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Abstract: At present, there are many methods to construct a vehicle driving cycle, such as the micro-
trip-based method and the Markov chain method. Different methods have different advantages and
disadvantages. To compare these methods, this paper uses the micro-trip-based method, the Markov
chain method, and the method combining micro-trips and Markov chains to construct the representa-
tive driving cycle of a Xi’an urban bus based on the driving data of the Xi’an No.2 bus. Firstly, the
driving data is collected and preprocessed. Then, representative driving cycles are constructed based
on different methods. Finally, different driving cycles based on different methods are compared. By
calculating and comparing characteristic parameters, velocity distributions, acceleration distributions,
and vehicle-specific power distributions between different representative driving cycles, this paper
shows the advantages and disadvantages of different construction methods.

Keywords: driving cycle; micro-trip-based method; Markov chain method; micro-trip-based and
Markov chain method

1. Introduction

The driving cycle is a speed–time profile that represents vehicle driving character-
istics [1–8], which can be used to study vehicle parameter matching, control strategy
optimization, fuel economy, and other aspects. In the development and testing of vehicles,
engineers often adopt driving cycles. Because of differences in city size, geographical
characteristics, road types, road topology, vehicle ownership, and other factors, the char-
acteristics of the driving cycle in different cities and regions are different [9]. Therefore,
when purchasing the urban bus, the relevant departments can select the most suitable
bus for the city by referring to the fuel economy and other evaluation indicators of the
vehicle tested under the representative driving cycle of the city [10]. Hence, it is important
to select the appropriate method to accurately construct the driving cycle with different
regional driving characteristics [11]. At present, many researchers have used different
methods to construct the driving cycles of many regions. Some select micro-trip-based
methods [12,13], some select the Markov chain method [9,14], and some combine several
methods to construct driving cycles [15,16]. They all verified the feasibility of the methods
they selected, but their conclusions are based on their data. The advantages of different
methods are not comparable. Therefore, based on the same driving data, this paper adopts
different methods to construct the driving conditions of the same route, and finds out
the advantages and disadvantages of different methods through comparison, to provide
references for the selection of methods to construct the working conditions.

The route intensity method is used to select representative routes. The bus route
is made up of bus stations. The more frequently the bus station appears across all bus
routes, the higher utilization the bus station has, and the more representative it is. The
route intensity is shown in (1), where µi is the route intensity of the ith bus route, λj is the
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occurrence number of the jth bus station of the ith bus route among all bus routes, and n is
the total number of bus stations on the ith bus route.

µi =

n
∑

j=1
λj

n
(1)

After analysis of the route intensity of all Xi’an bus lines and consultation with the
Xi’an bus company, Bus Route No. 2 was selected among more than 200 bus routes. There
are 33 bus stops, the origin station is in the southwest corner of the Second Ring Road
in Xi’an, and the terminal station is in the northeast corner of the Second Ring Road. It
generally runs from east to west, covers the First Ring Road and the Second Ring Road, and
passes through the urban main road. The selected route can reflect the traffic conditions in
urban areas in Xi’an.

In an actual situation, when the bus is in an idling condition, the speed collected by
the GPS and CAN bus equipment is not necessarily zero, which will reduce the authenticity
of the collection data and thus reduce the accuracy of the driving cycle. Therefore, idling
calibration is required. Referring to relevant papers and considering the actual situation of
the vehicle, we defined the data with a speed less than 1.5 km/h as idle speed data and
assigned it to zero.

Due to various factors, such as bad weather and building obstruction, there will be a
lot of noise in data collected by the GPS. Moreover, when the equipment is disturbed, the
collected data may have an abnormal value, which will cause the vehicle acceleration to
be greater than the true value. By consulting the bus driver and combining this with the
actual situation, we know that the maximum acceleration of the bus will not be greater
than 3 m/s2 and the maximum deceleration will not be greater than −4 m/s2. The data
exceeding the limit point is regarded as cusp data, and linear interpolation is carried out
several times until the cusp data is within the limit point.

The data collected by GPS and CAN bus equipment is continuous. However, there
are some specific situations, such as waiting for departure and driving between the bus
terminal and the bus company. These data are invalid for driving cycle construction, which
will affect the accuracy of driving cycle construction. By investigating the record of the bus
company dispatching station, the actual following car timing, and the monitoring platform
track verification, these data are stripped from the continuous data to ensure the validity of
the collected data.

