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Abstract: This paper offers a novel view for managing and controlling the movement of driverless,
i.e., autonomous, vehicles by converting this movement to a simulated train movement moving on a
rail track. It expands on the “virtual track” theory and creates a model for virtual track autonomous
vehicle management and control based on the ideas and methods of railway train operation. The
developed model and adopted algorithm allow for large-scale autonomous driving vehicle control on
the highway while considering the temporal-spatial distribution of vehicles, temporal-spatial trajec-
tory diagram optimization, and the management and control model and algorithm for autonomous
vehicles, as design goals. The ultimate objective is to increase the safety of the road traffic environment
when autonomous vehicles are operating in it together with human-driven vehicles and achieve more
integrated and precise organization and scheduling of these vehicles in such mixed traffic conditions.
The developed model adopted a “particle swarm” optimization algorithm that is tested in a hypo-
thetical network pending a full-scale test on a real highway. The paper concludes that the proposed
management and control model and algorithm based on the “virtual track” theory is promising and
demonstrates feasibility and effectiveness for further development and future application.

Keywords: virtual track theory; driving automation; autonomous vehicle; temporal-spatial trajectory
diagram; autonomous traffic; autonomous vehicle control; autonomous mobility

1. Introduction

With the advent of autonomous driving and its interaction with connected intelligent
transportation systems, the promotion of an “intelligent” road vehicle network with an
efficient management and control strategy for autonomous vehicles has become an essential
part of autonomous mobility research. Higher requirements and challenges are put forward
for future autonomous transportation infrastructures, the autonomous vehicle management
and control systems, the vehicle-infrastructure cooperated autonomous driving (VICAD)
services, and safety rules. The existing autonomous driving technologies are mainly focused
on single vehicle intelligence and tend to ignore the wider network-related problems
and challenges related to the overall movement of autonomous vehicles on the network,
i.e., the macro-level. There are still problems and issues associated with autonomous driving
when dealing with these challenges. Basically, there are two main areas of consideration:

a. The safety and stability of autonomous vehicles as seen at the micro-level, i.e., the
processing of the individual vehicle movement in the road network, and

b. The safety and stability of the traffic stream at the macro-level, which includes the
movement of the autonomous vehicles in the traffic stream together with other
human-driven vehicles.

The research reported in this paper focuses on both these areas, but primarily on the
second, as it considers the movement and control of autonomous vehicles within a full
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network at mixed traffic conditions. It is doing so by presenting a novel methodology for
converting the autonomous road vehicle movement to a railway-like system in which the
road travel scene of autonomous vehicles is transformed into a railway travel scene. In
this way, conditions are created for the application of railway train operation and control
ideas onto the autonomous road transport operation. In doing so, the proposed “virtual
track” theory application is based on simulating the movement of a batch of autonomous
vehicles on the road network to the movement of a train on the rail network, and then
applying train management and control strategies and algorithms. This idea can be a game
changer since autonomous vehicles do use an extensive array of various sensors, network
controllers, cloud-based services and resource databases, etc., that make their movement
subject to—or particularly suited—to a “guided” way of operation, similar to that of railway
vehicles. Data perception, data transmission, and independent decision-making are the
main characteristics of smart rail vehicles that can eliminate security risks at the vehicle
end. New technologies and business models, such as the use of artificial intelligence, big
data, cloud computing, and the features of the open Internet can better be applied to a
concept that resembles rail vehicle movement, i.e., movement following a track, rather than
that of a free moving road autonomous vehicle.

The strengthening of the safety and stability of the operation of autonomous vehicles,
and the lessening of the risks involved in the operation of autonomous road vehicles by
simulating their movement to match that of a rail vehicle is strengthened by the following
further considerations. The inner software of a road autonomous vehicle has a congenital
safety hazard itself in that, at the beginning of its design, the vehicle’s safety decisions vis a
vis the hazards it can face cannot be manifested clearly, and they cannot be compared to
those perceived by an independent driving individual at present. These decision rules will
be improved with the continuous deepening of vehicle intelligence, networking, and the
interaction with external data. All this, together with the tendency of vehicles to become
more intelligent and more connected, will make automobiles increasingly complex and
more computer-like with software codes that exceed hundreds of millions of lines and a
great number of sensors and Electronic Control Units (ECUs). The issues of successfully
resolving the safety hazards of the vehicle under a large number of situations (application
scenarios) will become increasingly prominent and, at the end, may perhaps be the main
concern of autonomous vehicles manufacturers. The emergence of certain specific scenarios
will always cause a potentially fatal safety hazard for the operation of autonomous vehicles,
and this danger is reduced when equating the movement of road autonomous vehicles
with that of trains moving on a rail track.

Existing autonomous driving technologies primarily focus on the individual vehi-
cles and the use of advanced sensors (radar, camera), controllers, actuators, and vehicle-
mounted sensing systems and information terminals to convert them to autonomous
driving. These technologies will need to be complemented with network-wide applications
of intelligent information exchange between the users (people), the vehicles, the roads,
and the control centers to further enable autonomous vehicles to move safely within the
traffic stream and acquire intelligent environmental perception and other capabilities. The
ultimate goal is to make them able to face the many dangerous situations and states that
can arise in a free and unchecked by a human driver movement in accordance with the
user’s wishes. The method of autonomous traffic control at the macro-level proposed in
this paper addresses the above considerations and enables full and effective control of
their movement by virtually converting the autonomous road vehicle movement to an
equivalent movement of a railway convoy of vehicles (train). So, the research questions to
which this paper will attempt to answer, are:

a. Can we transform the autonomous road vehicles’ operation into a railway-like one?
b. Is the “virtual track” theory and its related mathematics a practical tool for converting

road autonomous vehicles to a train-like process?
c. How can we optimize and control the movement of the “virtual track” autonomous vehicles?
d. How feasible and practical is such a transformation?
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1.1. Literature Review

The focus of this paper is the macro-scale management and control of autonomous
vehicles circulating in the traffic stream together with other human-driven vehicles. The
basic concept is to replicate (simulate) the movement of autonomous vehicles with that
of railway wagon formations, and then apply railway train operation control techniques
to guide highway autonomous driving. The literature review therefore involves a wide
range of fields which have been grouped in four categories starting with the initial basic
vehicle routing problems, then moving on to the more recent work on vehicle formation,
traffic control, dynamic traffic allocation simulation, and finally, to the vehicle following
theories and vehicle trajectory optimization models. At the end, the relevant literature
about the theory and methods of rail transport and train operation control, which are the
most relevant issues to the virtual track theory application used in this paper, are reviewed.

