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Abstract

The swift advancements in autonomous vehicle systems have facilitated their implemen-
tation across various industries, including agriculture. However, studies primarily focus
on passenger vehicles, with fewer examining autonomous trucks. Therefore, this study
reviews autonomous truck systems implementation in North Dakota’s agricultural industry
to develop comprehensive technology readiness frameworks and strategic deployment
approaches. The review integrates systematic literature review and event history analysis
of 52 studies, categorized using Social–Ecological–Technological Systems framework across
six dimensions: technological, economic, social change, legal, environmental, and imple-
mentation challenges. The Technology Readiness Level (TRL) analysis reveals 39.5% of
technologies achieving commercial readiness (TRL 8–9), including GPS/RTK positioning
and V2V communication demonstrated through Minn-Dak Farmers Cooperative deploy-
ments, while gaps exist in TRL 4–6 technologies, particularly cold-weather operations.
Nonetheless, challenges remain, including legislative fragmentation, inadequate rural
infrastructure, and barriers to public acceptance. The study provides evidence-based rec-
ommendations that support a strategic three-phase deployment approach for the adoption
of autonomous trucks in agriculture.

Keywords: agricultural logistics; autonomous trucks; supply chain optimization; North Dakota

1. Introduction
The convergence of artificial intelligence, sensor technologies, and autonomous sys-

tems is fundamentally reshaping transportation paradigms across multiple sectors, with
agricultural supply chains emerging as a critical frontier for technological transformation.
These technologies enable vehicle navigation and task execution without human inter-
vention [1]. Although much attention has been paid to their applications in passenger
transportation and urban mobility, autonomous trucks are a watershed moment, with
enormous promise for industries that rely on logistics and heavy-duty transport [2]. There-
fore, the integration of Autonomous Truck Systems (ATS) into agricultural supply chains
represents a paradigm shift from traditional logistics models toward precision-driven,
technology-enabled operations that can address persistent challenges of labor shortages,
operational inefficiencies, and supply chain vulnerabilities [3].
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North Dakota’s agricultural landscape exemplifies the transformative potential of
autonomous trucking technologies, particularly given the state’s position as a leading pro-
ducer of wheat, soybeans, and sugar beets, coupled with its vast geographical expanses and
seasonal operational demands [4,5]. The state’s agricultural supply chain spans approxi-
mately 39 million acres of farmland, generating over $7 billion in annual agricultural output,
yet faces critical challenges, including an aging workforce, limited transportation infras-
tructure, and extreme weather conditions that significantly impact logistics efficiency [3].
These regional characteristics position North Dakota as an ideal testbed for examining how
autonomous truck systems can address sector-specific challenges while advancing broader
agricultural innovation objectives.

Thus, recent technological demonstrations, including the Minn-Dak Farmers Coopera-
tive’s leader-follower platooning system for sugar beet transportation, provide empirical
evidence of ATS viability in agricultural contexts [6]. However, existing studies exhibit
significant gaps in comprehensive analysis of technology readiness levels, systematic as-
sessment of implementation challenges across multiple agricultural supply chain segments,
and region-specific evaluation frameworks that account for climatic, regulatory, and infras-
tructure constraints unique to agricultural environments [7,8]. Additionally, research on
the deployment of autonomous vehicles in cities and highways often overlooks their use
in rural and agricultural areas [9]. Moreover, most studies concentrate on technological
progress or economic viability while neglecting the examination of legal, social, and envi-
ronmental aspects [10]. Thus, the literature lacks integrated methodological approaches
that combine systematic literature analysis with real-world deployment evidence to inform
strategic implementation pathways.

Accordingly, this study addresses these critical knowledge gaps by providing a compre-
hensive review of autonomous truck systems and their implementation in North Dakota’s
(ND) agricultural sector. Specifically, we develop a comprehensive Technology Readi-
ness Level (TRL) assessment framework, calibrated explicitly for agricultural autonomous
truck systems, systematically evaluating relevant studies to determine technology matu-
rity across different domains. This framework enables evidence-based prioritization of
technology development investments and deployment strategies. Second, we establish a
novel multidimensional categorization system that systematically analyzes autonomous
truck implementation across challenge dimensions, providing stakeholders with structured
insights for addressing adoption barriers. Third, we introduce a strategic three-phase
deployment methodology that aligns technology readiness levels with implementation
timelines, risk mitigation strategies, and regional infrastructure requirements specific to
North Dakota’s agricultural supply chain context.

The study employs an innovative dual-methodology approach that combines Sys-
tematic Literature Review (SLR) with Event History Analysis (EHA), integrating peer-
reviewed academic research with industry reports, conference proceedings, and real-world
deployment data. This methodological innovation enables comprehensive capture of both
theoretical frameworks and practical implementation insights, addressing the traditional
disconnect between academic research and industry practice in autonomous vehicle de-
ployment studies [10]. The study systematically analyzes studies from journal databases,
complemented by stakeholder perspectives from the Upper Great Plains Transportation
Institute’s 2024 Autonomous Trucking Conference, ensuring contemporary relevance and
practical applicability.

Significantly, this study extends beyond regional agricultural contexts to inform
broader autonomous truck deployment strategies in rural and agricultural environments
globally. As agricultural sectors worldwide confront similar challenges, this study’s find-
ings provide transferable insights for policy development, infrastructure planning, and
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technology adoption strategies. The research contributes to emerging discussions on
precision agriculture, sustainable supply chain transformation, and adoption of rural
technology, while establishing methodological foundations for future autonomous truck
research in agricultural contexts. The study’s implications are particularly relevant for
policymakers addressing rural infrastructure development, technology companies de-
veloping agricultural automation solutions, and agricultural cooperatives evaluating in-
vestments in autonomous systems. By providing evidence-based technology readiness
assessments, systematic challenge identification, and strategic implementation frameworks,
this study enables informed decision-making for stakeholders navigating the complex
intersection of agricultural innovation, autonomous truck systems, and regional economic
development priorities.

The remainder of the study is organized as follows: Section 2 reviews existing studies
on the development of autonomous truck systems, with a particular emphasis on the
state of North Dakota. Section 3 presents the methodology used to ascertain this study’s
objective. Section 4 addresses the research questions mentioned in Section 3, while Section 5
concludes this study.

