSIS method with a replace-
ment priority index (FRPI), offering an integrated, structured, and accessible approach to
support decisions on sustainable mobility in organizations.

The method demonstrated an ability to translate qualitative and subjective judgments
into quantifiable criteria, allowing technological alternatives to be compared coherently,
even in contexts of incomplete information. By dealing with the natural imprecision of
human language, fuzzy methods have proven particularly effective in capturing decision-
makers’ preferences regarding criteria such as total cost, emissions, or ease of charging.

Mainly, a contribution of this model is in the practical application: it is computationally
light and relies solely on basic operational data while being easy to interpret, features that
make it primarily suitable for small and medium-sized enterprises, or some public entities,
without advanced software requirements or technically specialized human resources. At the
same time, it remains robust enough to support informed strategic decisions. Furthermore,
combining the evaluation of external acquisition alternatives and the internal prioritization
of replacement needs offers a comprehensive and operationalizable perspective on fleet
management. However, its effectiveness as a decision support system depends on the
reliability of the input data and the firmness of an organization’s strategic objectives.
Although possible based on expert judgment, the definition of the criteria weights remains
a sensitive point that can affect the results. Additionally, the simulation used in this
study, although representative, does not replace empirical validation in real contexts with
historical operational data.

Integrating FRPI with the Fuzzy TOPSIS method avoids redundancies by assigning
each tool a distinct but complementary function: replacement prioritization and technology
assessment. This separation allows organizations to coherently and practically address
both internal fleet renewal needs and the strategic selection of sustainable alternatives.

While the conceptual development of the FRPI is supported by literature and informal
interactions with practitioners, there has not been any formal or expert validation of the
FRPI. This limitation is, however, acknowledged, and future studies along the same lines
must be concerned with structured validation processes for strengthening the connotation
and applicability of the model. These include implementation in real operational settings
and formal consultation with domain experts.

The proposed model offers a transparent and straightforward tool to support decision-
making in organizational environments, steering the way into more sustainable mobility
options. Its flexibility and adaptability to differing realities make it an interesting essen-
tial method for strategic fleet renewal, thus paving the way for applications and further
advanced methodological developments.

Author Contributions: Conceptualization, S.G., D.H.d.1I,, J.L.A. and A.J.L.R; methodology, S.G.,
D.H.d.LL and J.L.A,; validation, J.L.A. and A.J.L.R.; formal analysis, D.H.d.1.Il,, ].L.A. and A.].L.R;;
investigation, S.G.; data curation, P.V,, E.G. and S.G.; writing—original draft, S.G.; writing—review
and editing, S.G.; supervision, D.H.d.LI. and J.L.A.; project administration, J.L.A., P.V. and E.G. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.



Future Transp. 2025, 5, 111 18 of 20

Acknowledgments: Regarding authors Sénia Gouveia, Daniel H. de la Iglesia, and José Luis Abrantes,
this research work is made within the University of Salamanca PhD Programme on Education in
the scope of Knowledge Society. The present work is also part of the project “Sustainable Mobility
and Strategic Value Creation in SMEs” (PIDI/CISeD/2025/017), developed within the scope of
CISeD—Research Centre in Digital Services.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Ackrill, R.; Zhang, M. Sustainable Mobility—Editorial Introduction. Sustain. Mobil. 2021, 1, 1-6. [CrossRef]

2. Longo, M.; Foiadelli, F.; Yaici, W. Electric Vehicles Integrated with Renewable Energy Sources for Sustainable Mobility. IntechOpen
2018, 10, 203-223. [CrossRef]

3. Soltanpour, A.; Jazlan, F.; Ghamami, M.; Zockaie, A. Sustainable Fleet Operation Strategies to Minimize the Economic and Societal
Emission Costs. In Proceedings of the IEEE Conference on Technologies for Sustainability, Portland, OR, USA, 19-22 April 2023;
IEEE: New York, NY, USA, 2023. [CrossRef]