1.1.1. Vehicle Routing, Path Planning and Dispatching

The Vehicle Routing Problem (VRP) is a classic network flow problem. It refers to
the selection of a set of routes that satisfy the demand for movement between an origin
(O) and a destination (D). The original research dates to about 40 years ago, and it was
initiated by trying to solve vehicle path problems for the distribution of goods in urban
areas. It was enhanced later with the need to observe time windows. Dumas et al. [1] were
among the first to put forward a precise algorithm for the routing of multiple vehicles
with multiple destinations (distribution points–warehouses, etc.). This algorithm was
based on the shortest path but with road capacity, time window, priority and coupling
constraints. Psaraftis et al. [2] proposed a dynamic planning solution for a single vehicle,
then developed an algorithm that solved this problem using polynomial time algorithms by
using the O-value (n23n). Ropke et al. [3,4] proposed a different approach using “branches”
and a pricing algorithm in which the basic, non-basic and shortest paths were regarded as
pricing sub-problems in the generation algorithm. Savelsbergh et al. [5], Baldacci et al. [6],
and Visentin et al. [7] made comprehensive reviews and proposed algorithmic solutions to
solve the multiple vehicles, multiple destinations, and the rescheduling problems, as well
as the vehicle formation operation which is examined in the following section.

1.1.2. Vehicle Formation, Traffic Control and Dynamic Traffic Allocation

The vehicle formation problem, which refers to forming a linear group composed of
several vehicles running on the road along the same path with a small distance between
them, has the closest proximity to the research focus of this paper. Through vehicle forma-
tion control, road traffic capacity and vehicle density can be effectively improved, and road
capacity increased. Alvarez and Horowitz [8] developed an early prototype for vehicle
formation in highways. For single lane scenes, their research has designed a safe area for
the two-vehicle formation based on the distance, relative speed, and maximum acceleration
and deceleration rates. Horowitz and Varaiya [9] described the design of the “automatic
highway” system (AHS) that was developed in the PATH (California Partners for Ad-
vanced Transportation Technology of UC Berkeley) research center and evaluated related
vehicle formation methods in both the simulation and physical testing environments. Lioris
et al. [10] verified a fleet of connected vehicles can double the capacity of urban roads by
analyzing three queuing models and other simulation research on road networks, with
a total of 16 intersections and 73 sections. They found that vehicle convoys composed of
platooned vehicles can double the urban road traffic capacity. Several advanced adaptive
traffic signal control systems have been developed in the last three decades within the scope
of network traffic control. They use dynamic programming and predictive optimization
methods to solve platooning traffic control issues, including commercial vehicle platoon
systems. Quite typical of these are the SCOOT system developed by Hunt et al. [11], the
SCATS developed by Lowrie et al. [12], the OPAC by Gartner et al. [13,14], the RHODES sys-
tem by Mirchandani et al. [15,16], and the PAMSCOD system by He et al. [17]. The Rhodes
traffic control system can use dynamic programming and predictive optimization methods
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in the optimal control framework based on “rolling fields”, while the PAMSCOD considers
vehicle formation arrivals when setting a traffic signal. Other notable developments from
the same period were the ALINEA system developed by Papageorgiou et al. [18] and the
MILOS system developed by Gettman et al. [19]. Zhou et al. [20] unveiled the effect of maxi-
mum CAV platoon size in terms of road capacity and traffic flow stability by developing the
analytical formulations of the capacity and flow stability. Ma et al. [21] addressed the robust
optimal control problem for connected and automated vehicle platoons that are subject
simultaneously to uncertain parasitic actuation lag and input delays by formulating robust
optimal control problem as a min–max optimization problem. Shen et al. [22] developed
distributed optimization-based, platoon-centered connected and autonomous vehicle (CAV)
car-following schemes under the linear vehicle dynamics via the model predictive control
approach with a general prediction horizon. Wang et al. [23] proposed a robust cooperative
control (RCC) strategy which is developed as a min–max problem to ensure the safe and
efficient maneuvering of a CAV platoon in the worst-case situation due to uncertainties in
the vehicle dynamics. Zhang et al. [24] developed a platoon-based cooperative lane-change
control (PB-CLC) using a hybrid model predictive control (MPC) system.

The use of dynamic traffic allocation (DTA) models and simulation of user equilibri-
ums and optimization through minimization of traffic congestion costs, is another group
of relevant DTA models. They are used to predict the time-varying traffic flow due to
road capacity constraints and the resulting spatio-temporal congestion changes. The DTA
models use traffic flow theory to spread traffic flow within discrete time periods. This
category includes the VISTA model developed by Ziliaskopoulos et al. [25], the DYNAS-
MART by Mahmassani et al. [26], the DYNAMIT by Ben-Akiva et al. [27], and the DTALITE
model developed by Zhou et al. [28]. Ziliaskopoulos et al. [29], Gao et al. [30], and Unnikr-
ishnan et al. [31] have adopted the user equilibrium model with system optimization to
evaluate and design traffic management measures. At the same time, Lin et al. [32] and
Peeta [33] have studied system optimization by using marginal costs to minimize traffic
congestion costs.

