
Citation: Papaioannou, E.;

Iliopoulou, C.; Kepaptsoglou, K.

Last-Mile Logistics Network Design

under E-Cargo Bikes. Future Transp.

2023, 3, 403–416. https://doi.org/

10.3390/futuretransp3020024

Academic Editor: Javier Faulin

Received: 11 February 2023

Revised: 17 March 2023

Accepted: 29 March 2023

Published: 31 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Last-Mile Logistics Network Design under E-Cargo Bikes
Eleni Papaioannou, Christina Iliopoulou and Konstantinos Kepaptsoglou *

School of Rural, Surveying Engineering and Geoinformatics Engineering,
National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15773 Athens, Greece
* Correspondence: kkepap@central.ntua.gr; Tel.: +30-210-7723984; Fax: +30-210-7721424

Abstract: E-cargo bikes, i.e., electric bicycles equipped with baskets for transporting goods, are
perceived as an advantageous solution for urban last-mile logistics. Particularly for short distances
and low volumes of goods, the use of e-cargo bikes is ideal in urban areas where access of conventional
cars may be prohibited. In this context, this study presents an e-cargo bike routing model for
urban deliveries. The problem is formulated as a Capacitated Vehicle Routing Problem (CVRP),
which takes several aspects into account, such as restrictions on bicycle capacity, road grade and
workload balancing. A mathematical model is constructed to solve the problem, and a Genetic
Algorithm (GA) is applied. Results on a case study in Athens, Greece are presented and analyzed,
highlighting the applicability of the model in real-world operations, yielding reasonable results in
short computational times.
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1. Introduction

The growing urban population density and increased reliance on the automobile
deteriorate traffic congestion are characterized as some of the most critical problems in
modern metropolitan centers. Emissions of pollutants and exhaust fumes cause significant
environmental problems and directly affect public health [1,2]. The need for sustainable
development in urban areas calls for the adoption of more environmentally friendly trans-
port systems. In this context, the use of alternative fuel vehicles is widely perceived as the
way forward for the transport sector, with electric vehicles emerging as an environmentally
friendly alternative to their fossil fuel counterparts [1].

Under the scope of electromobility, e-cargo bikes are considered a promising solution
for last-mile urban logistics [2]. E-cargo bikes, i.e., electric bicycles equipped with baskets
for transporting goods, are perceived as an advantageous solution for urban deliveries [2–5].
Indeed, e-cargo bikes can replace up to 10% of small conventional trucks without affecting
efficiency while reducing carbon dioxide emissions by 73% [1]. In terms of trips, recent
studies estimated that approximately 40–50% of urban delivery trips could be substituted
by e-cargo bikes [4]. In this context, an increasing number of delivery companies have
invested in the purchase of e-cargo bike fleets in recent years due to the low cost and
the great movement flexibility they offer within cities [3]. In particular, for relatively
short distances and low volumes of goods, the use of e-cargo bikes is ideal in urban areas
where access of conventional cars may be prohibited due to narrow streets, sidewalks, and
historical centers [2–5]. Additionally, owing to the evolution of battery technology, e-cargo
bikes can be charged quickly and can be deployed in operational conditions considered
challenging for regular cargo bikes, such as steep inclines and headwind [2–6].

In recent years, the use of cargo bicycles, both electric and conventional, for urban
logistics has attracted a lot of research attention, with several studies analyzing their
strengths and benefits or proposing decision support models [3].

In this line of work, a group of studies presented simulation models to evaluate cargo
bikes under a variety of operational scenarios. Arnold et al. [7] showed that e-cargo bike
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distribution systems can benefit both the companies and the quality of life by encouraging
self-pickup by customers. In a similar concept, Sardi and Boha [8] used macroscopic
simulation to investigate the performance of an e-bike and electric truck distribution
system for different types of shopping malls under various network structures. Temporrelli
et al. [9] conducted life cycle assessment for last-mile logistics, comparing e-cargo bikes to
electric, plug-in hybrid, and diesel vans, concluding that e-cargo bikes perform better in all
aspects considered.