4. Abdi, A ; Taghipour, S. An Optimization Model for Fleet Management with Economic and Environmental Considerations, under
a Cap-and-Trade Market. J. Clean. Prod. 2018, 204, 130-143. [CrossRef]

5. Jung, H. Jang, H.; Han, H.; Cho, K,; Kang, B.; Park, S. Electric Vehicle Charging System to Reduce Carbon Emissions Using
Photovoltaic Power Generation and ESS. In Proceedings of the 2022 IEEE 5th Student Conference on Electric Machines and
Systems (SCEMS), Busan, Republic of Korea, 24—26 November 2022; pp. 1-4. [CrossRef]

6.  Freire, R.; Delgado, ]J.; Santos, J.; Almeida, A.T. Integration of Renewable Energy Generation with EV Charging Strategies to
Optimize Grid Load Balancing. In Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems,
Madeira Island, Portugal, 19-22 September 2010; pp. 392-396. [CrossRef]

7. Holmatov, B.; Hoekstra, A.Y. The Environmental Footprint of Transport by Car Using Renewable Energy. Earth’s Future 2020,
8, €2019EF001428. [CrossRef]

8. Li L, Lo, HK; Xiao, F; Cen, X. Mixed Bus Fleet Management Strategy for Minimizing Overall and Emissions External Costs.
Transp. Res. Part D Transp. Environ. 2018, 60, 104-118. [CrossRef]

9.  Abdi, A.; Taghipour, S. Optimal Replacement of a Fleet of Assets with Economic and Environmental Considerations. In
Proceedings of the 2018 Annual Reliability and Maintainability Symposium (RAMS), Reno, NV, USA, 22-25 January 2018; pp. 1-6.
[CrossRef]

10. Gouveia, S.; de la Iglesia, D.H.; Abrantes, J.L.; Lépez Rivero, A.]; Silva, E.; Gouveia, E.; Santos, V. Creating Value Through
Strategic Management: Sustainable Mobility for Family-Owned Small- and Medium-Sized Enterprises with Electric Vehicles in
the Digital Era. Sustainability 2025, 17, 1785. [CrossRef]

11. Bae, S.H.; Yoo, C.S,; Sarkis, J. Greening Transportation Fleets. Soc. Sci. Res. Netw. 2008. [CrossRef]

12.  Iwan, S.; Niirnberg, M.; Kijewska, K. Analysis of Fleet Management Systems as Solutions Supporting the Optimization of Urban Freight
Transport; Springer: Cham, Switzerland, 2018; pp. 55-69. [CrossRef]

13. Baldo, L. Condition-based-maintenance for fleet management. Mater. Res. Proc. 2023, 33, 57-60. [CrossRef]

14. Aiello, G.; Quaranta, S.; Inguanta, R.; Certa, A.; Venticinque, M. A Multi-Criteria Decision-Making Framework for Zero Emission
Vehicle Fleet Renewal Considering Lifecycle and Scenario Uncertainty. Energies 2024, 17, 1371. [CrossRef]

15.  Anderson, N.W. Management of Vehicles Based on Operational Environment. U.S. Patent US20060217993A1, 19 August 2008.
Available online: https:/ /patents.google.com/patent/US20060217993A1/en (accessed on 1 June 2020).

16. Cassady, C.R.; Murdock, W.P; Nachlas, J.A.; Pohl, E.A. Comprehensive fleet maintenance management. Syst. Man Cybern. 1998, 5,
4665-4669. [CrossRef]

17.  Oro$njak, M.; Jocanovi¢, M.; Gvozdenac-UrosSevi¢, B.D,; Sevi¢, D.; Dudak, L.; Karanovi¢, V. Bus Fleet Management—A Systematic
Literature Review. Promet-Traffic Transp. 2020, 32, 761-772. [CrossRef]

18.  Brlek, P,; Cvitkovi¢, I.; Kolarevic, N.; Stojanovic, K.; Sovreski, Z. Application of fleet management in intelligent transport systems.
In Proceedings of the 2022 57th International Scientific Conference on Information, Communication and Energy Systems and
Technologies (ICEST), Ohrid, North Macedonia, 16 June 2022; pp. 1-4. [CrossRef]