1.1.3. Vehicle following Models

Vehicle following (VF) behavior is the vehicle driving behavior mostly studied in
the literature. It describes the interaction between two adjacent vehicles in a convoy on a
one-way road where overtaking is restricted. The vehicle following model uses dynamic
methods to study the corresponding behavior of the following vehicle caused by changes
in the motion behavior and state of the leading vehicle. The traffic flow characteristics of
single lanes as derived by the VF model analyses have been widely used in fields such
as road capacity analysis, microscopic traffic simulation, and vehicle behavior analysis.
The earliest vehicle following models were proposed and constructed by Reuschel [34]
and Pipes [35] in the 1950s. Later, Chandler et al. [36] proposed the GM (General Motor)
mechanism based on the stimulus-response theory of the vehicle in front and the vehicle
behind, adding reactivity and stimulation to the VF model. Komentani & Sasaki [37]
proposed the collision avoidance models (CA), trying to define a specific vehicle-following
distance through Newton’s classical mechanics laws to deal with the situation ahead
of possible vehicle emergencies, while an effort that was similar but better oriented to
overcoming the complexity of the nonlinear vehicle following models was completed by
Newell [38,39], who proposed and constructed a simplified vehicle-following model. Due
to its simplicity and flexibility, the Newell simplified vehicle following model has been
widely used. Many researchers have calibrated this model using real trajectory data. For
example, Ahn et al. [40] used real vehicle trajectory data to calibrate the Newel simplified
vehicle following model in a signal-controlled road intersection scene. Zhou et al. [41]
developed a family of MPC models based on Newell’s CF model, labeled Newell MPCs,
which are safe and can reduce traffic congestion.

The study of the autonomous vehicle following model began in the 1990s when some
researchers began to study and analyze the driving behavior of autonomous vehicles
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and their potential impact. A research report from the US National Automatic Highway
System Consortium (NAHSC) in 1996 [42] showed that the perception and response time of
ordinary vehicle drivers is about 2.0–2.5 s, while the more sensitive vehicle driver perception
and response time is about 1.0–1.5 s. According to Bose & Ioannou [43], the perception
and response time of autonomous vehicles are shorter than those of human drivers and
can reach 0.7 s. Short perception and response time indicates that autonomous vehicles
can drive on the road at smaller intervals between vehicles, which further improves the
traffic capacity of the road. Ward [44] proposed in 1997 that the trusted vehicle sensors and
actuators have paved the way for autonomous vehicles to enter the actual road conditions
testing stage. In addition, as showed by Horowitz and Varaiya [9] in the late 1990s, the
response speed of autonomous vehicles will be higher than that of human drivers; based on
this, Talebpour & Mahmassani [45] proposed in 2015 a nonlinear acceleration framework
for autonomous vehicles and evaluated changes in road traffic stability based on this.
Finally, Milanés et al. [46] tested, in different road traffic scenarios, adaptive cruise control
strategies and smart driver control models to calculate the actual response behavior of
the vehicle.

1.1.4. Vehicle Trajectory Optimization Models

In terms of vehicle trajectory optimization and control, we can distinguish two streams
of research work, with one referring to the problem of single-vehicle trajectory optimization
and the other to multi-vehicle trajectory optimization. The solution method for single-
vehicle trajectory optimization problems—according to Betts [47]—involves nonlinear
planning, dynamic planning, and optimal control theory utilization as the basic modeling
methods to describe vehicle dynamics with various constraints. Egestt and Hu [48] pro-
posed a method to address the issue of multi-user path tracking. This method specifies
the virtual guidance track as the reference trajectory and avoids obstacles by following the
reference trajectory. Flint et al. [49] proposed an approximate dynamic planning algorithm
based on multi-vehicle collaborative search targets, while Schouwenaar et al. [50] proposed,
in response to the collaborative optimization of multi-vehicle trajectory, a mixed integer
linear planning model that directly uses linear or integer planning tools (such as CPLEX) to
solve the algorithm. Guo and Parker [51] proposed an optimal sports planning model based
on path search and speed mode with security boundaries. This model covers all states of
the system, including the starting point, the target location, and communication interaction.

In more recent times, McNaughton [52] proposed a five-dimensional search algorithm
that can identify kinematic and dynamic constraints in the clearly defined virtual-time
dimension and uses a graphical processing unit (GPU) to complete the parallel search
algorithm. Gon et al. [53] proposed and constructed a convex planning model to optimize
the trajectory of the vehicle and uses a dual distribution algorithm to iterate the trajectory to
solve the difficulty of calculation. Bang and Ahn [54] proposed a “group intelligent” model
that systematically described the formation and evolution of the autonomous driving pla-
toon under low-load traffic conditions. Zhou et al. [55] proposed an “inspiration algorithm”
that can achieve smooth processing of autonomous vehicle trajectories. This algorithm
combined the Newell simplifying vehicle and the time and space-oriented method to solve
the “safety border” problem in the driving process of the vehicle. Wei et al. [56] proposed a
new type of control method for autonomous vehicles and constructed a series of effective
optimization models and algorithms to embed vehicle kinematics and minimum safety
distance between autonomous vehicles by using an extended Newell simplified vehicle
following model. Unlike similar control methods to deal with closed boundary conditions,
this model can effectively solve related problems under semi-open boundary conditions
by using the integer planning and dynamic planning models that use the itinerary time,
throughput, and fuel consumption as the optimization target.
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1.1.5. Optimization of Train Operation Diagram

As this paper adopts the method of transforming an autonomous vehicle highway
scene into a corresponding railway scene, known as “highway virtual track”, it is of interest
to also review some literature from the theory and methods of rail transport and train
operation control. The train operation diagram is a technical document that describes the
train movement as it runs on the railway track as well as the time stopping or passing
at the stations. It is the basis for organizing train operation and constitutes an essential
starting point for railway train operation control. When studying the temporal-spatial
trajectory optimization and system-related functional modules, the relevant references are
those referring to the optimization of the train operation diagram and the applicability of
the results of such optimizations.