2. Status of Autonomous Trucks Development
The rapid advancements in autonomous vehicle technology have sparked a growing

interest in developing autonomous trucks, which have immense potential to revolutionize
the logistics and transportation industry [11,12]. Autonomous vehicles, including passenger
cars and commercial trucks, have been a primary focus of research and development in
recent decades, with significant progress made in object detection, navigation, and decision-
making algorithms [13]. While much of the attention has been focused on autonomous cars,
there is a consensus among industry experts that autonomous trucks are likely to become
commercially available sooner than their passenger vehicle counterparts [12]. This is due
to the potential benefits of autonomous trucks, such as improved safety, efficiency, and cost-
effectiveness, which make them particularly appealing for long-haul freight transportation.
Although scientific studies on autonomous trucks have been relatively limited compared
to the extensive work performed on autonomous cars, a rapidly growing body of literature
and industry focus is emerging in this field [14,15].

Existing studies reveal a global interest in developing autonomous trucks [16]. Re-
searchers and industry experts worldwide have explored various aspects of autonomous
truck technology, including control systems, navigation algorithms, maintenance planning,
and economic considerations. Interestingly, the literature on autonomous vehicles extends
beyond the land-based transportation industry, with studies examining the potential oppor-
tunities for using autonomous vessels in logistics. This suggests that the broader concept
of autonomous transportation is not limited to road-based vehicles but is being explored
across different modes of transportation, highlighting the far-reaching significance of this
technological revolution [17]. In a global context, the United States has emerged as a key
player in the development of autonomous trucks [18]. Thus, researchers and industry
stakeholders in this geographical area are particularly focused on addressing the unique
challenges and opportunities presented by the introduction of autonomous trucks, includ-
ing the potential impact on the truck-driving workforce, the integration of these vehicles
into existing transportation infrastructure, and the public perception of autonomous freight
transportation [16,19].

North Dakota is emerging as a pivotal testing ground for autonomous trucking tech-
nology in the United States, with its unique geographical and economic conditions driving
adoption [20]. The state’s vast agricultural landscape, coupled with long transport dis-
tances and labor shortages, presents an ideal use case for Avs [21]. Autonomous trucking
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has already seen implementation through projects such as the Minn-Dak Farmers Coop-
erative’s leader-follower platooning system, where sugar beets are transported between
piling locations and processing facilities using a human-driven lead vehicle followed by an
autonomous truck (see Figure 1). This system, operational during the 2023–2024 harvest
season, leverages advanced technologies such as real-time kinematic GPS and encrypted
vehicle-to-vehicle (V2V) communication to ensure seamless operations in rural areas. The
program demonstrated significant resilience under harsh winter conditions, showcasing
the technology’s ability to consistently navigate snow, ice, and extreme cold. Such ad-
vancements highlight North Dakota’s commitment to pioneering AV integration in the
agricultural sector. Therefore, it is necessary to note that the goal of developing the Miin-
Dak Farmers’ Cooperative is not to eliminate the driver but rather to offer an alternative
when qualified drivers are unavailable.

 

Figure 1. Pilot deployment Route 1 of autonomous trucks by Minn-Dak [6].

Similarly to the Brønnøy Kalk project with Volvo Autonomous Solutions [22], which
focuses on deploying a commercial autonomous transport solution for transporting lime-
stone from a mine to a crusher, Figure 2 shows technology deployment across sequential
supply chain stages. This indicates process flow and technological interdependencies
between production, processing, and distribution operations. At the Production level, ATS
relies on LiDAR for precision navigation in unstructured farm environments, enabling 3D
mapping and real-time obstacle detection. AI-powered navigation systems dynamically
adjust routes based on soil conditions, crop placement, and environmental factors, ensuring
smooth movement across fields [23]. Additionally, autonomous harvesting integration
allows seamless coordination between harvesters and autonomous trucks, reducing down-
time and labor dependency [24,25]. Vehicle-to-Everything (V2X) communication enhances
connectivity, enabling real-time data exchange between trucks, farm machinery, and storage
units for synchronized workflow. At the Processing and Storage stage, GPS and Real-Time
Kinematic (RTK) positioning provide high-precision route tracking, ensuring efficient trans-
port of crops from fields to silos, cold storage, or processing facilities [26]. Fleet telematics
and IoT sensors enable real-time monitoring of perishable goods, ensuring quality control
while optimizing fuel efficiency [27]. Moreover, autonomous docking and loading systems
streamline truck alignments for automated grain loading and unloading, thereby reducing
human intervention and minimizing waste [28]. Conversely, cloud-based analytics enhance
predictive maintenance, fuel efficiency, and route optimization, ultimately minimizing
supply chain disruptions [29].
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Figure 2. Key enabling technologies of ATS in agricultural supply chains.

In the distribution and logistics phase, platooning technology enables the coordinated
movement of multiple autonomous trucks, reducing fuel consumption through aerody-
namic efficiency and synchronized acceleration [30]. Smart traffic management systems
optimize delivery routes by leveraging real-time traffic data, AI-driven congestion anal-
ysis, and infrastructure integration. Additionally, cold chain monitoring sensors ensure
precise temperature and humidity control for perishable goods, securing food quality
during transit to markets or export hubs [31]. Cybersecurity frameworks and blockchain
integration safeguard supply chain transparency, securing transaction data and preventing
fraud [32]. By integrating these technologies across all three supply chain dimensions,
ATS significantly enhances operational efficiency, reduces costs, minimizes environmental
impact, and modernizes North Dakota’s agricultural logistics infrastructure.