2. Micro-Trip-Based Method

The flow diagram for constructing the Xi’an No.2 bus driving cycle by the micro-trip-
based method is shown in Figure 1.
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2.1. Partitioning Micro-Trips

A kinematic segment is a driving process between two adjacent starting points (or
stopping points), usually consisting of an idle part and a driving part [17]. This paper
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stipulates that the time length of a kinematic segment should not be less than 20 s, so
micro-trips less than 20 s were combined with the following micro-trip until the time length
requirement was met, so as to not miss some micro-trips with frequent starts and stops.

The amount of vehicle driving data has a huge impact on the subsequent construction
of the driving cycle. Generally speaking, the larger the amount of data, the closer the result
will be to the theoretical value. When the data volume reaches a certain level and continues
to increase, the accuracy of the results will not be greatly improved, but it will increase the
time of early data collection and the difficulty of late driving cycle construction. Therefore, it
is important to determine the appropriate amount of data. In this paper, eight characteristic
parameters, including proportion of acceleration, proportion of deceleration, proportion
of uniform speed, proportion of idling, average speed, average running speed, average
acceleration and average deceleration were selected to define acceleration proportional
stability, deceleration proportional stability, uniform speed proportional stability, idling
stability, average speed stability, average running speed stability, average acceleration
stability, and average deceleration stability (K1, K2

. . . K8). The average value is defined
as comprehensive stability (Ka), which is used as the evaluation index to determine the
saturation of sampled data. The calculation method is shown in (2) and (3).

Km(n) =
Nm(n)− Nm(n− 1)

Nm(n)
(2)

Ka =
1
8

8

∑
m=1

Km(n) (3)

where Km(n) is the stability of the m-th characteristic parameter of n sets of sampled data,
and Nm(n) is the m-th cumulative characteristic parameter of sampled data from the first
set to the n-th set.

According to (2) and (3), the comprehensive stability Ka was calculated, and it was
found that the Ka value gradually converges to 0 as the number of sets of sampled data
increases, as shown in Figure 2. It is defined so that when the comprehensive stability for
five consecutive times satisfies |Ka| < 0.002, the sampled data volume reaches saturation.
It can be seen from Figure 2 that the data saturation determination condition is satisfied
from the 46th set of sampled data. Therefore, the first 50 sets of sampled data were selected
as the entire dataset to construct the bus driving cycle, and 50 sets of preprocessed data
were partitioned into 2565 micro-trips [9,18].
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2.2. Calculating Characteristic Parameters

In this paper, 19 characteristic parameters that have an important influence on the
driving cycle construction are selected [18–20] as shown in Table 1. It is stipulated that the
bus is in an acceleration state when its acceleration is greater than or equal to 0.15 m/s2, and
the bus is in a deceleration state when its acceleration is less than or equal to −0.15 m/s2.

Table 1. All characteristic parameters.

Number Characteristic Parameters Abbreviation Unit

1 Running time T s
2 Acceleration time Ta s
3 Deceleration time Td s
4 Uniform speed time Tc s
5 Idling time Ti s
6 Running distance L m
7 Maximum speed Vmax km/h
8 Average speed Vm km/h
9 Average running speed Vmr km/h
10 Standard deviation of speed Vsd km/h
11 Maximum acceleration Amax m/s2

12 Average acceleration Am m/s2

13 Maximum deceleration Dmax m/s2

14 Average deceleration Dm m/s2

15 Standard deviation of acceleration Asd m/s2

16 Proportion of acceleration Pa %
17 Proportion of deceleration Pd %
18 Proportion of uniform speed Pu %
19 Proportion of idling Pi %

2.3. Principal Component Analysis

Firstly, the values of the characteristic parameters of each kinematic segment were
calculated. The first 15 characteristic parameters were selected for principal component
analysis. The dispersion of the characteristic parameters’ value will increase due to the
different dimensions of the characteristic parameters of micro-trip. Therefore, before
principal component analysis, z-score standardization was carried out for the values of the
characteristic parameters.

Principal component analysis (PCA) is a dimension-reduction algorithm, which can
reduce the number of characteristic parameters. It was conducted for the standardized
parameters by SPSS software. The principal components variance, variance contribution
rate, and cumulative variance contribution rate are shown in Table 2.

According to Table 2, the cumulative variance contribution rate for the first four
principal components is 87.55%. This means only four components need to be analyzed
instead of the original 15 characteristic parameters.