Wang and Zhou [57] proposed an integrated system to compile the highspeed railway
train timetabling problem and studied the relevant theories and methods. Brännlund
et al. [58] used the Lagrangian relaxation algorithm to optimize the train time at the
station. Caprara et al. [59,60] adapted the method of graphics to model the train timetabling
problem, in which a line segment represents the arrival of the train. On this basis, an integer
planning model was built that used the Lagrangian relaxation algorithm for its solution.
Peeters [61] used the FCB (fundamental cycle basis) algorithm, which is designed based
on the PESP (periodic event scheduling problem) model, to achieve a rapid solution to
the periodic train running model and obtain the final train timetable. D ’Ariano et al. [62],
based on ensuring the station and interval capacity, improved the train’s accuracy rate
by flexibly adjusting the time of the train, and the “greedy” algorithm and the branch
boundary algorithm were used to solve the model. Zhou et al. [63] used, for a single-line
railway, the total running time of the train as the optimization goal based on considering
the various constraints. The train timetable problem was solved using the branch boundary
method. Liu and Kozan [64] divided the train into multiple “grades” and optimized and
solved from high-level trains to low-level trains according to the grade. Petersen et al. [65]
built an integer planning mathematical model and used the method of “searching in the
field” to find a balance in the train running plan and the running cost of the train by
adjusting the train running diagram. Sun et al. [66] proposed a multi-layer planning model
to optimize the average operation time, energy consumption, and passenger satisfaction in
the train operation system, while Meng and Zhou [67] have built a model to optimize the
multi-line railway and the whole train traffic operation based on the time-space diagram
and reduce the total operating time of the train. Finally, Yang et al. [68] proposed the
overall optimization model of the train running diagram and the traffic solution by using
the running time of the train as the optimization target, and then using the ILOG Cplex
tool to solve the model.

2. The Need for “Safety of Life” Security Level of Autonomous Vehicle Operation

The previous section has demonstrated that a large body of research exists on the
various operational aspects of autonomous vehicle movement and traffic optimization
strategies. This covers the operational efficiency part of the autonomous transport “equa-
tion”, but an equal amount of work must be devoted to securing the required safety level (of
“zero-level” tolerance) for autonomous transport operation. Until today, the operation of
autonomous transport applications in various Operational Design Domains (ODD) around
the world has demonstrated that safety issues do exist and are cause for significant con-
cerns. Table 1 shows some characteristic incidents of failed safety of autonomous vehicle
operation during the four years 2016–2020.

The “fail safe” operation required for autonomous vehicle movement can only be
secured by implementing rigorous movement control systems aided by rigorous vehicle
to infrastructure (V2I) and (V2X) communication and cooperation protocols as well as
strict safety standards. As regards the safety standards, the second edition of the American
National Standards Institute’s—ANSI/UL 4600 Standard for Safety for the Evaluation of
Autonomous Products was published in March 2022; it provides a way to assess the safety
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case of autonomous vehicles and is one of the few comprehensive standards for public road
autonomous vehicle safety that covers both urban and highway use cases. Other notable
relevant safety standards are the ISO 26262—Road Vehicles Functional Safety Package, and
the ISO 21448 road vehicles safety of the intended functionality standard of 2022 (SOTIF)
that refers to hazards caused by functional insufficiencies.

As regards the vehicle to infrastructure (V2I) and (V2X) communication/cooperation,
the “virtual track” operation suggested in this paper is a most notable advance; its feasibility
and technical characteristics are analyzed in the following sections.

Table 1. Road traffic accidents caused by autonomous driving in recent years.

NO. Company Time Location Description of Accident Severity

1 Tesla 20 January 2016
Handan section of Beijing-Hong
Kong-Macao Highway, Hebei
Province, China

The autonomous vehicle, which had
the “autopilot” function activated,
rear-ended a road sweeper in the first
lane while it was working

Autonomous vehicle
driver killed

2 Google 14 February 2016 Mountain View, CA, USA
The autonomous vehicle changed
lanes and collided with a bus during
operational tests

The left side of the
autonomous vehicle was
damaged, and there
were no casualties

3 Tesla May 2016 A no-signal control intersection
in Williston, FL, USA

The autonomous vehicle was in the
active state of “autopilot” function and
collided with a trailer that was
traveling in a vertical direction

Autonomous vehicle
driver killed

4 Google 23 September 2016 Mountain View, CA, USA
The autonomous vehicle was hit by a
van that ran a red light at an
intersection during operational tests

Both vehicles were badly
damaged

5 Uber 17 July 2017 Tempe, AZ, USA

The autonomous vehicle collided with
a vehicle turning left in a vertical
direction at an intersection during
operational tests

Two vehicles were
damaged

6 Google 26 August 2017 Palo Alto, CA, USA

The vehicle in front of the autopilot
suddenly changed lanes to avoid
obstacles on the road, and the autopilot
vehicle then changed lanes to the right
and scratched the vehicle behind it

Two vehicles were
damaged

7 Uber 19 March 2018 Tempe, AZ, USA
The autonomous vehicle hit a
pedestrian crossing the road during an
operational test

Pedestrian death

8 Tesla 23 March 2018 Us Highway 101
The autonomous vehicle was in the
active state of “autopilot” function and
hit the center barrier

The autonomous vehicle
caught fire and the
driver was killed

9 Google 4 May 2018 Chandler, AZ, USA

The autonomous vehicle traveling in
the opposite direction entered the lane
of the autonomous vehicle and
collided with it

Two vehicles were
damaged, and
passengers suffered
minor injuries

10 Google 16 June 2018 Mesa, AZ, USA
The autonomous vehicle was hit by a
vehicle running a red light, and a
multi-vehicle pileup occurred

Multiple vehicles were
damaged

11 Apple 24 August 2018 Sunnyvale, CA, USA
The autonomous vehicle was
rear-ended when it merged into traffic
on the road

Two vehicles were
damaged

12 Tesla 20 January 2020 Pleasanton, CA, USA Autonomous vehicles collided with
traffic lights and concrete walls

Autonomous vehicle
driver killed

3. Presentation of the Virtual Track Theory
3.1. The Need for Vehicle-Road Collaboration in Autonomous Driving

Vehicle-road collaborative autonomous driving (V2I) is a three-in-one automated
driving technology, i.e., one that combines the capabilities of three new generations of
telecommunications, i.e., 5G or 6G, the physical Internet, and artificial intelligence (AI)
technologies. Through real-time dynamic information and data exchange between the
vehicles and the infrastructure (roads and control centers), the collection and analysis of
temporal-spatial dynamic traffic information is achieved, as well as its integration in the
active safety control of autonomous vehicles and the management of their movement.
Implementation of the concept of virtual track further enhances and realizes the effective
cooperation between the infrastructure and vehicles, ensures traffic safety, improves traffic
efficiency, and forms an intelligent, safe, and efficient road traffic system.