However, the state faces challenges in fully leveraging autonomous trucking [20].
Infrastructure is a critical concern, as many rural highways lack the necessary features,
such as clear lane markings, robust connectivity, and smooth road surfaces, to support
AV deployment. According to Brian Routhier [33], most autonomous trucks operate in
a mixed environment alongside traditional vehicles, which raises concerns regarding
safety and traffic management. To address this, North Dakota has taken steps to align
legislation with AV requirements, allowing limited platooning operations since 2019 [34].
However, updates are needed to enable fully driverless truck dependency and expand
deployment to non-trunk highways. Thus, autonomous trucks should be able to operate
independently on the road, without accompanying vehicles. Beyond legislation, public
and industry trust in AV technology is vital. State initiatives, such as engaging tribal and
rural communities to build awareness and technical capacity, emphasize collaborative
approaches to overcome skepticism [35]. Hence, as a major exporter in the Northern Great
Plains [36], these efforts, combined with technological advancements, may position North
Dakota as a leader in autonomous trucking innovation in the region, with significant
implications for the agricultural sector and beyond.

3. Research Methodology
Comprehensive literature studies were conducted to provide an overview of the status

of autonomous trucks in North Dakota’s agriculture industry, their impact on the supply
chain, and the challenges they encounter. The integration of a Systematic Literature Review
(SLR) by Mengist et al. [37] and Event History Analysis (EHA) employed by Van de Ven [38]
are utilized to address the following research questions.

- What is the status of autonomous trucks in ND’s agricultural industry?
- How does AT impact ND’s agricultural supply chain?
- What are the pressing challenges of AT implementation in ND?
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The SLR collects studies from reputable academic databases and systematically an-
alyzes them to select the most relevant studies. However, the EHA approach focuses
on collecting archival data from events within the innovation system; data is primarily
derived from reports, periodicals, newspapers, and press releases. Figure 3 stipulates the
framework of the methodology.

Figure 3. Methodological framework.

The study is partitioned into two sections. Initially, the SLR approach is implemented
by employing two research databases: Scopus and Web of Science. These databases are
used because they have the most influential papers [39,40]. The primary search terms were
Autonomous Trucks or Autonomous Vehicles and Agriculture. This topic is not unfamiliar
to scholars in this discipline, as evidenced by the extensive collection of peer-reviewed
articles. To ensure that the search results were relevant to the study’s interests, the search
was restricted to “Autonomous Truck*” OR “autonomous vehicle*” AND “agric*” AND
“United State*”, excluding non-English papers, ultimately yielding 61 research publications.
A snowball technique is also employed to obtain more papers, resulting in an additional
12 papers. Thus, the references of three studies, such as Jones et al. [41], Bridgelall et al. [42],
and Kim et al. [15], are used to identify the 12 additional studies. After scanning the titles
and abstracts, nine duplicate studies were found.

Secondly, considering the technical nature of this topic, data were gathered from
other academic and non-academic literature using the EHA approach. The search was
conducted in the ProQuest database, yielding 15 academic reports and theses. Additionally,
10 presentation reports from the Autonomous Trucking Conference, organized by the Upper
Great Plains Transportation Institute (UGPTI) on 16–17 October 2024, in Bismarck, ND, were
included, bringing the total to 25. Stakeholders from the transportation and autonomous
vehicle industries, technical experts, highway safety specialists, enforcement personnel,
regulatory agency staff, local and tribal government staff, and researchers comprised more
than 120 attendees at the conference. The participants exchanged ideas and collaborated to
identify shared interests and concerns regarding autonomous trucks in North Dakota.

After reviewing the full texts of the 89 studies, using the eligibility criteria outlined in
Table 1, 52 essential studies were selected. The information gathered using the methodology,
as mentioned earlier, is highlighted as innovative approaches to enhance the localization,
control, and trajectory monitoring of autonomous machinery in agricultural environments.
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Some publications examine the use of deep learning and low-cost positioning systems to
improve the accuracy and efficiency of these vehicles, representing an increasing trend
toward accessible precision agriculture. Furthermore, they explore the challenges and op-
portunities of deploying autonomous mobile robots in dynamic agricultural contexts. This
includes the possibility for applications in regions such as the broad agricultural expanses
of North Dakota. This research collectively emphasizes the transformative potential of
autonomous systems to enhance agricultural productivity and sustainability.

Table 1. Eligibility criteria for relevant studies.

Eligibility Exclusion Criteria Inclusion Criteria

1 The study is unrelated to
agriculture or farming.

The study focuses on autonomous
trucks or vehicle systems.

2 It lacks relevance to North Dakota
or similar regions.

It relates to the agricultural or
farming sector.

3 It mentions explicitly or applies to
North Dakota.

Moreover, the selected studies are categorized based on the Social–Ecological–
Technological Systems (SETS) framework. The SETS framework recognizes that complex
systems emerge from the dynamic interactions between social, ecological, and technological
dimensions, with each dimension containing multiple interconnected components that
collectively determine system outcomes [43,44]. Hence, the classifications of the studies are
presented in Tables 2 and 3. It serves as a basis to address the research questions.

3.1. Categorization of Relevant Papers

As presented in Table 2, organizing and contextualizing the selected papers within
the domain of autonomous trucks and vehicle systems in agriculture is crucial through
systematic categorization of research articles. The analysis of the categorized papers re-
vealed several significant trends and gaps. The Technological and Economic dimensions
represent the technological system encompassing innovation capabilities and resource
mobilization; Social Change and Legal dimensions constitute the social system including
institutional frameworks, governance structures, and community acceptance; Environmen-
tal and Challenges dimensions reflect the ecological system and cross-system barriers that
emerge from misalignments between social, ecological, and technological components. This
framework emphasizes that successful technology adoption requires coordination across
all three systems, where technological readiness should align with social acceptance and
institutional support while addressing ecological sustainability constraints and systemic
implementation challenges [45].

Considering the EHA approach, further reports and theses were systematically classi-
fied into the exact six predetermined dimensions. Compared to the previously examined
corpus of peer-reviewed papers through SLR, the EHA data also emphasizes the domi-
nance of the Technological and economic categories. These papers strongly emphasize
developments in automation systems and economic feasibility, aligning with the trends in
academic literature. However, unlike the SLR categorization, the EHA categorization has a
slightly higher representation in the Social Change category, particularly when investigat-
ing community-level implications and acceptance of autonomous agricultural technologies.
As presented in Table 3, the Legality and Environment categories are underexplored in
both datasets, indicating a persistent lack of attention to regulatory frameworks and envi-
ronmental consequences. Furthermore, the Challenges category in the EHA data highlights
operational and infrastructure obstacles similar to those identified in academic studies,
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but with greater emphasis on the practical challenges stakeholders encounter during
real-world implementations.