Table 2. Principal component analysis results.

Principal
Component

Principal
Component Variance

Variance Contribution
Rate / %

Cumulative Variance
Contribution Rate / %

M1 7.171 47.807 47.807
M2 3.537 23.582 71.389
M3 1.416 9.437 80.826
M4 1.009 6.728 87.554
··· ··· ··· ···

2.4. Clustering Analysis

The above four principal components were analyzed by K-means clustering in SPSS
software [21], and they can be grouped into three types of micro-trip with different charac-



Future Transp. 2023, 3 96

teristics [10,19]. The number of micro-trips in cluster 1 is 613, the number of micro-trips in
cluster 2 is 222, and the number of micro-trips in cluster 3 is 1730. The average characteristic
parameter values of each cluster are shown in Table 3. The most representative micro-trips
of the first, second, and third clusters are shown in Figure 3.
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Table 3. Characteristics of each cluster.

Characteristic Parameters Cluster 1 Cluster 2 Cluster 3

Vm 20.352 8.309 14.057
Vmr 22.775 19.612 18.522
Am 0.537 0.557 0.574
Dm −0.570 −0.567 −0.627
Pa 33.4 15.9 31.5
Pd 30.4 14.6 26.5
Pu 25.6 11.8 17.9
Pi 10.6 57.6 24.1

Vsd 11.456 11.943 12.175
Asd 0.542 0.379 0.557

It can be seen from Figure 2 and Table 3 that the average speed and average running
speed of the Cluster 1 kinematic segments are the largest, respectively 20.352 km/h and
22.775 km/h, with a minimum idling proportion of 10.6% and a maximum cruising propor-
tion of 25.6%, representing a driving cycle with smooth traffic. The average speed of the
Cluster 2 kinematic segments is 8.309 km/h, with a maximum idling proportion of 57.6%
and a minimum cruising ratio of 11.8%, representing a driving cycle with heavy traffic.
The average speed and average running speed of the Cluster 3 kinematic segments are
lower than for the Cluster 1 kinematic segments, which are 14.057 km/h and 18.522 km/h
respectively. The Cluster 3 kinematic segments represent the driving cycle with normal
traffic.

2.5. Forming Driving Cycle

According to the principle of minimum distance from the cluster center, the represen-
tative micro-trips were selected to form a driving cycle. The results of clustering analysis in
SPSS software can show the clusters of micro-trips and the distance from the cluster center.
The distances from micro-trips to the cluster center were ranked from least to most by the
adopting bubble method, as shown in Table 4.

According to the clustering results, the number ratio for the three clusters of micro-
trips is 613:222:1730. The total time lengths of the three clusters of micro-trips were 81,514 s,
29,477 s, and 99,183 s respectively, and the ratio was 2.77:1:3.36. For the driving cycle,
cycle duration should be not too short or too long. If it is too short, it cannot reflect the
real conditions. If it is too long, it will cost too much time and money in future testing.
Thus, the time length of the driving cycle was set to about 1300 s, and the time lengths
for the three clusters of micro-trips were about 504.2 s, 182.3 s, and 613.5 s respectively.
The corresponding number ratio of the three clusters of micro-trips is 4:1:11. Therefore,
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the first four micro-trips were selected from the first cluster, the first kinematic segment
was selected from the second cluster, and the first eleven micro-trips were selected from
the third cluster. Segments 1573, 2005, 311, 353 (Cluster 1), 2021 (Cluster 2), 568, 1652,
2024, 1744, 1083, 183, 1271, 1802, 1227, 329 and 506 (Cluster 3) were selected to form the
representative driving cycle for the Xi’an No.2 bus, as shown in Figure 4. The running time
is 1281 s, the running distance is 5.13 km, the maximum speed is 38.15 km/h, the maximum
acceleration is 1.76 m/s2, and the maximum deceleration is −2.17 m/s2.

Table 4. Distances and the segment number from micro-trips to the cluster center.

Cluster 1
Distance 0.217 0.229 0.304 0.343 0.377 . . .

Segment number 1573 2005 311 353 211 . . .

Cluster 2
Distance 0.729 0.760 0.800 0.892 1.064 . . .

Segment number 2021 1382 987 689 2327 . . .

Cluster 3
Distance 0.293 0.293 0.294 0.340 0.343 . . .