19. Tomita, E. Transportation Fleet Management; Elsevier eBooks: Amsterdam, The Netherlands, 2022; pp. 113-129. [CrossRef]

20. Alves, M.A.; Guimaraes, EG. Fuzzy Multi-Criteria Decision Making Methods with Uncertainty Scenario; Universidade Federal de
Minas Gerais: Belo Horizonte, Brazil, 2018. [CrossRef]

21. Dursun, M. A new integrated fuzzy MCDM approach and its application to wastewater management. Int. J. Intell. Syst. Appl.
Eng. 2018, 6, 19-28. [CrossRef]

22. Hwang, C.L.; Yoon, K. Methods for Multiple Attribute Decision Making. In Multiple Attribute Decision Making; Lecture Notes in

Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1981; Volume 186, pp. 58-191. [CrossRef]


https://doi.org/10.2478/susmo-2020-0001
https://doi.org/10.5772/INTECHOPEN.76788
https://doi.org/10.1109/sustech57309.2023.10129606
https://doi.org/10.1016/j.jclepro.2018.08.345
https://doi.org/10.1109/SCEMS56272.2022.9990052
https://doi.org/10.1109/ITSC.2010.5625071
https://doi.org/10.1029/2019EF001428
https://doi.org/10.1016/j.trd.2016.10.001
https://doi.org/10.1109/RAM.2018.8462994
https://doi.org/10.3390/su17051785
https://doi.org/10.2139/ssrn.1274147
https://doi.org/10.1007/978-3-319-97955-7_4
https://doi.org/10.21741/9781644902677-9
https://doi.org/10.3390/en17061371
https://patents.google.com/patent/US20060217993A1/en
https://doi.org/10.1109/ICSMC.1998.727588
https://doi.org/10.7307/ptt.v32i6.3437
https://doi.org/10.1109/icest55168.2022.9828676
https://doi.org/10.1016/b978-0-12-815415-1.00005-7
https://doi.org/10.21528/CBIC2017-46
https://doi.org/10.18201/ijisae.2018634723
https://doi.org/10.1007/978-3-642-48318-9_3

Future Transp. 2025, 5, 111 19 of 20

23.
24.
25.
26.
27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Dean, M. Multi-Criteria Analysis; Academic Press: Cambridge, MA, USA, 2020; Volume 6, pp. 165-224. [CrossRef]

Wang, W.; Poh, K.-L. Fuzzy MCDM based on confidence analysis. Fuzzy Econ. Rev. 2003, 8, 25-37. [CrossRef]

Chen, L.; Chen, B. Fuzzy Logic-Based Electric Vehicle Charging Management Considering Charging Urgency. In Proceedings of
the IEEE Innovative Smart Grid Technologies-Asia, Chengdu, China, 21-24 May 2019; pp. 3441-3446. [CrossRef]

Coskun, M.Z.; Karakaya, B. A Case Study: Fuzzy Logic Based Decision-Making System for Electric Vehicle Charging. Int. J.
Energy Smart Grid 2024, 9, 42-50. [CrossRef]

Tang, H.; Ahmad, N.S. Fuzzy Logic Approach for Controlling Uncertain and Nonlinear Systems: A Comprehensive Review of
Applications and Advances. Syst. Sci. Control Eng. 2024, 12, 2394429. [CrossRef]

Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338-353. [CrossRef]

Krohling, R.A.; Campanharo, V.C. Fuzzy TOPSIS for Group Decision Making: A Case Study for Accidents with Oil Spill in the
Sea. Expert Syst. Appl. 2011, 38, 4190-4197. [CrossRef]

Tavakkoli-Moghaddam, R.; Gitinavard, H.; Mousavi, S.M.; Siadat, A. An Interval-Valued Hesitant Fuzzy TOPSIS Method to Determine
the Criteria Weights; Springer: Berlin/Heidelberg, Germany, 2015; pp. 157-169. [CrossRef]