The above considerations apply primarily to the macro-scale, i.e., road traffic situations
such as urban road networks or highways, and not to single vehicle considerations.
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3.2. The Virtual Track Concept

The core idea of the virtual track theory is to transform the road travel scene of au-
tonomous vehicles into railway travel scenes, and then control the operation of autonomous
road vehicles like railway trains. To do this, the movement of autonomous vehicles on
a road traffic situation (scenarios), needs to be converted into a railway-like track con-
voy level. The virtual track method can be used to do this and enable the effective and,
above all, safe control of any large-scale autonomous vehicles’ circulation in complex road
traffic scenarios.

The virtual track provides data and information to autonomous vehicles through the
roadside communication infrastructure, allowing autonomous vehicles to better coordinate
with other vehicles and the road environment. In this way the operational safety of
autonomous vehicles is improved as they operate on complex physical road networks and,
overall, achieve more precise positioning and navigation of autonomous vehicles. Urban
roads or intercity highways can be virtually tracked by making one lane to correspond to a
virtual track. On the virtual lane-track, multiple autonomous vehicles are queued to form a
vehicle formation similar to a train and controlled to follow a planned trajectory to further
improve the operation safety of autonomous vehicles in road traffic environments.

3.3. Virtual Track Construction Process

The specific construction process of a virtual track is as shown in Figures 1 and 2 [69].
Any given lane of a section of a highway is divided into sections of 5–10 m long each. The
specific value of the interval depends on the traffic characteristics in each region (the denser
the traffic flow, the smaller the interval). Each of these intervals is called the “controlling
cell”, and so the highway section is divided into several controlling cells. Each controlling
cell is occupied by an autonomous vehicle (vehicles with a body length of more than
5 m–10 m can occupy two controlling cells), and at any given time, only one autonomous
vehicle is allowed to occupy a controlling cell. In traditional railway control operation,
each cell is either occupied or free. For the railway control logic to be followed, we could
assume that one cell has to be free between two occupied ones. This may be something to
consider in future versions of the work suggested here. The two ends of the controlling
cell are marked as “virtual signal machines” (Nodes A1-C5), meaning that once a certain
controlling cell is occupied by an autonomous vehicle, a message is transmitted, and
the controlling cell is “closed”. This virtual signal machine information transmission is
carried out through V2I interactive communication, which is a fundamental operation in
the operation of a “virtual track” system.
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At the two ends of the highway section that has thus been subdivided into controlling
cells, we hypothesize the existence of two “scheduling or dispatching nodes” as shown in
Figure 3 (Nodes A and B). The highway section between two scheduling nodes is called
the “controlling section”. As new autonomous vehicles drive into the controlling section or
others are leaving it, the controlling cells are “occupied” or “freed” and information about
the location of the front and the rear of the respective autonomous vehicles is automatically
adjusted. Using advanced V2X and V2I communication (through technologies such as
satellite positioning, 5G communication, and automatic control technologies), a certain
fixed distance interval is maintained between the vehicle ahead and the one behind in the
same lane, and also, there is no vacant cell.
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Figure 3. Highway node processing.

The scheduling or dispatching nodes play the role of the (rail) stations and are usually
taken to coincide with the highway service areas that are distributed at unequal intervals
on the highway network. These play the role of hubs and traffic flow nodes similar to
the train stations in a railway system. Therefore, node processing for the virtual track
transformation is performed on the highway based on the service area locations.

3.4. Combining Controlling Sections into a Network

In order to control and dispatch autonomous vehicles safely and accurately over a
whole network, we have to combine the controlling sections so that we build a virtual
network of controlling sections that are connected to each other, and together, they reflect
the actual road network. In this way, autonomous vehicles can be better tracked to perform
straight driving, turning, changing lanes, and other driving behaviors. For example, the
virtual turnout settings at the intersections in the hypothetical highways of Figure 4 can be
represented by a total of four controlling sections, with seven service areas (that, based on
our previous convention, we consider as “rail stations” and dispatching nodes in our virtual
track network). Interval allocation (controlling cells) and node processing are performed
on this highway simplified network as described earlier and is shown diagrammatically in
Figure 5.
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When there is a turn to be taken (turnout point) the virtual representation of the turn
is as shown in Figure 6. As shown there, the adjacent controlling cells of different lanes
in the two merging highway sections are connected through the form of “virtual turnout”
connectors. During the connection process, a new control range called “virtual turnout”
is formed to virtually realize the turn through controlling the corresponding cells in the
path. For example, if the autonomous vehicle in the control cell “D1-D2” wants to turn and
occupy the corresponding cell in another lane, e.g., cell A3-A4 (it might also join B2-B3 if so
wanted, or any other cell) the following sequence has to be followed: D1-D2 “-” D2-C1 “-”
C1-B2 “-” B2-A3 “-” A3-A4.
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Before this sequence starts to be implemented, the system needs to determine the
“occupancy locking” situation of the receiving controlling cells through signal information
exchange and V2X and V2I information exchange communication. The autonomous vehicle
control system collects and processes the necessary data. If the receiving controlling cell
is not occupied by another autonomous vehicle, that is if it is not “locked”, the turning
autonomous vehicle can enter this cell and corresponding section, otherwise a delay occurs,
and the path needs to be readjusted.

