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Abstract: Nowadays, the unmanned aerial vehicle (UAV) has a wide application in transportation. 

For instance, by leveraging it, we are able to perform accurate and real-time vehicle speed detection 

in an IoT-based smart city. Although numerous vehicle speed estimation methods exist, most of 

them lack real-time detection in different situations and scenarios. To fill the gap, this paper intro-

duces a novel low-altitude vehicle speed detector system using UAVs for remote sensing applica-

tions of smart cities, forging to increase traffic safety and security. To this aim, (1) we have found 

the best possible Raspberry PI’s field of view (FOV) camera in indoor and outdoor scenarios by 

changing its height and degree. Then, (2) Mobile Net-SSD deep learning model parameters have 

been embedded in the PI4B processor of a physical car at different speeds. Finally, we implemented 

it in a real environment at the JXUST university intersection by changing the height (0.7 to 3 m) and 

the camera angle on the UAV. Specifically, this paper proposed an intelligent speed control system 

without the presence of real police that has been implemented on the edge node with the configu-

ration of a PI4B and an Intel Neural Computing 2, along with the PI camera, which is armed with a 

Mobile Net-SSD deep learning model for the smart detection of vehicles and their speeds. The main 

purpose of this article is to propose the use of drones as a tool to detect the speeds of vehicles, 

especially in areas where it is not easy to access or install a fixed camera, in the context of future 

smart city traffic management and control. The experimental results have proven the superior per-

formance of the proposed low-altitude UAV system rather than current studies for detecting and 

estimating the vehicles’ speeds in highly dynamic situations and different speeds. As the results 

showed, our solution is highly effective on crowded roads, such as junctions near schools, hospitals, 

and with unsteady vehicles from the speed level point of view. 

Keywords: vehicle detection; vehicle speed estimation; transportation; unmanned aerial vehicle; 

deep learning; remote sensing 

 

1. Introduction. 

Unmanned aerial vehicles (UAVs) are increasingly used for remote sensing (RS) ap-

plications and are a relatively new category of robots in broader (commercial) use [1]. The 

small size, flexible movement, and good control of UAVs [2] combined with the vision 

systems [3] open a new gate for measuring and capturing data remotely. Recently, RS 

Citation: Moshayedi, A.J.; Roy, A.S.; 

Taravet, A.; Liao, L.; Wu, J.;  

Gheisari, M. A Secure Traffic Police 

Remote Sensing Approach via a 

Deep Learning-Based Low-Altitude 

Vehicle Speed Detector through 

UAVs in Smart Cites: Algorithm,  

Implementation and Evaluation.  

Future Transp. 2023, 3, 189–209. 

https://doi.org/10.3390/ 

futuretransp3010012 

Academic Editors: Ouri E. Wolfson 

and Shunde Yin 

Received: 1 October 2022 

Revised: 14 January 2023 

Accepted: 28 January 2023 

Published: 3 February 2023 

 

Copyright: © 2023 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Future Transp. 2023, 3 190 
 

 

applications using UAVs have been used for various tasks, such as thermography timing 

of different thermal orthomosaics and photographs [4], boundary detection between land 

parcels [5], complex and irregular field shape [6], accuracy measurement [7] or validating 

for utilizing multi-temporal color images [8], and precision agriculture to optimize crops 

and facilities crops management [9]. However, visual/object tracking to locate, detect, and 

define objects [10] via UAV images is still challenging, even with state-of-the-art deep 

learning models (RESNET, Mobilenet, Efficient Net etc.) in the field of computer vision. 

Today, deep learning algorithms reach performance close to human experts in many ap-

plications, e.g., traffic surveillance, accident avoidance, traffic intersections [3,10], auton-

omous vehicles, and intelligent transport systems. In the related literature, Retina Net, 

FCOS, and YOLOv3 (YOLO-v3, YOLO-v3-spp and YOLO-v3-tiny) [11,12], Faster R-CNN 

[12–14], multi-perspective convolutional neural network R-CNN [15], and hierarchical 