A subset of studies combined simulation and optimization models considering cargo
bikes within hybrid delivery systems. Dall Chiara et al. [10] simulated the performance of
a delivery distribution system operated by cargo cycles with mobile hubs under different
demand and parking conditions comparing it to a truck-only system. Vehicle assignment
was performed by solving two successive bin-packing problems, one per priority level of
delivery requests. Fikar et al. [11] developed a decision support system for urban food
deliveries under a fleet of conventional vans and cargo bikes, with coordination performed
at urban consolidation centers. A dynamic agent-based simulation was combined with local
search and best-insertion heuristics to evaluate the impact of different scheduling policies.
Perboli and Rosano [12] introduced a simulation–optimization decision support system tool
for evaluating mixed-fleet policies considering conventional, diesel and electric vehicles
as well as cargo bikes for the management of parcel delivery in urban areas. An adaptive
neighborhood search metaheuristic was integrated within the simulation to optimize routes.
Lorca and Moeckel [13] used MATSim coupled with an open-source metaheuristic routing
solver to assess cargo bike deployment under different modal shares between cargo bikes
and vans, demand conditions, and micro depot densities in the context of parcel delivery.

Furthermore, another stream of studies presented optimization models for truck/van
and cargo bike fleets. In such models, trucks are typically assumed to operate in an urban
zone and are complemented by bikes operating in restricted zones. In this line of work,
Caggiani et al. [14] formulated a so-called “Two-Echelon Electric Vehicle Routing Problem
with Time Windows and Partial Recharging” for the distribution of goods by vans and
cargo bikes operating in restricted traffic zones, such as historical centers and pedestrian
streets. An exact optimization approach was used to solve the problem for a small case
study. Similarly, a two-echelon vehicle routing problem (VRP) with covering options was
presented in Enthoven et al. [15] for an urban logistics system operated by trucks and cargo
bikes. An adaptive large neighborhood search heuristic was used to handle the complex
problem arising. A similar model considering a heterogeneous fleet of trucks and bikes
was presented in [5] and solved using simulated annealing. Büttgen et al. [16] presented a
two-stage distribution system based on electric vans and cargo bikes for parcel delivery in
the city of Innsbruck, and solved the problem using a tabu search algorithm.

Few studies also presented optimization models for last-mile logistics exclusively
under cargo bikes. In this line of work, Choubassi et al. [4] presented a heuristic solution
algorithm for designing delivery routes for two types of electric bikes, assuming dedicated
cycle infrastructure. A pick-up-and-delivery VRP was presented in Niels et al. [17] for
addressing the parcel delivery problem under a fleet of conventional and electric bikes. A
heuristic solver integrated into Geographic Information Software (GIS) was used to handle
the problem. More recently, Naumov and Pawluś [18] applied a local search algorithm
to determine optimal routes for e-cargo bikes under load-dependent speed and packing
constraints. Fontaine [19] presented a model and an adaptive large neighborhood algorithm
for the VRP under load-dependent speed as well, considering conventional cargo bicycles.
Taking into account demand stochasticity, Naumov [20] combined the Clarke–Wright
heuristic with simulation for determining hubs for e-bike deliveries and associated routes.
Robichet et al. [21] solved the micro-hub facility location problem and subsequently the
cargo bike routing problem for parcel delivery in Paris, showing that cargo bikes are
economically preferable to trucks under high numbers of daily requests. Caggiani et al. [22]
presented an e-cargo bike routing model for last-mile delivery, considering both travel
time and driver exposure to emissions. For a thorough review of related studies, we refer
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the interested reader to the survey papers by Narayan and Antoniou [3] and Vasiutina
et al. [23].