Table 2. Category of selected papers from the SLR approach.

Author Technological Economic Social Change Legality Environment Challenges

Bayar et al. [46]
√ √

C. Badgujar et al. [47]
√ √ √

Guo & Zhang [48]
√ √

Liu et al. [49]
√ √ √

Zha et al. [50]
√ √

Kassai et al. [19]
√ √ √

Durand-Petiteville et al. [51]
√ √ √

C. Badgujar et al. [52]
√ √ √

Hunter et al. [53]
√ √

C. M. Badgujar et al. [54]
√ √

Mack et al. [55]
√ √ √

Faryadi & Mohammadpour Velni [56]
√ √ √

Bell et al. [57]
√ √

Neupane et al. [58]
√ √ √ √ √

Alves Nogueira et al. [59]
√ √ √

Joseph D. Rounsaville et al. [60]
√

Badgujar et al. [61]
√ √ √

Li et al. [62]
√ √

Deka et al. [63]
√ √

Carrière & Hermand [64]
√

Chi et al. [65]
√ √

Kim et al. [15]
√ √

Bridgelall [66]
√ √

Bridgelall et al. [42]
√ √ √ √ √ √

Joshua Krank [67]
√ √

Etezadi & Eshkabilov [68]
√ √

Talebian & Mishra [69]
√ √ √

Uddin [70]
√ √ √ √

Du et al. [71]
√ √

Fagnant & Kockelman [72]
√ √ √ √ √

Pedersen et al. [73]
√ √

Sara et al. [74]
√ √ √ √

Jones et al. [41]
√

Stock & Gardezi [75]
√ √ √

Guangnan Chen [76]
√ √

Mirzazadeh et al. [77]
√ √ √ √
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Table 3. Category of selected papers from the EHA approach.

Author Technological Economic Social Change Legality Environment Challenges

Pederson [78]
√

Christopher Joseph
Duchsherer [79]

√ √

Niederluecke et al. [80]
√ √

Delavarpour et al. [81]
√

Dooley [82]
√

Mirzazadeh [83]
√ √ √

Richard Bishop [84]
√ √ √

Greg Lardy [21]
√ √

Maynard Factor [34]
√ √ √

Mike Metzger [6]
√ √ √

John Sova [85]
√

Brian Routhier [33]
√ √ √

Russ Buchhilz [86]
√ √ √

Raj Bridgelall [87]
√ √ √

Heidi Corcoran [35]
√ √ √ √

Ron Hall [88]
√ √ √ √

This integrated analysis demonstrates complementary insights from academic and
event history data. While peer-reviewed research provides theoretical and methodological
rigor, EHA reports offer practical and contextual insights, enhancing our understanding of
the factors influencing the adoption and integration of self-driving vehicles in agriculture.
Together, these analyses provide a comprehensive platform for addressing technologi-
cal, economic, and societal needs in advancing autonomous systems in North Dakota
and elsewhere.

3.2. Technology Readiness Level Assessment

To systematically evaluate technology maturity, each technological component identi-
fied in the literature was assessed using the nine-level Technology Readiness Level (TRL)
framework developed by NASA. As illustrated in Figure 4, the TRL assessment process
involved four stages.

Figure 4. Technology readiness level assessment process.
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Stage 1: Technology Extraction—All technological components mentioned across the
52 selected studies were systematically identified and categorized into six primary domains:
navigation systems, communication systems, control algorithms, sensor technologies,
integration platforms, and operational support systems.

Stage 2: Evidence Classification—For each technology, evidence was collected regard-
ing development status, testing environment, performance validation, and commercial
deployment. Evidence types included laboratory studies (TRL 1–4), field testing pro-
grams (TRL 5–6), pilot deployments (TRL 7–8), and operational implementations (TRL 9).
Assessment criteria specifically considered North Dakota’s agricultural environment, in-
cluding harsh weather conditions, limited rural infrastructure, and economic constraints as
described in the literature

Stage 3: Independent Assessment with Inter-Rater Reliability Measures—Four re-
searchers independently assigned TRLs to each technology based on the highest level of
maturity evidence found in the literature. Each assessor evaluated all 43 technologies using
standardized TRL criteria adapted for agricultural applications. Inter-rater reliability was
quantified using Fleiss’s kappa (k) for categorical agreement among multiple raters and the
Intraclass Correlation Coefficient (ICC) for consistency assessment. The multiple reliability
measures are calculated using the following equations:

k =

(
P0 − Pe

1 − Pe

)
(1)

ICC =
(MSR − MSE)(

MSR + (k − 1)MSE + k
(

MSC−MSE
n

)) (2)

Stage 4: Consensus and Validation—Technologies with initial disagreements under-
went structured consensus resolution where disagreeing assessors presented supporting
evidence for their ratings, specific agricultural application criteria were refined, and inde-
pendent reassessment was conducted using clarified criteria. Final TRL assignments were
validated against current commercial availability and deployment status in agricultural
applications. Statistical analysis was conducted using Python 3.13.3 c with bias-corrected
bootstrap confidence intervals.

4. Results and Discussion
Adopting ATS in North Dakota’s agricultural supply chain marks a significant step

toward improving efficiency and addressing long-standing logistical challenges. Using
NVivo 14.24 to identify themes and recurring concepts, a word cloud is generated in
Figure 5. The selected studies stipulate key themes, including advancements in precision
logistics, the role of sensors and monitoring technologies in optimizing transportation op-
erations, and the integration of remote navigation systems to streamline the movement of
agricultural goods. Studies by Hasiri and Kermanshah [89] and Sindi and Woodman [90]
indicate that autonomous trucks enhance the harvesting-to-market process, reducing delays,
improving fuel efficiency, and mitigating labor shortages that often hinder supply chain
performance. Furthermore, innovations in control systems and transportation technologies
have enabled better management of large-scale farming operations across North Dakota’s
vast agricultural landscapes. Although Figure 5 provides a general thematic overview, the
primary analytical insights derive from the systematic six-dimensional categorization and
TRL assessment frameworks presented in subsequent sections.
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Figure 5. Word cloud of identified themes from the selected studies.