Segment number 568 1652 2024 1744 1083 . . .
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3. Markov Chain Method

The flow diagram for constructing the Xi’an No.2 bus driving cycle by the Markov
chain method is shown in Figure 5.
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3.1. Verifying the Markov Property

The state of a random process at time T is only related to the state at time T-1 and has
nothing to do with the previous state. In a word, it has no after-effect, and the random
process is called the Markov process. Correlation analysis was conducted on the entire
dataset to calculate the correlation coefficients at different time intervals of 1 s, 5 s, 10 s, and
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30 s respectively according to (4), where X is the velocity vector and Y is the velocity vector
after a certain time interval adjacent to X, and the results are shown in Table 5.

ρXY =
Cov(X, Y)√

D(X) ·
√

D(Y)
(4)

Table 5. Correlation coefficients at different time intervals.

Time Interval Correlation Coefficient

1 s 0.9865
5 s 0.8299

10 s 0.5863
30 s 0.1808

The correlation of vehicle speed data decreases with an increase in time interval, as
shown in Table 5. When the time interval is 1 s, the correlation coefficient of vehicle speed
reaches 0.9865; that is, the running state of the vehicle in the next period is only related to
the current running state, but has nothing to do with the previous running state, which
conforms to the definition of a Markov chain. Thus, it is proved that the data collected at
the sampling frequency of 1 Hz has Markov characteristics, and the Markov chain method
can be used to construct the driving cycle of the No.2 bus.

3.2. Partitioning Segments and Classifying States

The entire dataset was partitioned into four types of unit segments: idle segments,
acceleration segments, deceleration segments, and uniform speed segments. The flow
diagram of the segment partitions is shown in Figure 6.
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After partitioning segments, we calculated the average speed of unit segments and
classified unit segments into different states according to the average speed. According to
the statistics of the entire dataset, the speed of the bus is generally not more than 40 km/h.
Therefore, unit segments were partitioned into 10 states according to their average speed
(State 1: 0~4 km/h, State 2: 4~8 km/h... State 10: ≥36 km/h), and each unit segment was
numbered and its number and state information was recorded.

3.3. Calculating the State Transition Probability Matrix

The state change process of the bus from time T to time T+1 is called the state transition
process. The one-step transition probability between all states constitutes the state transition
probability matrix P. The number of unit segments in different states is counted to calculate
the transition probability between different states according to (5), where Nij is the number
of segments transferred from state i to state j, and Pij is the transition probability from state
i to state j [9].

pij =
Nij

∑j Nij
(5)

The calculation result for the state transition probability matrix P is shown in (6), and
the corresponding state transition probability distribution diagram is shown in Figure 7. It
can be known from common sense that the probability that the bus maintains its current
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state while running is the largest, which is reflected in the transition probability matrix in
that the value of the main diagonal element is the maximum among the corresponding row
elements. It can be seen from Figure 7 that the state transition probability matrix conforms
to this feature.

P =



0.5926 0.2165 0.0862 0.0603 0.0387 0.0056 0.0001 0 0 0
0.2173 0.4862 0.2040 0.0675 0.0187 0.0062 0.0002 0 0 0
0.0929 0.1762 0.4333 0.1645 0.0839 0.0423 0.0067 0.0002 0 0
0.0919 0.0510 0.1536 0.4059 0.1583 0.0724 0.0486 0.0187 0.0013 0
0.0653 0.0151 0.0660 0.1525 0.3966 0.1788 0.0663 0.0392 0.0183 0.0019
0.0126 0.0052 0.0335 0.0581 0.1491 0.4629 0.2096 0.0514 0.0134 0.0048
0.0007 0.0008 0.0060 0.0341 0.0389 0.1262 0.5837 0.1884 0.0188 0.0024
0.0001 0.0007 0.0001 0.0107 0.0218 0.0203 0.1294 0.7150 0.0984 0.0040

0 0 0 0.0011 0.0135 0.0138 0.0194 0.1642 0.6996 0.0884
0 0 0 0.0003 0.0058 0.0105 0.0071 0.0149 0.2587 0.7025


(6)
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3.4. Determining the Initial Segment

In the construction of a bus driving cycle based on the Markov chain method, the state
of the next segment depends on the state of the current segment and the corresponding
state transition probability, so it is necessary to determine the initial state of the bus for the
construction of subsequent driving cycle [22]. A too short or too long initial segment is not
suitable. If it is too short, it cannot reflect the buses starting condition, and, if it is too long,
it will affect the quality of the driving cycle. According to analysis of the data on the bus
starting, 50s fixed durations starting from the stationary state were selected from the entire
dataset as candidate initial segments in this paper. The V-A matrices of the candidate initial
segments and the entire dataset were calculated. The V-A matrix of the entire dataset is
shown in Table 6.