After the interval distribution, the node processing, and the virtual turnout settings
are completed, the virtual-track scene of the whole highway is set, and the transformation
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of the road travel scene to a railway travel scene has been completed. At that stage, the
railway train operation control ideas and methods can be used to manage and control
the autonomous vehicles movement on the highway. Because, in the virtual track, the
lanes of the highway are composed of the controlling cells, that is of multiple units, the
timetable plan and the method of running graphs of railway train operation control can be
used. Under the movement operation in virtual tracks, the safety of autonomous vehicles
no longer relies only on the perception, planning, and decision-making of the individual
vehicle, but also relies on the overall organizational scheduling and control of a railway-like
control center.

In addition, through the signal control and vehicle queue mechanism under the virtual
track conditions, the autonomous vehicles running on the highway can be grouped into
formations and use integrated autonomous vehicle control system algorithms and accident
safe controls.

3.5. “Virtual Track” Autonomous Vehicle Management and Control

After the construction of the virtual tracks network, the autonomous vehicles are con-
verted to virtual train wagons running on a railway track and network. The management
and control of their movement can now be studied and solved in terms of the thinking and
methods of railway train operation control and scheduling. Wei et al. [56], Lu et al. [70], and
Lu et al. [71] have made useful research and analysis work in suggesting such rail control
and management algorithms based on methods of railway centralized organizational dis-
patching with good results. They have respectively used Newell’s simplified car-following
model and specialized algorithms based on the “rolling horizon” approach and hierarchi-
cal modeling framework to solve the problem of trajectory optimization of autonomous
vehicles or platoons considering the thinking of railway train operation control.

This paper uses another method, the spatio-temporal trajectory diagram, to optimize
the method of controlling the autonomous vehicles’ movement as they are running in
the virtual trackway scene. The temporal-spatial trajectory diagram is an adaptive im-
provement method of the virtual train movement as it runs in each controlling section
of the highway by use of a two-dimensional line diagram that represents the operation
of autonomous vehicles in various sections of the highway and the state of stopping or
passing at a certain node. The temporal-spatial trajectory preparation is an important
implementation tool for introducing the virtual railway train operation control ideas and
methods into the field of autonomous driving. In essence, it is an extension of the rail-
way train diagram method in the field of autonomous driving [69]. The temporal-spatial
trajectory diagram accurately represents the time and space relationship of autonomous
vehicles running on highways and provides a tool for supporting the control of autonomous
vehicles running on virtual-tracked highways, as well as visual means and soft support for
the organization and scheduling process of large-scale autonomous vehicles movement in
highway environments.

Considering that autonomous vehicles on the road form an autonomous vehicle
fleet according to the queue arrangement, the total operating cost of the vehicle will be
reduced, and the stability, flexibility, and traffic efficiency of the whole autonomous fleet
system will be improved [56]. Therefore, in this paper, in the process of controlling large-
scale autonomous vehicles by adopting the virtual track and the temporal-spatial trajectory
diagram methods, autonomous vehicles will be combined into vehicle formations according
to certain queue rules and then efficiently controlled as they are moving like trains on
tracks. This is the extension of the applicability of the railway train timetable and train
diagram method in the field of autonomous driving on a road network.
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4. Model Construction and Testing Based on Virtual Track Concept
4.1. Symbol Definition

The parameters and variables involved in the virtual track model that was built
according to the above are shown in Table 2. The application of the relevant parameters
and variables is shown in detail in the next section.

Table 2. Notation used for parameters and variables of the virtual track model.

Parameter Definition

i, j, k Index of physical node
(i, j) Index of the physical path from node i to node j

v Index of vehicle
t, s, p Index of Time interval

N Set of nodes in a physical network
L Set of paths in a physical network
V Set of vertices in a time-space network
A Set of arcs in a time-space network
F Set of vehicles
G Set of Vehicle automation class, G= {0, 1, 2, 3, 4, 5}

δ(k, p) Set of arcs occupying vertices (k,p)
O(v) Starting node of the vehicle of v
D(v) Target node of the vehicle v
DTv Departure time interval of the vehicle v
G(v) Automation level of the vehicle v, G(v)∈G
Dsa f e Safe distance between front and rear vehicles

M A large real number, the value depends on the specific traffic scenario
T Range of time interval

cv
i,j,t,s The cost of the vehicle v traveling on arc (i,j), arrival time t, and departure time s

xv
i,j,t,s

A binary variable indicating whether the vehicle v is traveling on an arc (i,j) with
arrival time t and departure time s

yv
k,p A binary variable indicating whether vehicle v occupies the vertex of space-time (k,p)

Zv A binary variable indicating whether vehicle v are operating on a Virtual-tracked
road network

4.2. Construction of the Model
4.2.1. Constraint Conditions

The autonomous vehicle management and control model that is constructed for the
optimization of the virtual track-based movement of autonomous vehicle platoons on a
road network has to respect the following constraints:

(1) Flow balance constraints (relative to the vehicle (or group of vehicles) flows in
and out of a controlling cell). The value of the left part (difference between entering and
leaving flows) will be −1 when all vehicles arriving at point (i) are less than all vehicles
leaving, and +1 when all vehicles arriving are more than all vehicles leaving it. It will be
zero otherwise.

∑i,t:(i,j,t,s)∈E xv
i,j,t,s − ∑i,t:(j,i,s,t)∈E xv

j,i,s,t =


−1
+1
0

j = O(v), s = DTv

j = D(v), s = T
otherwise

,∀v, ∀(j, s) (1)

(2) Vehicle-following safety constraints (to ensure a safe distance between the vehicle
(or group of vehicles) ahead and the one behind in the same lane).

∑v yv
k,p ≤ 1, ∀(k, p) (2)
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(3) The single vehicle (or group of vehicles) occupancy constraint (it ensures that no
two different vehicles (or group of vehicles) occupy the vertex of the same cell (space-time
arc) at the same time.