Bayesian algorithm [16] are proposed for vehicle detection based on satellite data or sta-

tionary vision systems. Based on the authors’ knowledge, there are few studies so far 

about the combination of UAV, visual/object tracking and speed detection. Moranduzzo 

et al. [3] proposed a method based on scale-invariant features transform (SIFT) for vehicle 

speed estimation in UAV imagery. The process begins with registering two successive 

images belonging to a sequence acquired by the UAV at a height of 200 m. Their results 

show that the proposed method generates 80.0% accuracy for car detection on the images 

acquired at a height of 200 m. Afifah et al. [17] estimated vehicle speed using Euclidian 

distance. As the first step in their processing chain, all the images are transformed with 

warp perspective to align them with a global coordinate. Then, they are converted to gray-

scale images and blurred with a gaussian function. Finally, after performing background 

subtraction and comparing and thresholding the images, the vehicle speed is estimated 

by comparing each vehicle with itself in the next frame using Euclidian distance. The ac-

curacy of their proposed approach is 92%. However, although very low altitude (<10 m) 

UAV-based car speed detection systems can be very effective, a detailed analysis of them 

has not been performed yet. The present paper aims to demonstrate the potential of deep 

learning approaches in newly proposed car speed detection systems using low-altitude 

UAV data to  help traffic safety and security in smart cities. This paper makes the follow-

ing contributions: 

1. A more reliable and secure solution to verify vehicle speed using drones instead of 

current studies is offered. 

2. Providing an effective alternative method against the many reported cases of acci-

dent damages and injuries for police officers as well as fixed traffic cameras. 

3. Introducing the quick speed check system, which can be used in places with limited 

access and in conjunction with the available speed detection system. 

4. A low-altitude drone equipped with a Mobile Net-SSD method to measure vehicle 

speed and a network connection capability was employed to implement our ap-

proach. 

5. To achieve our solution, a low-altitude drone equipped with the Mobile Net-SSD al-

gorithm was used to detect the speed of vehicles and has the ability to connect to the 

traffic police. 

6. Several scenarios were taken into account in various conditions, such as road inter-

sections and settings with abrupt speed changes, to provide more accurate findings. 

7. To increase the solution’s speed detection accuracy, the effective cases were tested 

and calibrated using a drone. The system was run on Raspberry PI4B for its faster-

processing speed, and memory capabilities, such as capacity and bandwidth, benefit 

the deep based-learning  computer vision module to run smoothly. 

8. In addition to our earlier contribution, which was already discussed above, a mova-

ble camera system was mounted on top of the drone, offering a number of opportu-

nities to assess our solution at various altitudes along the X and Y axes. 

9. In addition, a graphical user interface (GUI) was designed and implemented that al-

lows us to record the environment’s status, identify problematic conditions based on 
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speed parameters, and send alarms to the appropriate authorities was built and put 

into place. Additionally, we may manage the camera’s status, including its move-

ment, through the GUI. 

In general, the authors of this article believe that based on the variety of tests con-

ducted in real cases and measurements performed. The results mentioned in the following 

sections and the satisfactory performance of the introduced method and system can effec-

tively solve various scientific problems. The rest of the sections are organized as follows. 

Section 2 introduces the system setup and methodology used for vehicle detection, track-

ing, and speed estimation. Section 3 provides experimental results, followed by a discus-

sion in Section 4. Conclusions and potential paths for future work are given in Section 5. 

2. Materials and Methods 

According to the review of the past articles [18] and the investigation of the remain-

ing cases, vehicle speed detection systems include challenges and difficulties that need to 

be reviewed and updated. Some of the most important limitations can be considered as 

follows: Structural limitations, e.g., installing cameras at a height of 3–5 m vertically on 

the road surface, lead to insufficient visibility on winding roads [17], the cost and mainte-

nance limitations of fixed cameras, which cause their limited use in places with the short-

term investigation times, special uses, such as schools and hospitals, which have a lower 

speed limit than other places, and the possibility of using various processors [19] based 

on the Internet of Things(IOT), considering the good accuracy and speed for vehicle speed 

detection and tracking mission [18]. Therefore, according to the mentioned cases, future 

urban and traffic management requires the use of capabilities, such as maneuvering and 

fast movement, of UAVs, regardless of the type and characteristics of the cameras used. 