Then two matrices were converted into two one-dimensional arrays in the same way,
and the similarity Ω of the two arrays was calculated according to (7).

Ω =
∑n

i=1 AiBi√
∑n

i=1 Ai
2
√

∑n
i=1 Bi

2
(7)

where Ai is the i-th value in the one-dimensional array corresponding to the candidate
initial segment, Bi is the i-th value in the one-dimensional array corresponding to the entire
dataset, and n is the length of the one-dimensional array. The candidate initial segment
with the maximum similarity to the entire dataset V-A matrix was selected as the initial
segment, as shown in Figure 8.
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Table 6. The V-A matrix of the overall data Unit %.

V(km/h)
[0,5) [5,10) [10,15) [15,20) [20,25) [25,30) [30,35) [35,40) [40,45) [45,50]

a(m/s2)

(2.5,3] 0 0 0.002 0 0 0 0 0 0 0
(2,2.5] 0.003 0.004 0.003 0.003 0 0 0 0 0 0
(1.5,2] 0.007 0.016 0.012 0.008 0.005 0.001 0 0 0 0
(1,1.5] 0.041 0.078 0.064 0.038 0.019 0.011 0.001 0 0 0

(0.5,1] 0.220 0.242 0.224 0.170 0.081 0.029 0.009 0 0 0
(0,0.5] 0.575 0.570 0.555 0.540 0.459 0.225 0.076 0.012 0 0

(−0.5,0] 1.655 1.141 1.195 1.301 1.450 1.391 0.670 0.123 0.002 0
(−1,−0.5] 25.107 2.257 2.152 2.144 2.796 5.692 5.002 1.561 0.012 0
(−1.5,−1] 2.120 2.585 2.311 2.344 2.919 5.664 5.682 2.025 0.023 0
(−2,−1.5] 1.292 1.803 1.705 1.610 1.758 1.731 1.051 0.362 0.011 0
(−2.5,−2] 0.168 0.331 0.527 0.569 0.459 0.285 0.159 0.057 0.011 0
(−3,−2.5] 0 0.024 0.060 0.094 0.090 0.055 0.037 0.010 0.003 0

(−3.5,−2] 0 0 0.011 0.017 0.023 0.022 0.007 0.003 0 0
(−4,−3.5] 0 0 0.004 0.005 0.003 0.002 0.003 0 0 0
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3.5. Generating a Markov Chain

After determining the initial segment, a random array conforming to the state transi-
tion probability matrix was generated with the Monte Carlo simulation method to deter-
mine the next segment. Assuming that the current segment state is State 6, the transition
probabilities corresponding to the next segment states are 0.0126, 0.0052, 0.0335, 0.0581,
0.1491, 0.4629, 0.2096, 0.0514, 0.0134, and 0.0048. The (0, 1) interval is divided into 10 inter-
vals according to the probability value. The program generates a random number r that
satisfies the uniform distribution in (0, 1) interval. The next segment is state k when the
random number r meets (8).

k

∑
j=1

pij ≤ r ≤
k+1

∑
j=1

pij (8)

where i is the current segment state, j is the next segment state, and Pij is the transition
probability from state i to state j. After determining the state of the next segment, the
segment with the minimum difference between its initial speed and the current segment’s
final speed is selected as the optimal segment in the segment set corresponding to the state,
then it is spliced with the current segment, and each segment is selected only once. The
above process is repeated until the Markov chain satisfies the time requirement (about
1300 s) and the final speed is zero. The process flow diagram is shown in Figure 9.
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3.6. Selecting the Most Representative Driving Cycle

One Markov chain represents one driving cycle. Every driving cycle constructed
by the Markov chain method is different, so it is necessary to generate several Markov
chains and select a candidate driving cycle with the minimum deviation from the entire
dataset as the representative driving cycle. We constructed 50 candidate driving cycles. Ten
characteristic parameters, including average speed, average running speed, the standard
deviation of speed, average acceleration, average deceleration, the standard deviation of
acceleration, proportion of acceleration, proportion of deceleration, proportion of uniform
speed, and proportion of idling were selected for the deviation evaluation index. The
average deviation was calculated to describe the deviation between the candidate driving
cycles and the overall data according to (9) and (10).