∑(i,j,t,s)∈φ(k,p) xv
i,j,t,s ≤ yv

k,p × M, ∀v, ∀(k, p) (3)

(4) Binary decision variable constraints (to ensure that the decision variable is a 0–1 variable).

xv
i,j,t,s ∈ {0, 1}, yv

k,p ∈ {0, 1}, Zv ∈ {0, 1} (4)

(5) Virtual track scene constraints (to ensure that no matter which level of automation
the autonomous vehicle (or group of vehicles) belongs to, whether it is manual driving,
semi-autonomous driving or fully autonomous driving, as long as the autonomous vehicle
runs on the virtual track road network, there will always be a certain safety distance for the
front and rear vehicles to avoid vehicle collisions).

Zv =

{
0, Dsa f e ∈ R
1, Dsa f e > 0

, ∀G(v) ∈ G (5)

By introducing the above constraints, the proposed model ensures that the applica-
tion of the virtual track theory is in full alignment with the safety and effectiveness of
autonomous vehicle movement and control.

4.2.2. Model Formulation and Objective Function Confirmation

By formulating the objective function of the model, the main aim was to minimize the
total running time cost of autonomous vehicles on the road network. Therefore, the objective
function and the constraints (i.e., the suggested model as a whole) was formed as follows:

Min Z = ∑v ∑(i,j,t,s) cv
i,j,t,s × xv

i,j,t,s (6)

Subject to:

s.t.



∑i,t:(i,j,t,s)∈E xv
i,j,t,s − ∑i,t:(j,i,s,t)∈E xv

j,i,s,t =


−1
1
0

j = O(v), s = DTv

j = D(v), s = T
otherwise

, ∀v, ∀(j, s)

∑v yv
k,p ≤ 1, ∀(k, p)

∑(i,j,t,s)∈φ(k,p) xv
i,j,t,s ≤ yv

k,p × M, ∀v, ∀(k, p)
xv

i,j,t,s ∈ {0, 1}, yv
k,p ∈ {0, 1} Zv ∈ {0, 1}

Zv =

{
0, Dsa f e ∈ R
1, Dsa f e > 0

, ∀G(v) ∈ G

(7)
This model is an integer programming model, and optimization software such as the

CPLEX solver from IBM ILOG can be used to solve it. This is a high performance solver for
Linear Programming (LP), Mixed Integer Programming (MIP) and Quadratic Programming
(QP/QCP/MIQP/MIQCP) problems. However, solution difficulties may arise when the
number of relevant variables is large.

4.3. Model Verification and Solution in a Simplified Network

The SIMLite software V2.0 developed by Zhou et al. on the basis of DTALite [28] and
C# programming were used to verify the model. SIMLite software adopts a macro–micro
two-layer network structure, which can evaluate the traffic system from different angles
and can be applied to the optimization of autonomous vehicle operation trajectories. This
section first uses a road network test case containing 5 nodes and 8 direction sections for
testing. The sample graph of the macro-level test road network and the schematic diagram
of virtual-tracked micro-level road network are shown in Figures 7 and 8, respectively.
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After virtual tracking, as shown in Figure 8, the road network has a total of 1064 nodes
(like those numbered A1, A2, etc., in Figure 2) and 2500 intervals (controlling cells). How-
ever, this road network after converted to virtual track may have local connection inter-
ruptions, which will lead to errors in the final solution results or cause a situation where
some vehicles have no feasible paths. Therefore, the SIMLite software is first used to verify
the connectivity of the virtual tracked road network. To do this, we provide a set of simple
initial OD matrices and road network data files, then run the SIMLite software to perform
a road network traffic distribution and analyze the traffic distribution results to check
whether the connectivity of the road network is intact.

As shown in Figure 9, these output results show that there is no situation where au-
tonomous vehicles fail to find a feasible path, i.e., all autonomous vehicles have completed
the movement process from any starting point to any destination one. This illustrates
that in the virtual track network that was created and shown in Figure 8, there are no
connectivity problems.
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We can now demonstrate the use of the optimization model on a small section of the
network in Figure 7 (or its corresponding virtual track one in Figure 8). Let’s consider
a section with five controlling cells (depicted as, for example, the four cells in Figure 2).
These five cells are delineated by six start and end points which are named points A, B, C,
D, E, and F (corresponding to points A1, A2, etc., in Figure 2). Let us now assume that there
are 16 autonomous vehicles in the queue to enter the section. We group these vehicles in
small platoons of two by two as a demonstration of the platooning that can be done in these
cases. Every two vehicles are considered as one unit (platoon of two vehicles). We have
eight platoons of autonomous vehicles that want to enter the section. Some of the initial
operating schedule data of this autonomous vehicles platoon fleet are shown in Table 3. In
this table, the first column indicates the vehicle platoon number, the second column is the
entry or exit point number, and the last two columns show the arrival time and departure
time of each vehicle platoon in the respective point.

Table 3. Operating/scheduling data of the virtual vehicle platooning (Part of data).

Vehicle Platoon Number Node Arrival Time Departure Time

1 A 12:01:30 12:02:05
1 B 12:03:40 12:04:15
1 C 12:05:30 12:06:12
1 D 12:07:32 12:08:27
1 E 12:09:39 12:10:14
1 F 12:11:24 12:12:02
2 A 12:05:55 12:06:30
2 B 12:08:05 12:08:40
2 C 12:09:55 12:10:37
2 D 12:11:57 12:12:52
2 E 12:14:04 12:14:39
2 F 12:15:49 12:16:27
3 A 12:10:20 12:10:55
3 B 12:12:30 12:13:05
3 C 12:14:20 12:15:02
3 D 12:16:22 12:17:17
3 E 12:18:29 12:19:04
3 F 12:20:14 12:20:52
4 A 12:14:45 12:15:20
4 B 12:16:55 12:17:30
4 C 12:18:45 12:19:27
4 D 12:20:47 12:21:42
4 E 12:22:54 12:23:29
4 F 12:24:39 12:25:17
5 A 12:19:10 12:19:45
5 B 12:21:20 12:21:55
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Table 3. Cont.