The methodology of the paper is divided into four sections: system setup, which is about 

the proposed hardware for the speed sensing system; vehicle detection and tracking, 

which is the full description of the method and algorithm used for vehicle detection and 

tracking section of the system. The vehicle speed estimation section fully describes the 

VASCAR approach used for vehicle speed estimation. The system calibration section 

demonstrates the sets of indoor and outdoor system calibration. The whole assembly is 

meant to capture, read, and analyze the raw video input from the Raspberry Pi camera 

and give output in real-time (Figure 1). 
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Figure 1. Proposed speed detection system (A) the total system scheme and logic, (B) the proposed 

UAV, (C) the system performance and designed GUI. 

2.1. System Materials 

The proposed speed sensing system consists of a UAV, CPU, and vision system, as 

well as an object and speed detector along with a web-based GUI (Figure 1A). The UAV 

(Tarot TL280H/Air 2205 2000 KV/10 × 4.5 mm) includes a control board (ArduPilot APM 

2.8-3DR Robotics, USA), Motors and speed control driver (T-Motor Air 15A_China), GPS 

(Ublox NEO-7M u-blox, Swiss), radio controls (TX: NET-Q118G, China), radio transmitter 

(RG831B, 8ch 2.4 GHz, China), and battery (PULSE 2250 mAh 3S LiPo Battery, China). 

The vision system consists of a Raspberry Pi camera with 1.3–5 MP maximum photograph 

resolution (2592 × 1944), a Pan-Tilt system containing two servo motors, which can move 

between +90° and −90° (vertically and horizontally) to move the camera and have a con-

trollable view, and an Intel neural compute stick 2. The Intel neural compute stick 2 is the 

next generation of Intel’s USB plug-and-play development kit for AI and deep learning 

technology, powered by Intel’s Movidius Myriad X Visual Processing Unit (VPU) [20]. It 

can be used for real-time analysis of raw video footage from cameras, which normally 

takes lots of time on a traditional CPU. Another reason for using this is its unique work-

load-specific hardware acceleration that minimizes data movement. The vision section is 

attached to a Raspberry Pi 4 minicomputer via a USB port. The Raspberry Pi processor 

and its camera (Pi camera) have been used in various Internet of Things projects and are 

recognized as a trustable platform [21]. Among the variety of Raspberry Pi types, the PI 4 

type has been chosen as it is the latest available version and supports high speed in data 

processing, which is a mandatory requirement for this research. It should be mentioned 

as the quad needs light accessories to continue the flight of the PI camera, along with their 

small weight, size and processing capability, the Broadcom CPU was selected, which 

makes this camera unique [22]. The tilting system is connected to the Raspberry Pi GPIO 

connectors mounted on the UAV (Figure 1B). As Figure 1 shows, the whole system works 

such that after running the program inside the PI, the camera, as the first part of the sens-

ing system, captures the video stream and feeds it into the raspberry pi computer. The 
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program records and analyzes the video. Then, the user inside the designed web-based 

GUI (Figure 1C) can monitor the live detection process, and by defining the speed value 

inside the GUI, any car that passes the limit receives the alarm. The design GUI (Figure 

1C) has the other feature to record, pause, and export the detected car report, along with 

a tilting system to control the camera attached to the UAV. 

2.2. Deep Learning Model Architecture 

Inside the design, the Single Shot Multibox Detector Mobile Net (SSD-Mobile net) 

was used as the deep learning model. This model is designed based on (Depth wise 

Separable Convolutions), which are separated into different CONV layers, one for 

filtering and one for integrating. In other words, SSD object detection comprises two 

sections, extracting feature maps, and applying convolution filters to detect objects. 

In this research Mobile Net-83 SSD model was selected due to features. such as good 

accuracy for target detection [23], small size and high speed with real-time processing 

performance [24], the ability to detect the object in one shot with the Multibox detector 

[25], along with the ability to implement on embedded system platforms. In addition, this 

model can detect the object [26] that is supposed to tilt the camera UAV in two axes, 

according to the experimental target [27]. The suggested SSD Mobile Net model is shown 

in Figure 2. 

 

Figure 2. The single shot multi-box detector mobile net (SSD-mobile net) model structure. 

As Figure 2 shows, the Mobile Net model aims to assign a default filter to each neural 

input channel for setting up the extraction of features. A (1 × 1) pointwise convolution 

follows next to integrate the outcome of the depthwise convolution. The batch norm 

comes into each of these separable layers. ReLU nonlinearity anticipates that the final (FC) 

layer that feeds into a SoftMax layer will be classified as having no nonlinearity. Unlike 

classic CNN, Mobile net’s filters analyze each color channel separately before combining 

the three outputs into a single value. This factoring has a significant impact. In the devel-

oped method, features from the input photos are extracted using (32 and 64) filters with 

sizes of (5 × 5) before two max-pooling (pool size = 2). More details about the model can 

be found in [28]. 