Siddiqui, R.; Khan, N.; Ahmad, S.; Ahmad, S. A Fuzzy TOPSIS-Based Analysis to Prioritize Enabling Factors for Strategic
Information Technology Management. EAI Endorsed Trans. Context-Aware Syst. Appl. 2022, 8, e3. [CrossRef]

Abdelhafeez, A.; Shreyas, J.; Udayaprasad, PK. A Fuzzy TOPSIS Method for Assessment Blockchain Technology Strategies.
Deleted |. 2024, 1, 1-9. [CrossRef]

Chen, C.-T. Extensions of the TOPSIS for Group Decision-Making under Fuzzy Environment. Fuzzy Sets Syst. 2000, 114, 1-9.
[CrossRef]

Ye, F; Li, Y. An extended TOPSIS model based on the Possibility theory under fuzzy environment. Knowl. Based Syst. 2014, 67,
263-269. [CrossRef]

Zulgarnain, R.M.; Saeed, M.; Ali, B.; Abdal, S.; Saqglain, M.; Ahamad, M.L.; Zafar, Z. Generalized Fuzzy TOPSIS to Solve Multi-
Criteria Decision-Making Problems. In Proceedings of the International Conference on Emerging Trends in Smart Technologies
(ICETST), Karachi, Pakistan, 2627 March 2020.

Cakir, E.; Demircioglu, E. Multi-Criteria Evaluation of Battery Electric Vehicles via Circular Intuitionistic Fuzzy PROMETHEE. In
Proceedings of the 2024 IEEE 18th International Symposium on Applied Computational Intelligence and Informatics (SACI),
Siéfok, Hungary, 21-25 May 2024; pp. 151-156. [CrossRef]

Kumar, P; Channi, HK.; Kumar, R.; Stevi¢, Z.; Singh, S.; Bhattacherjee, A.; Bhowmik, A. Optimizing Electric Mobility: A
Multi-Criteria Decision-Making Approach for Sustainable Future of Electric Vehicles through Smart Motor Choices. J. Eur. Syst.
Autom. 2024, 57, 1825-1845. [CrossRef]

Lindberg, G.; Fridstrom, L. Policy Strategies for Vehicle Electrification. Research Papers in Economics. Discussion Paper No.
2015-16, International Transport Forum, OECD, Paris, France. 2015. Available online: https:/ /www.itf-oecd.org/sites/default/
files/docs/dp201516.pdf (accessed on 2 May 2025).

Rocha, C.M.M,; Ospino, M.D.; Ramos, L.B.; Guzman, A.M. Enhancing Sustainable Mobility: Multi-Criteria Analysis for Electric
Vehicle Integration and Policy Implementation. Int. J. Energy Econ. Policy 2024, 14, 205-218. [CrossRef]

Alshehri, S. Multicriteria decision making (MCDM) methods for ranking estimation techniques in extreme programming. Eng.
Technol. Appl. Sci. Res. 2018, 8, 3073-3078. [CrossRef]

Taherdoost, H.; Madanchian, M. An effective compromising ranking technique for decision making. Macro Manag. Public Policies
2023, 5, 27-33. [CrossRef]

Anand, A.; Agarwal, M.; Aggrawal, D. Multiple Criteria Decision-Making Methods; Walter de Gruyter GmbH & Co KG: Berlin,
Germany, 2022. [CrossRef]

Zulgarnain, M.; Dayan, F. Choose best criteria for decision making via fuzzy TOPSIS method. Math. Comput. Sci. 2017, 2, 113.
[CrossRef]

Dharmalingam, M.; Mahapatra, G.S.; Georgise, F.B.; Deb, M. Comparative ranking preferences decision analysis through a novel
fuzzy TOPSIS technique for vehicle selection. J. Eng. 2024, 2024, 6812801. [CrossRef]

Toklu, M.C. The Technique for Order of Preference by Similarity to Ideal Solution Method in Fuzzy Environment: Fuzzy TOPSIS Method;
Advanced multi-criteria decision making for addressing complex sustainability issues; Toklu, M.C., Ed.; IGI Global: Hershey, PA,
USA, 2020; pp. 139-168. [CrossRef]