Vehicle Platoon Number Node Arrival Time Departure Time

5 C 12:23:10 12:23:52
5 D 12:25:12 12:26:07
5 E 12:27:19 12:27:54
5 F 12:29:04 12:29:42
6 A 12:23:35 12:24:10
6 B 12:25:45 12:26:20
6 C 12:27:35 12:28:17
6 D 12:29:37 12:30:32
6 E 12:31:44 12:32:19
6 F 12:33:29 12:34:07
7 A 12:28:00 12:28:35
7 B 12:30:10 12:30:45
7 C 12:32:00 12:32:42
7 D 12:34:02 12:34:57
7 E 12:36:09 12:36:44
7 F 12:37:54 12:38:32
8 A 12:32:25 12:33:00
8 B 12:34:35 12:35:10
8 C 12:36:25 12:37:07
8 D 12:38:27 12:39:22
8 E 12:40:34 12:41:09
8 F 12:42:19 12:42:57

Figures 10 and 11 show the results from the running of the model and the optimization
process. Figure 10 shows the temporal-spatial trajectory diagram before and after optimiza-
tion in a similar way in which we construct these diagrams for the railway tracks. The
spatio-temporal trajectories are optimized and solved through the SIMlite software and C#
programming. In Figure 10, the temporal-spatial trajectory diagram before optimization is
shown in red, and the temporal-spatial trajectory diagram after optimization is shown in
green. In order to optimize the function of the algorithm and improve the solution speed,
the particle swarm optimization (PSO) method, which was proposed by Kennedy and
Eberhart in 1995 [72], was also used.
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Figure 11 shows the curve that results when we plot the number of iterations (horizon-
tal axis) and the resulting total travel time cost for the platoons as they move on the section
(vertical axis). This curve shows that the total time cost is decreasing from 56,340 secs to
50,258 secs as the number of iterations increases and stabilizes at that number (50,258) after
about 50 iterations. This is 6082 secs lower than before, i.e., an optimization ratio of 10.8%.

5. Conclusions and Further Work

This paper has investigated the case of safe and efficient operation of autonomous
road vehicles moving on an urban or interurban road network on the basis of virtual track
theory. The proposed methodology transforms the autonomous road vehicles’ operation
into a railway-like one by converting the road space into “cells” occupied by one vehicle
at the time and then grouping these cells into virtual train-like formations that are then
managed and controlled like a train scheduled to go from origin point to a destination
passing through intermediate “stations” that are the so-called dispatching nodes that,
in this paper, are suggested to coincide with the service stations along a highway. The
preceding analysis has demonstrated that such transformation is feasible, and there are
practical software tools, supported by the proper mathematics, for effecting this conversion
from a road movement scene to a railway one. It also demonstrated how one can optimize
the whole process and, in this way, provide an efficient and, above all, safe management
and control process for the movement of autonomous vehicles on the road networks of
the future. The demonstration of the application of the proposed method has—for this
case—been made on a hypothetical small-scale network pending a bigger full-scale demo
on a real highway network that is to be performed at a next stage.

The full-scale application of the proposed methodology is therefore the first item of
future work that must be stressed. There are, however, other improvements that can be
mentioned here. In this paper, we used the minimum operating cost of an autonomous
vehicle as the target function to minimize when the model is constructed. In the current
phase of building the model, the setting of this target function is relatively simple. In the
future practical applications in real world situations, this may not be enough, and more
target functions could be necessary to be considered. These may include more complicated
factors such as the utilization rate of road capacity or overall delays and congestion costs,
or generalized costs, etc. Diverse issues like road maintenance time windows would
also have to be considered. In future research in this area, therefore, one would need to
comprehensively consider multiple factors for inclusion into the optimization process to
further improve and supplement the model.
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Also, as regards the constraint conditions that were used, the emphasis was given
here to constraints that focused on the safety of the vehicles on the virtual-tracked highway.
Other constraints that could be tested include the adaptability of the road controlling cells
formations to the running control of railway trains, or to the macro-level organizational
management and scheduling control of large-scale autonomous vehicle formations. In this
way, the application of the virtual track theory will not only ensure the safety but also the
effectiveness of the autonomous vehicles’ movement and their management and control
through better and more versatile models and algorithms.

Another possible improvement for the future of virtual track theory could be the
application of a three-layer conversion of the road network to “macro–meso–micro” levels
instead of the current dual-layer. The virtual track theory applied in this paper can carry
out macro and micro two-layer transformation of road network, but there is a lack of a
layer of transition between macro and micro transformation of road network, which is
not conducive to improving the controlling accuracy of autonomous vehicles. In future
research, the virtual track theory will be further developed to achieve the goal of “macro–
meso–micro” three-layer transformation of the road network, so as to make the autonomous
vehicle control scheme more accurate and of high-precision.

Our overall conclusion is that the case of the virtual track theory is a promising avenue
for research, offering a convenient railway travel scene in the place of road one by way of
simple transformation steps that also include the possibility of (road) vehicle formation
into platoons as a way/tool to form something like a train. Once the road movement
of autonomous vehicles in the traffic stream has been transformed into a railway-like
movement on a track, the use of railway scheduling and solution tools can be used, as
demonstrated in this paper. This approach may offer a new angle for autonomous vehicle
movement research in the future which, together with the expected progress in high power
cloud-computing, super-computing and super-fast information communication (V2X),
can make the train-like management and control of the autonomous vehicles (even those
running on a mixed traffic scene) both feasible and effective. This paper has focused
on methodological issues rather than on models and algorithms as an introduction of
the thinking of autonomous driving from the perspective of railway train control. Its
preliminary results are encouraging and convincing enough to secure further development
and a first real world and larger scale application. This research will be continued, and the
theory of virtual tracks will be further developed to hopefully provide an easy and accurate
tool for the management and control of autonomous vehicles in our road networks.
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