2.3. Vehicle Detection and Tracking 

The proposed system follows the described process in Figure 3. As shown, the main 

steps of work consist of initialization, which includes initializing the camera for live 

stream, DNN (SSD-mobile net) calling to perform in the vehicle’s detection section, and 

speed calculation. 
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Figure 3. The proposed vehicle speed estimation process. 

Figure 3 depicts the proposed vehicle speed estimation process which starts by re-

ceiving the video stream from the camera to calculate the speed of each tracked vehicle. 

The program takes in each frame of the livestream footage and runs it through a pre-

trained deep-learning model. As shown, after initialization and getting the object frame 

called, the OpenCV DNN converts the image blob and performs detection by confidence 

evaluation. The confidence evaluation means the strictness of matching each vehicle. The 

lower the minimum confidence specified, the less will be the detection accuracy. If the 

confidence of the detected vehicle is more than the minimum confidence (70%), then the 

vehicle will be indexed into memory and classified into a vehicle category followed by the 

setting of a bounding box and its position set to be tracked in the subsequent frames on 

the live feed. If the confidence of the tracked vehicles is less, the object’s last position will 

be updated. Then, the new vehicle will be tracked, and the loop will keep going. The 

model contains classification methods for all types of vehicles, such as cars, buses, trucks, 

etc. Meanwhile, vehicle tracing occurs as the vehicle moves across consecutive frames and 

calculates and declares the speed using the formulas explained in this section. 

2.3.1. Vehicle Detection Approach 

The vehicle detection phase consists of a multi-step process that relies on the existing 

object centroid calculated in the proposed system to confirm and define the new object 

(Figure 4). 
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Figure 4. The schematic view of the vehicle detection and tracking algorithm. 

The first task in the vehicle detection and tracking phase is to identify the objects and 

build bounding boxes around them. For this purpose, all three bands (Red, Green, and 

Blue) of each frame of the video are normalized using the following equations (Equation 

(1)): 

NormBand =
(Band − μ����)

σ
   (1)

where Band is band values, and μBAND is the mean of each red, green, and blue Band, 

respectively, σ is the scaling factor for normalization. After normalization, Mobile Net-

SSD is used for detecting vehicles. Mobile Net-SSD is a Single-Shot multi-box Detection 

(SSD) network intended to perform object detection. The vehicle detection and tracking 

system loops over all detected vehicles, add a bounding box around them and then calcu-

lates the centroid of the boxes. After the bounding box coordinates are extracted, the Eu-

clidean distances between the new and old bounding boxes are calculated. Each video 

frame can have a different position of the previously tracked object, leading to different 

boxes assigned to the same object in different frames. To avoid this, the distance between 

the new object in the next frame and the old object in the last frame is calculated using the 

following equation (Equation (2)): 

�(�, �) = ��(�� − ��)
�

�

���

        (2)

where x and y are x and y coordinates, respectively, and i is the instance. For instance, 

suppose that the last object detected in the frame is Ft, and the newly detected object is Ft 

+ 1 (where it is the current frame). If the old and newly detected objects refer to the same 

object, then the distance between Ft and Ft + 1 will be less than a new object’s length. 

Hence, the algorithm associates newly detected objects with previous ones’ consecutive 

frames and updates their position. In the last step, tracked vehicles that have not been 

visible in 4 frames are removed and not tracked anymore. 

2.3.2. Vehicle Speed Estimation Using an Improved VASCAR approach 

This study’s vehicle speed estimation model is based on an improved Visual Average 

Speed Computer and Recorder (VASCAR) method [29]. This method is based on timing 

and the known distance between two fixed points on the road, as shown in Equation (3). 

When a car passes the first reference point, the detector triggers the timer and captures 

the time until the car passes the last point to calculate velocity. 