4.1. Impacts of Autonomous Trucks on the North Dakota Agricultural Supply Chain

Integrating autonomous trucks into the agricultural supply chain can transform lo-
gistics by addressing critical inefficiencies, labor shortages, and cost barriers. In North
Dakota, where agriculture is a cornerstone of the economy, autonomous trucking provides
a much-needed solution to challenges such as the aging trucking workforce and seasonal
labor shortages. Over 60% of the state’s commercial driver’s license (CDL) holders are
50 or older, creating a growing gap in available drivers for long-haul and short-haul agri-
cultural transport [86]. Autonomous trucks, such as those deployed by Minn-Dak Farmers
Cooperative, mitigate these challenges by reducing dependency on human drivers while
enhancing safety and hauling productivity [6].

It is essential to recognize that the feasibility of ATS varies across different segments
of the ASC. For instance, transporting sugar beets from piling stations to processing
plants, as seen in Figure 1, demonstrates the potential for automation on predefined,
structured routes with minimal variability [6]. However, adopting autonomous trucks for
field-to-piling station transport presents more significant challenges due to unstructured
terrains, short travel distances, and the need for human supervision during loading and
unloading. Similarly, for grain transportation, autonomous trucks could feasibly operate
on routes between elevators and processing or intermodal facilities, where roads are better
defined. However, the transition from fields to local grain elevators remains more complex,
requiring additional technological advancements to address terrain variability and short-
haul logistics. These advancements should include terrain-adaptive navigation systems
such as Terrain Adaptive Navigation (TANav) and Terrain Relative Navigation (TRN) to
handle uneven, unstructured farm terrain [91,92], enhanced AI-driven load handling, such
as Autonomous Mobile Robots (AMRs) and Forklifts, and Predictive Analytics and Demand
Forecasting, and more reliable short-haul automation, including Building management
systems (BMS) to manage variable field conditions and human-assisted operations [93,94].

In addition to addressing labor shortages, autonomous trucks improve supply chain
efficiency by reducing delays and optimizing transport routes [95]. Automated vehicles
equipped with advanced RTK GPS systems and obstacle-detection technologies can navi-
gate rural roads more accurately and with less downtime than traditional trucks [34]. This
is particularly critical for time-sensitive agricultural products, such as sugar beets, where
delays can compromise quality. The deployment of ATS also minimizes risks associated
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with human error, such as overweight loads, speeding, or fatigue-related accidents [94].
For instance, automated monitoring systems ensure compliance with safety standards,
reducing the likelihood of regulatory penalties and logistical disruptions.

Moreover, Figure 6 effectively illustrates the incorporation of ATS into the agricultural
supply chain in North Dakota, a state renowned for its extensive production of wheat,
soybeans, corn, and livestock. In North Dakota’s agricultural industry, farms serve as the
starting point, where crops and livestock are raised across vast rural landscapes. Once har-
vested, raw products are transported to processing plants, such as grain elevators and food
processing facilities, where they are cleaned, milled, or packaged for distribution. Some
of the processed goods are stored in facilities, including grain silos and refrigerated ware-
houses, which help regulate supply and manage seasonal fluctuations. Autonomous trucks
are crucial in optimizing transportation across North Dakota’s extensive road network,
ensuring the efficient movement of goods to key locations.

Figure 6. ATS workflow in ASC.

These trucks transport products to distribution centers and central hubs, where they
are sorted and directed to various destinations. From there, agricultural products follow
two main pathways: they either reach local markets, such as grocery stores, farmers’
markets, and food manufacturers across North Dakota and neighboring states, or they are
prepared for export, where grains, meats, and other commodities are shipped via rail or
through ports like the Duluth Seaway Port on the Great Lakes. By integrating autonomous
trucks, North Dakota’s agricultural supply chain benefits from reduced transportation
costs, optimized routing, and enhanced efficiency in delivering farm products to processing
plants, storage facilities, markets, and export hubs [66]. This automation helps address
labor shortages in trucking and ensures that North Dakota’s agricultural output reaches
both domestic and global markets more reliably and efficiently.

However, the impact of autonomous trucking extends beyond operational efficiency;
it also influences the broader agricultural supply chain by enabling large-scale, centralized
operations [89]. As farms consolidate and expand, the increased volume of goods to
transport places a more significant strain on existing logistics networks. Autonomous
trucks can alleviate these pressures by providing scalable solutions that align with the
trend toward higher yields and larger production volumes. Furthermore, the ability of ATS
to collect real-time data provides a competitive advantage, enabling operators to analyze
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and refine their supply chain performance over time. Despite these benefits, significant
challenges remain as barriers, as depicted in Tables 2 and 3.

4.2. Technology Readiness Level Analysis

The TRL assessment demonstrated methodological rigor with an ICC of 0.924, indicat-
ing very high consistency among the four independent raters. While perfect agreement was
achieved for 14.0% of technologies, all assessments showed agreement within ±1 TRLs,
demonstrating practical consensus despite minor variations in ratings. The initial Fleiss’s
κ of 0.468 improved substantially through structured consensus resolution to κ = 0.890,
achieving almost perfect agreement and validating the reliability of the TRL assessment
framework for strategic technology planning in North Dakota’s agricultural autonomous
truck systems.

The technology maturity analysis in Table 4 revealed significant variation across
autonomous truck systems, with 39.5% of technologies achieving commercial readiness
(TRL 8–9) and 37.2% in demonstration or development phases (TRL 6–7). Technologies
requiring further validation (TRL 4–5) comprised 18.6% of the assessment, while only
4.7% remained in early research phases (TRL 1–3), indicating substantial progress toward
deployment readiness across the technology industries compared to broader automotive
industry assessments, which typically show higher proportions of early-stage technologies.

Table 4. Technology readiness level distribution.