δi =
|Ai− A|

A
× 100% (9)

δ =
1
n

n

∑
i=1

δi (10)

where Ai is the i-th class characteristic parameter of the candidate driving cycles, A is the i-th
class characteristic parameter of the overall data, δi is the deviation of the i-th characteristic
parameter, and δ is the average deviation. The average deviations between 50 candidate
driving cycles and the overall data were calculated, and the candidate driving cycle with
the minimum average deviation was selected as the representative driving cycle [9], as
shown in Figure 10. The running time is 1277 s, the running distance is 5.73 km, the
maximum speed is 39.42 km/h, the maximum acceleration is 2.43 m/s2, and the maximum
deceleration is −2.44 m/s2.
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4.1. Clustering Analysis Experiment and Calculating State Transition Probability Matrix 
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4. Combined Micro-Trip and Markov Chain Method

The flow diagram for constructing the Xi’an No.2 bus driving cycle by the combined
micro-trip and Markov chain method is shown in Figure 11.
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Figure 11. Flow diagram for driving cycle construction based on the combined micro-trip and Markov
chain method.

4.1. Clustering Analysis Experiment and Calculating State Transition Probability Matrix

The partitioning of micro-trips, the definitions of characteristic parameters, and the
standardization of characteristic parameters are the same as in the clustering analysis
method above.

The combined micro-trip and Markov chain method takes different clusters from
clustering analysis as different states and then generates a Markov chain based on the
Markov chain method. If the number of micro-trips belonging to a certain cluster is too
small, the probability of transition to this cluster will be extremely small, which in turn
leads to a small probability of selecting a micro-trip belonging to this cluster during the
driving cycle construction. This is equivalent to reducing the amount of data. Therefore,
the characteristic parameters should be reasonably selected for clustering analysis to avoid
the above phenomenon.

To determine appropriate characteristic parameters, 30 different combinations of
characteristic parameters were selected. SPSS software was used to conduct a k-means
clustering analysis experiment on 2565 micro-trips, and the number of clusters was 3. After
analyzing the clustering results, the four characteristic parameters of maximum speed,
the standard deviation of speed, maximum acceleration, and maximum deceleration were
selected as the best combination of characteristic parameters for clustering analysis, which
is the most in line with the actual driving cycle of the bus.

The Markov property verification is the same as in the Markov chain method above,
and the calculation results for the state transition probability matrix are shown in (11).

P =


0.735786 0.169743 0.094471
0.088969 0.755284 0.155747
0.079954 0.138903 0.781143

 (11)

4.2. Generating Markov Chains and Constructing Driving Cycles

The process of generating a Markov chain is like the Markov chain method above. We
determine the state of the initial segment based on the cluster it belongs to. The state of the
next unit segment is then determined according to the state transition matrix, each unit
segment in the corresponding state segment set is selected for long-segment splicing, and
the similarity between the V-A matrix of the current long segment and the V-A matrix for
the overall data is calculated respectively. We select the unit segment with the maximum
similarity in the corresponding state segment set, and each unit segment can only be
selected once.

This step is repeated until the time length of the current long segment is appropriate.
After each step, the similarity between the V-A matrix of the current long segment and the
V-A matrix of the overall data is calculated according to (4). In this way, a candidate driving
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cycle is constructed. The above steps are repeated to construct a total of 50 candidate
driving cycles. The candidate driving cycle with the minimum average deviation is selected
as the final representative driving cycle according to (6) and (7) [23]. The representative
driving cycle is shown in Figure 12. The running time is 1292 s, the running distance is
5.64 km, the maximum speed is 38.48 km/h, the maximum acceleration is 2.44 m/s2, and
the maximum deceleration is −2.78 m/s2.
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5. Comparison of Driving Cycles
5.1. Comparison of Characteristic Parameters

To evaluate the driving cycles of the Xi’an No.2 bus constructed based on the above
three methods, average speed, average running speed, the standard deviation of speed, av-
erage acceleration, average deceleration, standard deviation of acceleration, the proportion
of acceleration, proportion of deceleration, proportion of uniform speed, and proportion of
idling were selected as deviation evaluation indicators. The deviations between the driving
cycles and the overall data are described by the average deviations, to reflect the accuracy
of the driving cycles. After calculation, Deviation of characteristic parameters between the
driving cycles constructed based on the above three methods and the overall data can be
obtained respectively, as shown in Table 7.