Vehicle speed =
distance between Points (A − B)

time
 (3)

In the case of human operation, this method is severely limited by human error and 

delayed reaction. This research considers four instead of only two points and automati-

cally calculates the velocity between the reference points. The standard VASCAR is 
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calculated based on three points, while in the improved VASCAR, four measurements 

have been considered to calculate velocity. The measurement process is shown in Figure 

5. 

 

Figure 5. Schematic view of the VASCAR approach in different location of A to D. 

As shown in Figure 5, the car was detected at the specified point with a known dis-

tance. The system calculates the field of view based on the distance from the road it ob-

serves. The speed estimation system divides the whole frame into four points, considering 

the frame points in the video to track the object. When a car passes reference point A, the 

detector triggers the timer and captures the time until the car passes point D. This auto-

matic approach overcomes human error and delayed reaction that might occur in the case 

of human operation. The calculations are shown in Equation (4). 

Average Speed (km/h) = (
��

��
+

��

��
+

��

��
/ 3) × 3.6 (4)

where D1 is the distance between points A–B in meters at t1 second, the distance D2 be-

tween points B–C as t2 second, and the points C–D distance as D3 meter with t3 second. As 

Figure 5 shows, tracking an object in four points results in three distances included in the 

relationship to calculate the average. In the next step, the system calculates the field of 

view (FOV) based on the distance from the object. From the system point of view, at the 

same time, new vehicles are constantly being tracked and registered, and old objects are 

being deregistered. Meanwhile, the improved VASCAR algorithm is applied to each 

tracked vehicle. In the second phase, the system initializes the estimated speed list, loops 

over all the pairs of points, and estimates the speed of each object. Then, it calculates the 

number of pixels between centroids in points and converts it to real-world distance(me-

ters) as the pixel per meter (PPM) in Equation (5) and calculates the vehicle’s average 

speed. 

PPM =  
Distance Constant

Frame Width
         (5)

Equation (6) calculates the pixel spacing difference between the vehicle passing 

through each point for each point pair (e.g. A and B). 
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P�� = | Coords� − Coords�|     (6)

where CoordsB and CoordsA are centers of points A and B, respectively. Finally, Equation 

(7) is used to calculate the distance in meters (dAB). 

d�� =  P�� × PPM       (7)

Four timestamps are stored when the vehicle passes the video frame columns to cal-

culate the average speed. The average speed is calculated using the following equation 

(Equation (8)). 

Average Speed =

∆t��
d��

+
∆t��
d��

+
∆t��
d��

3
    

(8)

where ∆tAB is the timestamp between points a and b, ∆tBC is the timestamp between points 

b and c, and ∆tCB is the timestamp between points c and d in second. In this paper, based 

on mentioned equations, the improved VASCAR algorithm is implemented as a Python-

based program in OpenCV, and the DNN is built. The program acts to detect the object as 

the vehicle detection and tracking, and then it tracks and estimates the speed as the vehicle 

speed estimation. 

2.4. System Calibration 

Some points should be considered while using a speed detector system camera. Pixel 

per meter ratio is one of the parameters which should be calibrated. It represents the slice 

of road covered by each pixel and is relative to the square distance from the camera. No-

table factors include (a) camera height above ground (needs to be in the range of: distant 

(≥5 m) or close (<5 m)), and (b) camera location (should be on the side of the road) [30]. 

Camera focal length is another important parameter mainly related to camera height, the 

length of the road segment, and the number of lanes covered by the field of view. In most 

related research, this number is reported as ≤25 mm [30] to cover multiple lanes and a 

large road stretch. Furthermore, system calibrations are carried out to better evaluate the 

proposed system and algorithms.  This step is essential to tune system parameters and 

have some pre-analysis of the system. The calibration process contains the indoor and 

outdoor calibration from the tested FOV of the used camera to the program parameter 

and the final speed detection calibrated formula, which is described as follows: 

2.4.1. Indoor System Calibration 

Indoor system calibration extracts the camera’s field of view (FOV). FOV is the max-

imum sample area that a camera can image. It is calculated in three steps (see Figure 6): 

horizontal, vertical, and diagonal. A diagonal field of view (DFOV) designates the diago-

nal dimensions of the measurement area in the object plane; a horizontal field of view 

(HFOV) defines the horizontal dimensions of the object plane, and a vertical field of view 

(VFOV) represents the vertical dimensions of the measurement area in the object plane 

[31]. 
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Figure 6. Different camera FOVs measurement situation, diagonal lengths (A), horizontal (B), and 

vertical (C). 