Overall, few studies have considered purely electric cargo bike fleets, while the impact
of road grade and uneven workloads has been overlooked. Although inclination is crucial
when dealing with cargo bikes as it affects energy consumption and therefore e-bike range,
such considerations have been neglected in relevant VRPs [24]. What is more, last-mile
deliveries are subject to strongly varying workloads, so last-mile solution methods should
be scalable on short notice, while workload should be balanced among bike couriers [25].
To our knowledge, no study has presented an optimization model and algorithm for e-cargo
bike routing that takes into account road grade and workload balancing for couriers. In this
context, this study presents an optimization model for addressing the e-cargo bike routing
problem for urban deliveries under link restrictions and workload balancing, addressing
practical considerations. As such, road grade, which significantly affects e-bike applicability
and energy consumption, is taken into account both by a priori excluding unsuitable links
and by considering its effect on energy consumption. Driver workload balancing refers
to fairly distributing delivery requests among bike couriers. In particular, the number of
delivery points (regardless of the number of packages) and the total distance traveled by
each bike courier should be similar among couriers to ensure fair workload allocation. The
goal is to minimize the energy consumed by electric cargo bicycles for a given set of delivery
requests. The packages to be delivered refer to homogeneous products, i.e., those that are
of similar dimensions and weight, such as parcels or standard delivery boxes. The problem
is formulated as a Capacitated Vehicle Routing Problem (CVRP), where e-cargo bikes start
from a specific point—depot, visit delivery nodes and finally return to the depot [6]. To
solve the problem at hand, a mathematical model was developed and a tailored at hand
Genetic Algorithm (GA) was subsequently applied, yielding near-optimal routes in short
computational times. The performance of the proposed algorithm is also validated against
Ant Colony Optimization (ACO), which is a popular metaheuristic used for handling VRPs.

The remainder of this study is structured as follows. The mathematical model and the
solution algorithm are outlined next. Results on a case study in Athens are subsequently
presented. Finally, conclusions and directions for further research are summarized.

2. Materials and Methods

This section presents the methodological framework of the problem and the solution
algorithm, outlining its distinct components.

2.1. Problem Description

The problem at hand is formulated as a CVRP for e-cargo bikes, aiming to minimize
the energy consumed by electric bicycles, considering link attributes (grade) and workload
balancing between couriers on planned routes. A predefined set of delivery points, denoted
as V, and a homogeneous fleet of e-cargo bikes B is assumed. The e-cargo bikes are assumed
to start and end their itinerary at the depot; the depot is therefore represented as both 0
and N + 1, for modeling purposes. The matrix of distances between all nodes is denoted
as D, and each link is uniquely defined by a pair of nodes (i,j) with i, j ∈ V0,N+1, i 6= j. The
charging station is located at the depot, and the e-cargo bikes are charged there before
starting their routes and do not need extra charging enduring operations. Each delivery
point can be visited once, i.e., split deliveries are not allowed. We assume that all requests
are known at the start of optimization and communicated to the delivery provider within a
reasonable timeframe. Workload balancing is considered under a two-fold approach. On
the one hand, the number of delivery points should be evenly distributed among bikes,
while on the other hand, the distance that every e-cargo bike travels should be as close as
possible to the average, with a tolerance of ±α%. The combination of these two constraints
precludes large discrepancies among bike couriers. In terms of road grade, links with
grades above a certain threshold are excluded from the network where e-bikes are allowed
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to move. For grades below the adopted threshold, energy consumption is accordingly
adjusted. The full notation is presented in Table 1.

Table 1. Mathematical model notation.

Description

Sets

V Set of delivery points I, j, V = {1, 2, . . . N}
V0 Set of delivery points including depot 0, V0= {0, 1, 2, . . . N}

VN+1
Set of delivery points including depot N + 1,

VN+1 = {1, 2, . . . N, N + 1}

V0,N+1

Set of delivery points including depot 0 and depot N+1 (starting and
ending point),

V0,N+1= {0, 1, 2, . . . N, N + 1}= V ∪ {0} ∪ {N + 1}
B Set of e-cargo bikes, B = {1, 2, . . . b}
Q Set of packages for delivery

Parameters

N Number of delivery points

qi Number of packages to be delivered at point i

C Capacity of the e-cargo bike (in packages)

b E-cargo bike

dij Distance between delivery points (i,j) (km)

eij Energy consumption for link (i,j)

L Battery Capacity for each e-cargo bike

r Usable capacity factor

α Tolerance for workload allocation

Decision Variable

xijb
Binary variable equal to 1 if the vehicle b is traveling on arc (i,j),

0 otherwise (i ∈ V0, j ∈ VN+1, i 6= j)