Table 7. Comparison results of characteristic parameters.

Characteristic Parameters Vm Vmr Vsd Am Dm Add

Overall data 15.687 20.527 12.577 0.557 −0.597 0.530
Micro-trip driving cycle 14.405 18.144 11.426 0.572 −0.604 0.533

Deviation 8.2% 11.6% 9.1% 2.8% 1.2% 0.6%
Markov chain driving cycle 16.163 20.870 12.431 0.563 −0.632 0.573

Deviation 3.0% 1.7% 1.2% 1.0% 5.9% 8.1%
Micro-trip anf Markov chain driving cycle 15.707 20.456 12.515 0.535 −0.575 0.499

Deviation 0.1% 0.3% 0.5% 4.0% 3.6% 5.9%

Characteristic parameters Pa Pd Pu Pi Average deviation

Overall data 30.1 26.3 20.0 23.6 0
Micro-trip driving cycle 30.9 27.3 21.2 20.6

Deviation 2.8% 3.7% 5.7% 12.6% 5.8%
Markov chain driving cycle 34.9 29.6 12.9 22.6

Deviation 15.9% 12.4% 35.5% 4.4% 8.9%
Micro-trip and Markov chain driving cycle 29.6 26.2 21.0 23.2

Deviation 1.4% 0.7% 4.8% 1.5% 2.3%

As can be seen from Table 7, the deviations of the three driving cycles are all within
a reasonable range. The average deviation of the driving cycle based on the combined
micro-trip and Markov chain method is the least, 2.3%. The deviations of average speed,
average running speed, and standard deviation of speed are the least, 0.1%, 0.3%, and 0.5%,
respectively, and the deviations of the proportion of acceleration, proportion of deceleration,
proportion of uniform speed, and proportion of idling are small, but the deviations of
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average acceleration, average deceleration and standard deviation of acceleration are large,
4.0%, 3.6%, and 5.9%, respectively. The average deviation of the driving cycle based on
the micro-trip method is moderate, 5.8%. The deviations of average acceleration, average
deceleration, and standard deviation of acceleration are the least, 2.8%, 1.2%, and 0.6%,
respectively, and the deviations of the proportion of acceleration, proportion of deceleration,
proportion of uniform speed, and proportion of idling are small, but the deviations of
average speed, average running speed, and standard deviation of speed are larger, 8.2%,
11.6%, and 9.1%, respectively, to make the average deviation larger. The average deviation
of the driving cycle based on the Markov chain method is the largest, 8.9%. The deviations
of average speed, average running speed, and standard deviation of speed are lower, 3.0%,
1.7%, and 1.2%, respectively; the deviations of average acceleration, average deceleration,
and standard deviation of acceleration are larger; and the deviations of the proportion of
acceleration, proportion of deceleration, proportion of uniform speed, and proportion of
idling are the largest, 16.2%, 12.4%, 35.5%, and 4.4%, respectively, which leads to the largest
average deviation.

5.2. Comparison of Speed Distribution and Acceleration Distribution

The probability distribution diagrams of speed and acceleration for the overall data
and three driving cycles are shown in Figure 13.
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It can be seen from Figure 12 that both the speed distribution probability curve of the
Markov chain driving cycle and the speed distribution probability curve of the combined
micro-trip and Markov chain driving cycle fit well with the speed distribution probability
curve of the entire dataset. While the speed distribution probability curve of the micro-trip
driving cycle fluctuates greatly, the deviation between it and the curve for the overall data
is larger.

It can be seen from Figure 13 that the acceleration distribution probability curve of
the combined micro-trip and Markov chain driving cycle fits best with the acceleration
distribution probability curve of the overall data, so that the deviations of the proportion of
acceleration, proportion of deceleration, proportion of uniform speed, proportion of idling
between the driving cycle and the overall data are all the least.

5.3. Comparison of Vehicle Specific Power Distribution

Vehicle Specific Power (VSP) is defined as the instantaneous power demand of the
vehicle divided by its mass, and the commonly used unit is kW/t [23]. For the same type
of vehicle, the greater the VSP, the better the power of the vehicle. VSP is an important
parameter that can reflect the driving cycle and the emissions of the bus. Therefore, the
accuracy of different driving cycles can be compared by comparing the VSP distribution of
different driving cycles and the VSP distribution of the entire dataset. For the No.2 bus, the
calculation formula is shown in (12), where v is vehicle speed (m/s), a is vehicle acceleration
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(m/s2), g is the gravity acceleration (9.8 m/s2), s is road gradient (taken 0), CR is the rolling
resistance coefficient (taken 0.00938), ρa is the air density (1.207 kg/m3 at 20 ◦C), CD is the
wind drag coefficient (taken 0.6), A is the frontal cross-section (8.0 m2), m is the gross mass
(16,975 kg), and N is a total number of VSP bins [17].