Readiness Level TRL Category Count Percentage Key Technologies

TRL 8–9 Commercial 17 39.5% GPS/RTK, V2V Communication, Platooning

TRL 6–7 Development 16 37.2% Computer Vision, Path Planning

TRL 4–5 Validation 8 18.6% Cold-weather Sensors, Autonomous Docking

TRL 1–3 Research 2 4.7% Swarm Intelligence, Blockchain

Sensor technologies demonstrated the highest commercial maturity with 62.5% of
technologies at TRL 8–9, followed by navigation systems at 50% commercial readiness.
This pattern reflects the essential role of sensor and navigation technologies in autonomous
truck development, consistent with the European Space Agency’s adoption of these tech-
nologies for space applications [96]. The communication systems demonstrated balanced
growth, with 42.9% being commercial-ready, aligning with the widespread implementation
of TRL frameworks across European Union research and innovation programs since the
introduction of the Horizon 2020 framework [97]. Integration platforms presented the
most significant development challenge, with only 16.7% achieving commercial readiness,
reflecting the complex nature of system-level integration challenges documented in interna-
tional TRL assessment literature [98]. Control algorithms and operational support systems
both achieved 28.6% commercial readiness, indicating moderate maturity levels requiring
focused development investment.

The distribution supports a strategic three-phase deployment approach, with 17 tech-
nologies ready for immediate implementation, leveraging proven capabilities demon-
strated in operations such as the Minn-Dak Farmers Cooperative deployment [6]. This
finding aligns with established TRL methodology principles, where the International
Organization for Standardization emphasizes deployment strategies beginning with the
highest-readiness technologies [99]. Therefore, the substantial proportion of technologies in
advanced development phases (TRL 6–7) provides a strong pipeline for near-term commer-
cial readiness, consistent with the systematic approach to technology assessment developed
in agricultural innovation research [98]. The limited number of early-stage research tech-
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nologies suggests a mature technology landscape approaching the feasibility of widespread
deployment, supporting a balanced readiness assessment approach that considers multiple
dimensions of technology maturity beyond technical development alone.

The TRL assessment supports a strategic three-phase implementation approach
grounded in agricultural technology adoption patterns and autonomous truck develop-
ment. Phase 1 (Years 1–2) focuses on deploying proven TRL 8–9 technologies on structured
routes, demonstrated by operational implementations like Minn-Dak Farmers Coopera-
tive’s leader-follower platooning system, achieving deployment within this timeframe [100].
Phase 2 (Years 3–5) prioritizes advancing TRL 4–6 technologies through strategic partner-
ships, with the timeline directly aligned with industry projections that autonomous trucking
services will become commercially available in 2026 or later, and fully autonomous trucking
expected to reach viability between 2028 and 2031 [101,102]. Phase 3 (Years 6–10) sup-
ports long-term research in TRL 1–3 technologies, reflecting the substantial investment
requirements where more than $4 billion is needed for full-journey autonomous trucks
and the extended development timelines required for foundational technologies to reach
commercial deployment [101]. This phased approach encompasses overlapping priority
areas, allowing for flexibility to accommodate breakthrough innovations or regulatory
changes that may accelerate or delay specific technology advancement trajectories.

4.3. Challenges of Autonomous Truck System Implementation

Tables 2 and 3 show that deploying ATS in agriculture encounters substantial chal-
lenges. As visualized in Figure 7, these challenges can be categorized into five criteria.
Autonomous systems face technological constraints related to sensor precision, connectivity,
and adaptability in unstructured agricultural settings [57,103,104]. The uneven adoption of
smart farming poses operational challenges that existing sensors and navigation systems
are inadequately equipped to tackle [105]. Thus, inadequate broadband systems, includ-
ing unstable connectivity, limited network size, and low data transmission rates in rural
regions, significantly impede real-time data transfer and remote operational capabilities,
presenting a substantial obstacle to effective deployment [106]. In particular, the high
capital cost of acquiring and integrating autonomous trucks is prohibitive for small and
medium-sized agricultural operations from an economic perspective [21,46]. In addition
to the absence of accessible financing mechanisms and uncertain return-on-investment
metrics, this economic constraint exacerbates the disparity in adoption.

Figure 7. Challenges of AT implementation in the agricultural industry.
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Legal and regulatory barriers intensify these impediments [35,82]. The fragmented
regulatory framework across US states provides significant legal ambiguity, especially
for agricultural supply networks that span state borders. Specifically, North Dakota’s au-
tonomous vehicle legislation authorizes full deployment with or without a human operator,
contrasting with more restrictive approaches in states like California and New York [107].
The lack of standardized federal regulations for testing and deploying autonomous farm
vehicles hinders cross-state operations and discourages investment in this technology.

Social acceptance remains a significant issue as rural communities contend with ap-
prehensions around labor displacement and distrust towards autonomous systems [83,88].
Environmental factors, such as the energy consumption of autonomous technology and the
emissions generated during manufacturing, hinder the sustainable implementation of these
technologies [19,108]. Moreover, deficient rural infrastructure and limited farmer training
hinder smooth incorporation into current activities. Addressing these problems requires
a collaborative approach that incorporates technological innovation, federal regulatory
alignment, economic incentives, and community involvement to ensure the responsible
and equitable use of autonomous truck systems in agriculture.

4.4. Future Development of Autonomous Trucking

The future of autonomous trucking in agriculture is poised to be transformative,
driven by technological advancements and evolving industry needs. As demand for
agricultural efficiency grows, autonomous trucking technologies are poised to address
ongoing challenges, including labor shortages, logistical bottlenecks, and rising trans-
portation costs [109,110]. North Dakota’s pilot programs, such as the Minn-Dak Farmers
Cooperative’s leader-follower platooning system, offer a glimpse of this future [6]. These
initiatives demonstrate how automation can improve reliability and operational efficiency,
particularly for repetitive, short-haul routes in rural settings [111,112].

As presented in Figure 8, the future advancement of autonomous trucks will depend
on advanced communication systems, instantaneous data processing, and flawless inter-
operability across vehicles, infrastructure, and decision-making platforms [113]. Critical
technologies, such as emergency detection algorithms, RFID systems, and cellular networks,
will enhance safety, facilitate regulatory compliance, and improve operational efficiency.
Standardized communication protocols and strong cybersecurity safeguards will be es-
sential for the robustness and scalability of autonomous transportation systems. As 5G
and edge computing converge, these developments will enable faster and more reliable
responses, resulting in an ecosystem that supports the safe and efficient deployment of
autonomous trucks across diverse conditions.