Ceballos, B.; Lamata, M.T.; Pelta, D.A. Fuzzy multicriteria decision-making methods: A comparative analysis. Int. ]. Intell. Syst.
2017, 32, 722-738. [CrossRef]

Opricovic, S.; Tzeng, G.-H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. ].
Oper. Res. 2004, 156, 445-455. [CrossRef]

Geng, T. Application of ELECTRE IIl and PROMETHEE II in evaluating the military tanks. Int. |. Procure. Manag. 2015, 8, 457—475.
[CrossRef]


https://doi.org/10.1016/BS.ATPP.2020.07.001
https://doi.org/10.25102/fer.2003.02.02
https://doi.org/10.1109/ISGT-ASIA.2019.8881748
https://doi.org/10.55088/ijesg.1596943
https://doi.org/10.1080/21642583.2024.2394429
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/j.eswa.2010.09.081
https://doi.org/10.1007/978-3-319-19515-5_13
https://doi.org/10.4108/eai.4-4-2022.173782
https://doi.org/10.61356/j.iswa.2024.19173
https://doi.org/10.1016/S0165-0114(97)00377-1
https://doi.org/10.1016/j.knosys.2014.04.046
https://doi.org/10.1109/saci60582.2024.10619787
https://doi.org/10.18280/jesa.570630
https://www.itf-oecd.org/sites/default/files/docs/dp201516.pdf
https://www.itf-oecd.org/sites/default/files/docs/dp201516.pdf
https://doi.org/10.32479/ijeep.15021
https://doi.org/10.48084/etasr.2104
https://doi.org/10.30564/mmpp.v5i2.5578
https://doi.org/10.1515/9783110743630
https://doi.org/10.11648/j.mcs.20170206.14
https://doi.org/10.1155/2024/6812801
https://doi.org/10.4018/978-1-7998-2216-5.ch007
https://doi.org/10.1002/int.21873
https://doi.org/10.1016/S0377-2217(03)00020-1
https://doi.org/10.1504/ijpm.2015.070743

Future Transp. 2025, 5, 111 20 of 20

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Ostojic, S.; Traverso, M. Application of Life Cycle Sustainability Assessment in the automotive sector—A systematic literature
review. Sustain. Prod. Consum. 2024, 47, 105-127. [CrossRef]

Almobarek, M.; El-Sayed, M.; Hassan, M. Fleet replacement analysis by equivalent uniform annual cost method. In Proceedings
of the 1st European International Conference on Industrial Engineering and Operations Management, Rome, Italy, 2-5 August
2021. Available online: https:/ /ieomsociety.org/proceedings/2021rome/519.pdf (accessed on 6 June 2025).

Kauffmann, P.; Howard, E.; Yao, ]J.; Harbinson, D.; Brooks, N.; Williams, R.; Gurganus, C. Criteria for fleet management:
Identification of optimal disposal points with the use of equivalent uniform annual cost. Transp. Res. Rec. 2012, 2292, 171-178.
[CrossRef]

Liu, Y.; Zhang, Q.; He, K.; Zheng, B. Modeling fuel-, vehicle type-, and age-specific CO, emissions from global on-road vehicles in
1970-2020. Earth Syst. Sci. Data 2024, 16, 4497-4509. [CrossRef]

Boudart, J.; Figliozzi, M.A. Key Variables Affecting Decisions of Bus Replacement Age and Total Costs. Transp. Res. Rec. 2012,
2274,109-113. [CrossRef]

Corazza, M.V,; Vasari, D.; Petracci, E.; Lizana, P.C.; Pascucci, M. Facilitating Bus Fleets Emissions Assessment. In Proceedings of
the International Conference on Environment and Electrical Engineering, Madrid, Spain, 9-12 June 2020. [CrossRef]