As shown in Figure 6, to extract the maximum Pi camera FOV, the camera has been 

moved on along with points P and Q. Then, using Equation (9), the camera horizontal 

FOV value can be defined by: 

FOV = 2 tan�� �
1

2

image width

focal length
�                       (9)

FOV extraction includes the following steps based on the setup shown in Figure 6: 

 Step 1: Calculates the horizontal, vertical, and diagonal FOV from a fixed distance 

from the object at different heights. 

 Step 2: FOV extraction of the camera in different tilted positions on the x-axis to check 

any orientation effects on the Pi’s FOV. 

 Step 3: FOV extraction of the camera in different tilted directions of the y-axis while 

the camera is 20 cm from the object. The same principle of the trapezoid as the last 

test applies, but in this case, the trapezoidal frame appears along the vertical side. 

 Step 4: Finally, the camera performance was studied with a random test for any 

height and degree to calculate the FOV. 

As Figure 6A shows, the camera system was put on top of the tilt systems to move 

the camera on various x- and y-axes. It should be mentioned that for each tilt, the trape-

zoidal area of the image gets changed (Figure 6B–D) [32]. Then, to calculate the FOV, the 

median of the trapezoidal (MT) image area is recalculated using the Equation (10). 

MT = (L1 + L2)/2     (10)

where L1 and L2 are the lengths of base 1 and 2, respectively, and MT (median of the 

trapezoid) is the image width used to calculate the FOV of the respective tilt angle. 

Figure 7 shows the tilting system assembled with UAV and controlled with Rasp-

berry Pi. As shown in Figure 7A, the assembled servo motor can move in ±90 in X and Y 

directions. Figure 7B shows that changing the baseline of L1 and L2 can cause the three 

parallel situations. Figure 7C: horizontally angled. Figure 7D: vertically tilted, which can 

affect the acquired image by the camera. It should be mentioned that for the Outdoor test, 

the same assembly without a stand is installed on the top of the UAV. 
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Figure 7. Indoor setup for the tilt system with the servo bed. (A) tilt system assembly, consisting of 

two servo motors capable of moving in the x and y axis along with raspberry PI 4B, pi camera. (B) 

the image and camera situation in a different scenario, parallel to the surface, (C) horizontally an-

gled, (D) vertically tilted, L1: base 1 and L2: based 2. 

2.4.2. Outdoor System Calibration 

The whole setup was brought outside the lab and tested to find the best distance for 

object detection. The maximum distance was taken as the best distance because it would 

allow a single vehicle to traverse further in the frame. In each test, the FOV was recorded 

for the corresponding distance with the help of a measuring tape. The next step in outdoor 

system calibration is system parameter calibration. The max disappears, and distance and 

frame width should be correctly assigned to have the best system performance for differ-

ent FOVs. 

3. Experimentation and Results 

3.1. Indoor System Calibration 

The first indoor system calibration step was to find horizontal, vertical, and diagonal 

FOV from a fixed distance from the object at different heights. The experiment was con-

ducted based on the setups shown in Figure 8. 

 

Figure 8. Indoor setup for horizontal, vertical, and diagonal FOV extraction from a fixed distance. 

(A): Distance between fixed object and camera, (B): Real Horizontal Length measurement, (C): 
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Horizontal lengths inside the obtained image, (D): vertical lengths inside the obtained image, (E): 

diagonal lengths inside the obtained image. 

To test the camera indoors FOV parameter, as the first step based on Figure 7, the 

Raspberry Pi with the camera mounted was set on a surface with a fixed object distance 

of 20 cm and varying height (r) from 0.25 to 3.5 m. The obtained results are shown in Table 

1. 

Table 1. Indoor FOV measurement with fixed distance (20 cm) and varying heights, Height (H), 

Horizontal Length (HL), Horizontal Fov (H_FOC), Vertical Length (VL), Vertical Fov (V_FOV), Di-

agonal Length (DL), Diagonal Fov (D_FOV). 