Using the notation shown in Table 1, the problem is formulated as follows:

minF = ∑b∈B ∑i∈V0,N+1 ∑j∈V0,N+1
eij·xijb (1)

subject to
∑
j∈V

x0jb = 1, ∀ bεB, i 6= j , (2)

∑
i∈V

xi(N+1)b = 1, ∀ bεB, i 6= j, (3)

∑
b∈B

xijb + ∑
b∈B

xjib ≤ 1, ∀i, jεV, i 6= j, (4)

|V|
|B| − a

|V|
|B| ≤ ∑

iεV0

∑
j∈V

xijb ≤
|V|
|B| + a

|V|
|B| , ∀ bεB, i 6= j, (5)

∑
iεV0

∑
j∈VN+1

dijxijb ≤ (1 + α)

(
∑
b∈B

∑
iεV0

∑
j∈VN+1

dijxijb

|B|

)
∀ bεB, i 6= j, (6)

∑
iεV0

∑
j∈VN+1

dijxijb ≥ (1− α)

(
∑
b∈B

∑
iεV0

∑
j∈VN+1

dijxijb

|B|

)
∀ bεB, i 6= j, (7)
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∑
iεV0

∑
j∈V

xijb ≤ C , ∀ bεB, i 6= j, (8)

∑
b∈B

∑
iεV

xijb = 1, ∀jεVN+1, i 6= j, (9)

∑
b∈B

∑
jεV

xijb = 1, ∀iεVN+1, i 6= j, (10)

∑
iεV0

∑
j∈VN+1

xijb·eij ≤ r·L , ∀ bεB, i 6= j, (11)

xijb ∈ S , ∀ iεV0, jεVN+1, bεB, i 6= j, (12)

S =

{
xijb : ∑

iεK
∑
j∈K

xijb ≤ |K| − 1 , K ⊆ VN+1; |K| ≥ 2

}
, (13)

xijb ∈ {0, 1} , ∀i, jεV0,N+1, ∀bεB, i 6= j . (14)

The objective function, given in Equation(1), seeks to minimize the energy consump-
tion for the fleet of e-cargo bikes. For simplicity, we adjust average energy consumption
per distance unit by a multiplicative factor that depends on the slope of the particu-
lar segment. In this manner, the objective function also implicitly accounts for travel
times. Constraints (2)–(3) ensure that all e-cargo bikes start and end their routes at the
depot by imposing that one outgoing arc from and one ingoing arc to the depot is used
by each cargo bike. Constraint (4) prevents cycles between delivery points, stating that
each link can be traversed at most in one direction by a bike. Constraint (5) enforces
workload balancing in the total amount of daily delivery points with a tolerance of α%.
Similarly, Constraints (6) and (7) achieve balance in the total traveled distance, with a
tolerance of α%. Constraint (8) refers to the maximum load that each bicycle can carry
per day. Constraints (9) and (10) ensure a unique path to and from each node of the net-
work. Constraint (11) ensures that the energy consumed by each bike is lower than the
usable battery capacity. Constraints (12) and (13) are the so-called “sub-tour elimination
constraints” [26]. Finally, Constraint (14) specifies the form of the decision variables.

2.2. Solution Method

The e-cargo bike routing problem presented belongs to the general class of VRP
problems and as such is an NP-Hard problem [27]. This means that the computational
complexity of the problem rises exponentially with respect to its size; thus, even if an
exact approach could be used for a small instance, larger instances could not be solved in
an acceptable time [27]. For this reason, a GA is employed to solve the problem in short
computational times. In general, GAs have been widely used for routing problems and are
considered suitable for NP-hard problems with many variants and constraints [26–28]. In
particular, GAs can be easily hybridized with external modules and heuristic algorithms
to handle additional tasks [28]. In the proposed GA, a heuristic routine is employed to
extract routes from each chromosome so that capacity constraints are not violated, and for
penalizing solutions with uneven workload.