Figure 8. High-level logical architecture of autonomous truck systems [33].
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A significant aspect of future development is the technological advancements that
enhance the versatility, efficiency, and accessibility of autonomous trucks. Adopting retrofit
kits, such as those developed by Kratos Defense, enables traditional trucks to be converted
into autonomous vehicles without necessitating costly fleet replacement [34]. These bolt-on
systems include RTK GPS, obstacle detection sensors, and encrypted V2V communication,
ensuring precise navigation and operational safety even in GPS-degraded environments.
The modularity of these systems enables farmers to transfer them between vehicles, extend-
ing the life cycle of automation investments and reducing upfront costs.

Moreover, advancements in V2X communication are expected to be pivotal in the
next phase of AV deployment [87]. This technology enables seamless interaction among
autonomous trucks, infrastructure, and other road users, facilitating more coordinated
and efficient transportation systems. According to Raj Bridgelall [87], implementing V2X
could significantly reduce fuel consumption and improve traffic flow, especially in rural
areas where traditional infrastructure often struggles to support modern transportation
needs. These advancements, combined with improvements in battery technology for
electric autonomous vehicles (AVs), further align autonomous trucking with the agricultural
industry’s goals of sustainability and reduced environmental impact.

Although the prospects are favorable, obstacles persist. Policy reform and public
acceptance will be crucial in determining the rate of adoption. Legislative updates are
needed to enable broader deployment of fully autonomous trucks in North Dakota and
other rural states, where regulations limit operations to specific highways or require a
safety driver onboard. Additionally, fostering trust in technology through public education
and stakeholder engagement will be crucial, especially among rural and tribal communities
that may perceive AVs as a threat to traditional jobs [88,114]. Ultimately, the effective
integration of autonomous trucking into agriculture will depend on the incorporation
of cutting-edge technological innovations and collaborative efforts among policymakers,
industry leaders, and agricultural stakeholders. These developments position autonomous
vehicles to transform agricultural logistics, ensuring North Dakota leads in technical
innovation while addressing the increasing demands of a global food system.

4.5. Policy and Research Implications

The transformative potential of autonomous truck systems within North Dakota’s agri-
cultural supply chain necessitates the establishment of coordinated policy frameworks that
effectively address the fragmented regulatory landscape present across various states in the
United States. This is particularly pertinent considering that agricultural supply networks
inherently extend across multiple jurisdictions. As illustrated in Figure 9, the patchwork
of state-level regulations creates operational complexity for agricultural operators whose
grain, livestock, and crop transportation routes cross state boundaries. North Dakota’s
progressive stance, explicitly permitting autonomous truck testing and deployment since
2019, demonstrates the importance of clear regulatory frameworks in fostering agricultural
logistics innovation [34]. However, federal policy coordination is essential to establish
standardized guidelines specifically addressing autonomous truck operations in agricul-
ture, including protocols for farm-to-market transportation, cross-state grain hauling, and
seasonal deployment patterns unique to agricultural supply chains. The TRL analysis
reveals that regulatory uncertainty particularly impacts TRL 6–7 technologies, such as
autonomous docking systems for grain elevators and advanced sensor fusion technologies
for agricultural route optimization, which require clear safety standards and certification
processes before widespread deployment in agricultural supply chains.
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Figure 9. State AV laws and regulations [115].

Moreover, strategic infrastructure investments aligned with technology readiness
levels are crucial for enabling autonomous truck systems to enhance North Dakota’s agri-
cultural supply chain efficiency. High-readiness technologies (TRL 8–9), such as GPS/RTK
positioning and V2V communication systems, can achieve immediate deployment benefits
through targeted enhancements to agricultural transportation corridors. These enhance-
ments include expanded broadband connectivity for rural grain elevators, improved road
markings on farm-to-market routes, and communication infrastructure supporting vehicle-
to-infrastructure systems at processing facilities. For development-phase technologies
(TRL 4–6), infrastructure investments should focus on creating agricultural-specific testbeds
that address North Dakota’s unique supply chain challenges, particularly in cold-weather
testing facilities where autonomous trucks can validate their winter operations capabili-
ties, essential for year-round grain transportation and livestock hauling. Public–private
partnerships should establish dedicated testing corridors connecting farms, grain elevators,
and processing facilities, generating real-world performance data essential for advancing
autonomous truck technologies from TRL 4–6 to commercial readiness in agricultural
supply chain applications.

Additionally, research funding priorities should target critical technology gaps identi-
fied in the TRL analysis, with particular emphasis on advancing autonomous truck systems
from development phases to commercial deployment in agricultural supply chain opera-
tions. Cold-weather operations research represents the highest priority for North Dakota’s
agricultural transportation division, as current systems demonstrate limited effectiveness
in extreme winter conditions where temperatures reach −30 ◦F, presenting significant chal-
lenges for autonomous trucks transporting grain, livestock, and agricultural inputs across
the state’s vast supply network. Hence, research investments should focus on developing
winterized sensor packages, advanced heating systems for critical components, and AI al-
gorithms specifically adapted to navigate snow and ice conditions safely while maintaining
supply chain reliability. Additionally, terrain-adaptive navigation systems require focused
research investment to enable autonomous truck operations beyond structured highways,
particularly for farm-to-elevator transportation on unpaved rural roads and the variable
terrain characteristic of agricultural environments. Human-automation interaction research
is crucial for addressing social acceptance challenges in rural communities, investigating
optimal models for collaboration between autonomous trucks and agricultural workers,
and developing workforce transition strategies that position autonomous systems as tools
that enhance human capabilities rather than replace agricultural employment.