Crespo del Castillo, A.; Parlikad, A.K. Dynamic Fleet management: Integrating predictive and preventive maintenance with
operation workload balance to minimise cost. Reliab. Eng. Syst. Saf. 2024, 249, 110243. [CrossRef]

Castillo, O.; Alvarez, R. Electrification of Last-Mile Delivery: A Fleet Management Approach with a Sustainability Perspective.
Sustainability 2023, 15, 16909. [CrossRef]

Vigneshwaran, A.; Kumar, K.A.N. Electric vehicles and their types. In Artificial Intelligence Applications in Battery Management
Systems and Routing Problems in Electric Vehicles; Angalaeswari, S., Deepa, T., Kumar, L., Eds.; IGI Global: Hershey, PA, USA, 2023;
pp. 92-108. [CrossRef]

Wang, T.-C.; Lee, H.-D. Developing a fuzzy TOPSIS approach based on subjective weights and objective weights. Expert Syst.
Appl. 2009, 36, 8980-8985. [CrossRef]

Liu, G.; Wang, X. Multi-Attribute Decision-Making Method Based on Interval Intuitionistic Trapezoidal Fuzzy Number to
Determine the Expert Weight. In Proceedings of the 2022 IEEE Intl Conf on Parallel & Distributed Processing with Ap-
plications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking
(ISPA /BDCloud /SocialCom/SustainCom), Melbourne, Australia, 17-19 December 2022; pp. 33-39. [CrossRef]

Gupta, P; Mehlawat, M.K.; Grover, N. A Generalized TOPSIS Method for Intuitionistic Fuzzy Multiple Attribute Group Decision
Making Considering Different Scenarios of Attributes Weight Information. Int. J. Fuzzy Syst. 2019, 21, 369-387. [CrossRef]

Du, X;; Ly, K;; Zhou, R;; Ly, Y;; Qiu, S.M. A Weighting Method Based on the Improved Hesitation of Pythagorean Fuzzy Sets.
Electronics 2023, 12, 3001. [CrossRef]

Zhou, S.; Liu, W.; Chang, W. An Improved TOPSIS with Weighted Hesitant Vague Information. Chaos Solitons Fractals 2016, 89,
47-53. [CrossRef]

Wang, PW.,; Lin, Y.; Wang, Z. An Integrated Multi-Criteria Group Decision-Making Model Applying Fuzzy TOPSIS-CRITIC
Method with Unknown Weight Information. Int. J. Innov. Comput. Inf. Control 2022, 18, 815-836.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1016/j.spc.2024.03.033
https://ieomsociety.org/proceedings/2021rome/519.pdf
https://doi.org/10.3141/2292-20
https://doi.org/10.5194/essd-2024-101
https://doi.org/10.3141/2274-12
https://doi.org/10.1109/EEEIC/ICPSEUROPE49358.2020.9160620
https://doi.org/10.1016/j.ress.2024.110243
https://doi.org/10.3390/su152416909
https://doi.org/10.4018/978-1-6684-6631-5.ch005
https://doi.org/10.1016/j.eswa.2008.11.035
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom57177.2022.00012
https://doi.org/10.1007/s40815-018-0563-7
https://doi.org/10.3390/electronics12133001
https://doi.org/10.1016/j.chaos.2015.09.018

	Introduction 
	Multicriteria Decision Support Model 
	General Structure of the Model 
	Fuzzy TOPSIS Steps 
	Fleet Renewal Priority Index 

	Multi-Criteria Evaluation of Technological Alternatives (Fuzzy TOPSIS) 
	Technological Alternatives 
	Evaluation Criteria 
	Input Data and Language Conversion 
	Fuzzy Decision Matrix 
	Fuzzy Normalization and Weighting 
	Ideal and Negative-Ideal Solutions and Fuzzy Distances 
	Fuzzy TOPSIS Results and Alternatives Ranking 

	Fleet Renewal Priority: Application of FRPI 
	Fleet Data and Vehicle Characteristics 
	Definition of Weights by Experts 
	FRPI Calculation and Results 

	Discussion—Strategic Integration of Results and Management Recommendations 
	Conclusions 
	References