2.2.1. Solution Representation and Initialization

A candidate solution is represented by a sequence of nodes. This sequence indicates
the order of delivery points that the electric bicycles will follow from their starting point
(depot, case N = 0) until their return. Assuming that there are 25 delivery points and four
routes planned, a possible chromosome generated may be the following:

[ 10 14 7 4 11 13 17 15 18 16 5 2 12 21 20 19 24 8 25 23 22 3 9 6 1 ].
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Due to the absence of trip delimiters, an external heuristic procedure, described later
on, is applied to extract feasible sub-routes from the sequence of delivery points.

So, a possible route set could be as follows:

[ 0 10 14 7 4 11 13 0 ],

[ 0 17 15 18 16 5 0 ],

[ 0 2 12 21 20 19 24 8 0 ],

[ 0 25 23 22 3 9 6 1 0 ].

The initialization was performed by a randomized process, while two different popu-
lation sizes were investigated, namely 25 and 50.

2.2.2. Fitness Function Value

Each solution’s performance is calculated and evaluated according to the fitness
function value, as defined in Equation (1). To enforce Constraints (5)–(7), the cost for each
solution violating these is increased by 50%.

2.2.3. Genetic Operators

The population members are ranked based on their fitness function value. A steady
state approach is followed for replacement: worst population members are replaced instead
of the whole population. In this way, less “fit” members of the population can participate
in the next generation during the early stages of the process. As the algorithm progresses,
the most efficient individuals dominate the population.

An ordered crossover is applied, where two random points are selected from the
parent chromosome and the genes located between these points are copied to the first
offspring [26,28]. The remaining genes are copied to the second parent. In the example
below, two sequences of nodes are shown before and after the crossover.

[ 10 14 7 4 11 13 ]→ [ 10 14 21 20 19 13 ],

[ 2 12 21 20 19 24 8 ]→ [ 2 12 7 4 11 24 8 ].

A swapping mutation is used [26,28], where one or more genes (in this case delivery
points) are exchanged within the same chromosome. An example is shown below.

[ 0 25 23 22 3 9 6 0 ]→ [ 0 25 6 22 3 9 23 0 ].

2.2.4. Route Extraction

An external procedure is incorporated into the GA for determining routes and asso-
ciated costs. The procedure creates routes based on delivery demand for each point and
the maximum distance that can be covered, as dictated by e-cargo bike load capacity and
battery capacity. The heuristic calculates the cost for each route, exhausting capacity and
distance constraints [26].

2.2.5. Genetic Algorithm Termination

In the experiments carried out, it was observed that after 1000 iterations, the values of
the algorithm were stabilized, and the improvement of solutions was insignificant after
that point. Therefore, the termination criterion was defined as 1000 iterations.
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3. Results

This section presents the results of the algorithm based on a real-world case study
as well as a sensitivity analysis for e-cargo bike capacity and parcel demand. Finally,
the performance of the algorithm is validated against another metaheuristic solution
method, ACO.

3.1. Overview

The constructed model was applied for an area in the southwestern sector of Athens,
Greece including 25 delivery points that belong to four distinct municipalities, as shown in
Figure 1. These points correspond to shopping centers and large supermarkets in the area
in an effort to realistically capture potential delivery locations.

Figure 1. Map of delivery points in the area of interest, Athens, Greece.

The demand for each delivery point is randomly distributed in [1, 6]. The total
demand was 76 packages. Travel costs were calculated using Google maps, while QGISTM

was used to determine road grades. The gradient threshold for e-bike deployment was
assumed as 8% [29,30]. The battery capacity of the e-cargo bikes was assumed as 450 Wh (2).
Average energy consumption was assumed as 10 Wh/km [2] and adjusted according to the
gradient of segments [31]. The usable capacity is assumed as 80%, while the tolerance rate
used for workload balancing was assumed as 20%. Finally, packages to be delivered are
homogeneous, with specific dimensions and similar weight, not exceeding 2 kg. Capacity
of e-cargo bikes is expressed in terms of parcels [7]. For this analysis, it is assumed that the
maximum load of bicycles is 20 parcels [13].