VSP = v(a + gs + gCR) +
1
2 ρa

CD A
m v3 = v(a + 0.09192) + 0.000171v3

∀ : N − 0.5 ≤ VSP ≤ N + 0.5
VSP Bin = N, N ∈ [−20, 20], N ∈ Z

(12)

VSPs of the overall data and three driving cycles were calculated respectively, then
VSPs were divided into different bins according to a certain interval. In this paper, 1 kW/t
is adopted as the incremental interval, the value range of VSP Bin is [−20, 20], and the VSP
distribution is obtained.

Root-mean-square error (RMSE) was employed to assess the similarity between the
three driving cycles and the overall data [24]. The RMSE is calculated according to (13). The
lower the value of RMSE is, the more similar the driving cycles are to the overall data. [25].

RMSE =

√√√√√ 20
∑

i=−20
(Bine,i − Bink,i)

2

L− 1
(13)

where i is the ID number of the VSP bin, Bine,i is the time proportion of the VSP bin i of
the entire dataset, and Bink,i is the time proportion of the VSP bin i of the k-th driving cycle
(k = 1,2,3). L is the total number of VSP bins (L = 41). The calculation results are shown in
Table 8.

Table 8. The RMSE between three driving cycles and the overall data.

Driving Cycle RMSE

Micro-trip driving cycle 0.0034
Markov chain driving cycle 0.0120

Micro-trip and Markov chain driving cycle 0.0031

It can be seen from Table 8 that the RMSEs of the three driving cycles are all in a
reasonable range. The RMSE of the VSP distribution between the combined micro-trip and
Markov chain driving cycle and the overall data is the lowest (0.0031), so the method of the
combined micro-trip and Markov chain driving cycle has the maximum similarity to the
overall data. The RMSE of the VSP distribution between the micro-trip driving cycle and
the overall data is also very low (0.0034), so the similarity between the micro-trip driving
cycle and the overall data is also high. The RMSE of the VSP distribution between the
Markov chain driving cycle and the overall data is the highest (0.0120), so the Markov chain
driving cycle has the minimum similarity to the overall data.

6. Conclusions

Based on the driving data of the Xi’an No.2 bus, this paper uses the micro-trip-based
method, Markov chain method, and combined micro-trip and Markov chain method to
construct the representative driving cycle of a Xi’an urban bus. Different driving cycles
constructed based on different methods have different deviations from the entire data,
which reflects the advantages and disadvantages of the different methods.

(1) The micro-trip-based method can effectively classify micro-trips, and the selected
micro-trips also have obvious driving characteristics. The constructed representative
driving cycle has a small deviation from the overall data. However, the calculation
process for the micro-trip-based method is relatively complex. Standardization and
principal component analysis are required because the number of defined characteris-
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tic parameters is large. Meanwhile, micro-trips in each cluster need to be sorted and
spliced in accordance with the time ratio, which leads to a large amount of calculation.

(2) The core idea of the Markov chain method is to regard the process of vehicle speed
changing with time as a Markov process and use this property to construct a driving
cycle. This method does not need to partition micro-trips to ensure the continuity
of driving data. However, its segment partition method is relatively rough, and
the Markov chain has randomness, which leads to large uncertainty in constructing
driving cycles; therefore, the constructed representative driving cycle has a larger
deviation from the entire data.

(3) The combined micro-trip and Markov chain method combines the advantages of
the micro-trip-based method and the Markov chain method. The micro-trip-based
method can determine the best combination of characteristic parameters, and the
Markov chain method can reflect the random characteristics of driving, closer to
the actual driving characteristics of the bus. The constructed representative driving
cycle has the minimum deviation from the overall data, and this method is suitable
for a situation where the accuracy of the driving cycle is very high. However, this
method needs standardization, calculation of the clustering effect under different
combinations of characteristic parameters, and calculation of the similarity between
the current long segment and the entire data when splicing long segments. Therefore,
the computational complexity is high, and the construction process is particularly
complicated.
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