H (m) HL (cm) H_FOC (Degree) VL (cm) V_FOV (Degree) DL (cm) D_FOV (Degree) 

0.25 19.5 51.9784 15.5 42.3626 23 59.7978 

0.5 19.6 52.2097 15.4 42.1134 23.2 60.2274 

0.75 20 53.1301 14.9 40.8607 23.1 60.0128 

1 20 53.1301 15 41.1120 22.8 59.3662 

1.25 20.3 53.8155 15.2 41.6135 23.5 60.8684 

1.5 19.8 52.6708 15.5 42.3626 23 59.7978 

1.75 19.6 52.2097 15.3 41.8637 23 59.7978 

2 20.3 53.8155 15.2 41.6135 23 59.7978 

2.25 20.3 53.8155 15.2 41.6135 22.9 59.5822 

2.5 20.1 53.3590 15.1 41.3630 23 59.7978 

2.75 19.5 51.9784 15.1 41.3630 23 59.7978 

3 20 53.1301 15.1 41.3630 23.1 60.0128 

3.25 20.1 53.3590 15 41.1120 23 59.7978 

3.5 19.9 52.9006 15 41.1120 23 59.7978 

Table 1 concludes that the results of every test actually can coincide with the design 

FOV angles from the specifications (H_FOV: 53.50 +/− 0.13 degrees, V_FOV: 41.41 +/− 0.11 

degrees) and considering that the 2-degree measurement error differential due to human 

error and the height does not affect the FOV by a huge margin, be it horizontal, vertical, 

or diagonal. It should be noted that because of the angle change, the image received or 

captured may seem rectangular on screen, detecting a trapezoidal frame. In the next step, 

the FOV variations in the fixed distance (20 cm) with different camera angles in the x-

direction from −90 to +90 degrees are presented (Table 2). 

Table 2. Indoor FOV(Filed Of View) measurement over changing the camera angle from −90 to +90 

angle of view on the x-axis (AOV_X), Distance From Lens (DL), Horizontal Length (HL), Horizontal 

FOV (H_FOV), Vertical Length of Base 1 (VL1), VERTICAL LENGTH of BASE 2 (VL 2), Vertical 

Median of Trapezoidal Frame(VMT),Vertical FOV (V_FOV),Diagonal Length(DL), Diagonal FOV 

(D_FOV). 

AOV_X (Degrees) DL (cm) 
H_L 

(Degree) 

H_FOV 

(Degree) 

VL1 

(cm) 

VL2  

(cm) 

VMT  

(cm) 

V_FOV  

(Degree) 

DI_L  

(cm) 

D_FOV  

(Degree) 

90 
Obj. out of 

scope 
Null 0 Null Null Null 0 Null 0 75 

60 

45 22.5 23 54.1441 15 18 16.5 40.272 35 75.7499 

30 21.5 21 52.0591 15 17 16 40.819 32 73.3122 

15 21 21 53.1301 15 15 15 39.307 30 71.0753 

0 20 20 53.1301 15 15 15 41.112 23 59.7978 

−15 21 21 53.1301 15 16 15.5 40.512 30 71.0753 

−30 21.5 21 52.0591 15 17 16 40.819 32 73.3122 
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−45 22.5 21 50.0337 15 18 16.5 40.272 35 75.7499 

−60 
Obj. out of 

scope 
Null 0 Null Null Null 0 Null 0 −75 

−90 

As Table 2 shows, for the degrees 60 or above, and in the same case for below −60, 

when the device was turned to that specific degree, the object’s frame was out of the image 

frame. This test shows that the camera movement on the tillite system in the x direction 

should be between ±60 degrees. For the third test, the camera gradually tilted along the y-

axis while the object was at 20 cm in a constant place. The same principle of the trapezoid 

as in the last test applies. In this case, the trapezoidal frame appears along the vertical side. 

It should be noted that due to the y-axis movement of the camera, only one base (base 2) 

of the image will be changed (Table 3). 

Table 3. Indoor FOV measurement with device position from the object (cm) and changing the cam-

era in the y direction, Distance From Lens (DL), Horizontal Length (HL), Horizontal FOV (H_FOV), 

the Vertical Length of base 1 (VL1), the vertical length of base 2 (VL2), Vertical Median of Trapezoi-

dal Frame (VMT), Vertical FOV (V_FOV), Diagonal Length (DI_L), Diagonal FOV (D_FOV), object 

out shown as OUT. 