3.2. GA Parameters and Fine Tuning

Different GA parameter combinations were tested, with each combination being run
five (5) times, for population size (POP) (values of 25, 50), crossover rate (CR) (values of 0.2,
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0.6, 0.86) and mutation rate (MR) (values of 0.05, 0.15, 0.25). In total, 18 × 5 = 90 calibration
experiments were carried out. The GA was terminated after 1000 iterations. The evaluation
procedure was developed in Visual Basic for Applications™ and the GA was implemented
using Palisade Evolver 6.0™. The optimization was performed on a “Dell-Precision” laptop
with 32.0 GB of RAM and CPU Intel Core i7-10750H @ 2.60 GHz. Computational times
ranged between 4 and 5 min. In Table 2, the word “best” refers to the smallest value of the
five runs for each combination.

Table 2. Results for different GA parameter combinations.

Set of
Experiments POP CR MR Best Objective

Function Value (Wh) Average Standard
Deviation

1

25

0.2

0.05 685.25 782.75 58.12

2 0.15 828.46 889.904 77.01

3 0.25 835.36 866.548 25.77

4

0.6

0.05 790.24 842.862 44.12

5 0.15 771.81 907.45 99.96

6 0.25 877.54 905.056 31.30

7

0.8

0.05 678.71 779.924 92.43

8 0.15 816.55 845.22 20.19

9 0.25 838.55 909.574 102.79

10

50

0.2

0.05 784.98 891.39 78.83

11 0.15 888.74 929.058 43.19

12 0.25 867.45 893.08 19.63

13

0.6

0.05 836.39 855.262 13.45

14 0.15 832.02 890.702 36.36

15 0.25 941.46 1018.814 57.91

16

0.8

0.05 834.1 834.56 57.87

17 0.15 849.77 876.99 42.07

18 0.25 942.1 1013.29 194.39

3.3. Results

As shown in Table 2, the combination with the lowest average cost value is POP = 25,
CR = 0.8, and MR = 0.05. Nevertheless, due to the large standard deviation observed, the
combination POP = 25, CR = 0.2, and MR = 0.05 was chosen instead, featuring the next best
average value (782.75) and a smallest standard deviation (58.12). Subsequently, optimization
was performed for this combination of GA parameters under a fixed run time of 20 min.

Table 3 presents the best solution attained, which consists of 4 e-cargo bike routes. The
distance traveled for each bike courier along with the number of packages and points per
route are shown.

Table 3 shows that a fair allocation of workload, both in terms of distance traveled and
number of customers, is attained using the proposed algorithm. It should be noted that
we assume that the logistics provider is aware of demand requests beforehand and there
is a reasonable request cut-off period. In any case, the short computational times allow
for a very small request cut-off window to be assumed, i.e., under 5 min. The total energy
consumed is approximately equal to 634 Wh. The corresponding near-optimal routes are
shown in Figure 2.
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Table 3. Best solution results.

Travelled Distance (m) Packages Per Route Delivery Points Per Route

Route 1 14,689 20 7

Route 2 18,581 18 6

Route 3 16,856 19 6

Route 4 14,351 19 6

Objective
Function 634 Wh

Figure 2. Best route set.

As seen in Figure 2, there is a relatively similar geographical distribution of points
among bike couriers, without significant route overlap. There are also cases where two
points, relatively close to each other, are served by different routes, which is related to the
capacity of e-bikes in terms of parcels.

3.4. Sensitivity Analysis

The sensitivity of the model is analyzed in terms of the capacity of bicycles in parcels
and customer demand levels. Figure 3 shows the impact of different capacity values within
30% of the baseline case.

As shown in Figure 3, the lower the capacity, the more routes are required to serve
customer requests. The number of routes remains the same for small differences in capacity,
as workload and maximum range constraints apply. In fact, for the number of routes to
drop from 4 to 3, a 30% increase in capacity is required. Reasonably, the distance per bike
increases with capacity, as each courier can serve more requests. For a value of capacity
equal to 26, a 25% increase in distance traveled by each courier is noted compared to the
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case of capacity equal to 24 parcels. Similarly, the total energy consumption decreases
almost linearly as the load capacity of the bicycles increases. For 30% increase in capacity,
10–14% less energy may be required, depending on the corresponding reduction in the
number of routes as well.

Figure 3. Impact of capacity on number of routes (top), average distance (center) and energy
consumption (bottom).