Economic policy mechanisms should address the high capital costs that present adop-
tion barriers for small and medium-sized agricultural operations seeking to integrate
autonomous trucks into their supply chain operations. Targeted financial incentives, in-
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cluding tax credits for the adoption of autonomous trucks in agricultural applications
and cooperative ownership models that leverage North Dakota’s strong agricultural co-
operative tradition, represent promising approaches for sharing technology costs among
multiple farming operations while transforming supply chain efficiency. Policy support
should include regulatory flexibility for shared autonomous truck fleets serving multiple
agricultural cooperatives, financing assistance for cooperative technology investments, and
technical assistance for developing collaborative autonomous transportation programs that
optimize grain hauling, livestock transportation, and agricultural input delivery across the
state’s extensive farming regions. Research and development tax credits should specifically
target technologies at TRL 4–6 critical for agricultural applications, encouraging private
sector investment in autonomous truck systems designed for agricultural supply chain op-
timization. This support will also facilitate field testing and validation activities, which are
essential for advancing technology readiness levels in real-world agricultural operations.
By aligning policy frameworks with technology readiness levels, prioritizing agricultural
supply chain-specific research gaps, and addressing economic barriers through cooperative
models, North Dakota can position itself as a leader in agricultural innovation, ensuring
that autonomous truck systems contribute to a sustainable, efficient, and economically
viable transformation of the agricultural supply chain.

5. Conclusions and Future Directions
This comprehensive study provides a theoretical understanding of agricultural tech-

nology adoption by demonstrating how the SETS framework provides superior analytical
power for understanding complex innovation adoption processes. The systematic inte-
gration of SETS with TRL assessment reveals critical mechanistic insights: technological
maturity operates as a mediating variable between system capabilities and adoption barri-
ers, where higher TRLs (8–9) significantly reduce implementation complexity across social
and environmental dimensions. The analysis reveals that autonomous truck adoption
follows a predictable pattern, where technological system advancements systematically
influence social system receptivity through three interconnected pathways: trust formation
influenced by observable technology performance, economic utility perception shaped
by demonstrated cost–benefit ratios, and cultural compatibility determined by alignment
with existing agricultural practices. The predominant focus on technological and economic
dimensions in the current literature versus limited social change research indicates a mis-
alignment between research priorities and adoption requirements, suggesting that social
acceptance operates as a critical gatekeeper mechanism determining whether technolog-
ically mature systems achieve practical implementation. The regulatory fragmentation
analysis reveals a policy innovation lag mechanism, where technological advancements
consistently outpace regulatory adaptation, creating implementation barriers that persist
across jurisdictions. This demonstrates how regulatory approaches fundamentally shape
technology adoption trajectories through jurisdictional arbitrage effects, where agricultural
operations gravitate toward supportive regulatory environments.

The deployment strategy outlines key mechanisms in agricultural technology adop-
tion, where Phase 1 leverages the demonstration effects of high-readiness technologies to
create observable benefits, Phase 2 operates through diffusion mechanisms, where early
adopter success reduces perceived risks for mainstream operations, and Phase 3 relies
on institutional pressure mechanisms to drive adoption among traditionally conservative
operators. This progression reflects the adoption pathway dependencies, where each phase
creates enabling conditions for subsequent stages, requiring sustained coordination across
technological, social, and regulatory dimensions, rather than isolated technology-push
strategies. The TRL assessment framework implies a cost-readiness relationship, where
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higher TRLs correspond to lower implementation costs and reduced economic risks. This
suggests that strategic technology investment should prioritize advancing TRL 4–6 tech-
nologies to commercial readiness rather than developing new TRL 1–3 innovations. The
systematic analysis identifies critical research frontiers that require immediate attention,
particularly cold-weather operational research, which represents the highest priority for
North Dakota’s agricultural context. Current TRL 4–6 technologies demonstrate limited
effectiveness in extreme weather conditions essential for year-round agricultural operations.
Additionally, human-automation interaction research emerges as crucial for addressing
social acceptance challenges, requiring an investigation of optimal collaboration models
between autonomous systems and agricultural workers that enhance, rather than replace,
human capabilities in agricultural operations.

As global agricultural systems confront mounting pressures from labor shortages,
climate variability, supply chain disruptions, and sustainability imperatives, autonomous
truck systems emerge as a critical pathway toward resilient, efficient, and economically
viable agricultural supply chains capable of meeting growing global food security de-
mands. This study’s systematic framework provides stakeholders with evidence-based
tools for navigating the complex intersection of technological innovation, social accep-
tance, regulatory compliance, and economic feasibility that determines the success of
autonomous truck adoption. The strategic implementation framework developed through
SETS-guided analysis offers agricultural cooperatives, technology developers, and poli-
cymakers concrete guidance for coordinating autonomous truck deployment efforts by
aligning technological development priorities with social acceptance mechanisms and
regulatory evolution pathways. The findings position North Dakota as a potential leader
in agricultural autonomous truck innovation, while providing transferable insights for
agricultural regions globally seeking to harness the benefits of autonomous technology.
This represents more than technological advancement, but embodies a fundamental shift
toward precision-driven, data-enabled agricultural systems. The transformation of agri-
cultural supply chains through autonomous truck integration establishes the analytical
foundation for realizing this transformative potential through systematic, theoretically
grounded, and practically oriented deployment strategies that address the interconnected
challenges of technological readiness, social acceptance, regulatory harmonization, and
economic accessibility in agricultural innovation adoption.

Accordingly, future research directions should address several critical knowledge
gaps identified through this comprehensive analysis, particularly the need for longitudinal
empirical studies that validate autonomous truck performance under diverse agricultural
conditions and quantitative modeling approaches that provide vigorous cost–benefit as-
sessments for different implementation scenarios. The integration of emerging technologies
such as edge computing, 5G connectivity, and advanced sensor fusion presents opportuni-
ties for developing next-generation autonomous truck systems capable of operating reliably
in unstructured agricultural environments. Additionally, research into human-automation
interaction models specific to agricultural contexts is crucial for developing deployment
strategies that enhance, rather than replace, human expertise in agricultural operations.
The scalability of the findings to other agricultural areas globally represents a significant op-
portunity for expanding the theoretical and practical contributions of this research. At the
same time, the development of standardized evaluation frameworks for autonomous truck
technologies in agriculture could facilitate more effective technology transfer and adoption
across diverse agricultural contexts. As the agricultural sector continues to confront mount-
ing pressures from labor shortages, climate variability, and sustainability imperatives,
the strategic implementation of autonomous truck systems emerges as a critical pathway
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toward resilient, efficient, and economically viable agricultural supply chains that can meet
the growing demands of global food security.
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