Next, customer demand was modified by +/− 20% and +/− 50% per point under
the same bicycle capacity of 20 parcels. Since these figures refer to parcels, rounding was
subsequently performed. This results in total demand values between 45 and 121 parcels.
Figure 4 shows the effect of the different demand levels on results.

As seen in Figure 4, as demand increases, more routes are required to meet customers’
needs, as capacity constraints apply. Reasonably, the average distance traveled per bike
decreases at the same time, with an almost linear trend observed. For the lowest demand
value, just one less route is required, yet average distance per courier increases by 25%. To
some extent, this relatively mild effect may be attributed to rounding and not allowing zero
demand values at delivery points. In contrast, for the higher value of total demand, seven
bike routes are required, yet workload per e-cargo bike drops by 44% in terms of distance
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traveled. Finally, the energy consumed is not affected much by changes in demand, as the
number of delivery points remains the same. The differences among scenarios lie at the
distribution of delivery requests among bike couriers, with small efficiency gains observed
for the lowest number of routes due to a higher degree of grouping.

Figure 4. Impact of demand on number of routes (top), average distance (center) and energy
consumption (bottom).

3.5. GA Performance Validation

GAs have been widely used to solve VRPs and are considered a very efficient meta-
heuristic, widely applied to problems arising in transportation [32]. To validate the per-
formance of the proposed GA, we also solve the problem using an ACO algorithm im-
plemented in Python 3.8. ACO is considered one of the best performing algorithms for
solving VRPs [33]. The specification of pheromone values and related update processes
can be found in [34], while solution evaluation and constraint handling are identical to
the proposed GA. For the ACO algorithm, we also run five experiments of 1000 iterations
and use a population size of 25, comparing to the best results obtained in our preliminary
experiments. Table 4 shows the corresponding results.
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Table 4. Comparison of results with Ant Colony Optimization (ACO).

Algorithm Best Objective
Function Value (Wh) Average Standard Deviation

GA 678.71 779.924 92.43

ACO 699.12 740.818 24.9

The best resulting route set for ACO consists of five routes in this case ([21, 20, 25, 19,
2, 1], [23, 10, 11, 3], [12, 13, 5, 6, 4], [24, 17, 16, 15, 14, 22], [9, 8, 7, 18]) versus four routes
for the GA ([13, 20, 21, 2, 12, 9, 5], [6, 8, 3, 22, 7, 4, 1], [18, 14, 24, 23, 10, 11], [16, 15, 17, 19,
25]). As seen in Table 4, the GA produced a slightly improved best solution, while the ACO
produces an improved average result, with a smaller standard deviation. Based on these
results, we consider the performance of the two algorithms comparable, concluding that
the proposed GA is on par with other state-of-the-art methods.

4. Conclusions

Electromobility is widely perceived as the future of the transportation sector. In
terms of urban logistics, electric cargo bicycles can replace traditional last-mile delivery
trips performed by trucks and vans. In this context, this paper presents a model for
urban logistics network design under e-cargo bikes, taking into consideration bike load
capacity, road grades and workload balancing between couriers, regarding both the distance
traveled and the number of requests served. A mathematical model was constructed for
this purpose, and a GA was employed to handle the problem. Results show that the model
yields reasonable routes in short computational times, allowing for real-world application
under short request cut-off times for logistics providers. Reasonably, bicycle capacity is a
critical factor and can allow for a reduction in the number of routes, yet with longer routes
and thus higher workload for bike couriers. However, total energy consumption decreases
with capacity, with gains over 10% for a capacity increase of 30%. The number of parcels
per delivery point is also significant for the number of routes and average distance traveled
per bike courier, implying that parcel limits per customer may be a sensible approach for
reducing fleet size and courier workload.

Future research could consider multi-objective optimization methods to generate
sets of non-dominated solutions, providing more flexibility to decision makers [35] or
incorporate uncertainty in the various planning stages [36]. Moreover, e-bike applicability
indices [29] may be incorporated in the decision support model to evaluate routes in terms
of rider comfort as well. Similarly, network connectivity metrics for e-cargo bikes can be
estimated and incorporated in the evaluation of candidate solutions.
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