AOV_Y 

(Degrees) 
DL (cm) VL2 (cm) VMT (cm) 

H_FOV 

(Degree) 
VL1 (cm) 

V_FOV 

(Degrees) 
DI_L (cm) 

D_FOV 

(Deg) 

90 Obj. out of 

scope 
Null Null 0 Null 0 Null 0 

75 

60 40 42 31 42.3626 16.1 29.113 39 64.342 

45 34 36.5 28.25 45.1200 15.8 31.246 35 63.553 

30 27 32 26 51.4199 15.5 33.196 32 63.215 

15 24 27 23.5 52.1711 15.2 35.842 30 65.100 

0 20 20 20 53.1301 15 41.112 23 59.797 

−15 24 26.5 23.25 51.6887 15 35.757 30 65.657 

−30 27 32 26 51.4199 15.4 32.993 32 63.215 

−45 34 36 28 44.7602 15.6 31.132 35 64.010 

−60 40 41.5 30.75 42.0510 15.9 28.991 39 64.761 

−75 Obj. out of 

scope 
Null Null 0 Null 0 Null 0 

−90 

Table 3 shows that the system has a limitation of ±75-degree rotation in the direction 

of the object inside the frame, so the direction of movement should rotate within ±75 de-

grees. As the result shows, the degree between 75 and 90 in the Y direction with positive 

and negative values causes the camera disability to record an image, so the system loses 

its performance to track the object. 

3.2. Outdoor System Calibration 

The outdoor system calibration starts with checking the Pi camera FOV. In order to 

estimate vehicle speed accurately, the vehicle must be seen traversing from the initial 

point of the frame to the very end. Table 4 shows the various FOVs measured from various 

distances from 300 up to 1600 cm horizontally perpendicular to the road. All the outdoor 

system calibrations are conducted at a laminar wind speed.  
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Table 4. Outdoor Field Of View (FOV) measurement for various distances from the road, Average 

Horizontal Field Of View (AVG H_ FOV). 

Distance From Road (cm) FOV (cm) FOV (Degree) AVG H_FOV (Degree) FOV (Degree) 

300 335 48.2 

51.12 53.1 

350 385 48.8 

400 430 48.8 

450 465 51.6 

500 515 51.7 

550 570 51.5 

600 570 53.5 

650 650 53.1 

700 770 51.53 

1600 1500 51.53 

In each test, the FOV was recorded for the corresponding distance with the help of a 

measuring tape. As Table 5 shows, the data obtained for the tested FOV are very close to 

the value declared by the camera manufacturer (53 degrees), which indicates the accuracy 

of the calculations and experiments. Finally, the last distance of 16 meters was set as the 

fixed distance for future tests due to the clear image visibility at this setup. At this dis-

tance, the FOV is 15 m. 

Table 5. Final calibration of the system parameters. 

Component Description Value (Unit) 

max_disappear 
Maximum consecutive frames for an object to be allowed to pass before 

deregistering it 
15 frames 

max_distance Maximum distance between centroid to associate an object 1.75 m 

track_object Number of frames to track for object 4 frames 

confidence Minimum confidence or probability of detection 0.4 

frame_width Frame width in pixels 480 pixels 

speed_estimation_zone Speed estimation columns 4 (A, B, C, D) 

distance Distance from road to camera 16 m 

speed_limit Speed limit To Be Set 

3.3. System Software Parameters Calibration 

As already mentioned, max disappears, max distance, track object, and frame width 

must be determined correctly for better system performance. The parameters have been 

calibrated through trial and outdoor experiments with the values, as presented in Table 

5. 

As shown in Table 5, the parameters used for max disappear and max distances are 

15 and 1.75 m. The frame number for object tracking is set to 4. The confidence was chosen 

to be 0.4 (i.e., minimum detection percentage of 40%). This allows some flexibility because 

the model will also track objects it is less confident about. Since vehicles come in all shapes 

and sizes, this can increase robustness in real-world use. Frame width is set to 480 as both 

60 fps and 90 fps footage are supported at this resolution. Moreover, it reduces computa-

tional needs and speeds up the process due to faster calculations on smaller images. 

3.4. Vehicle Speed Estimation Optimization 

A real vehicle test shows the difference between real speed and the system’s esti-

mated speed in two road directions and this difference is higher due to the greater dis-

tance of the quad from the road. To overcome this issue, as the last step, the final calibrated 

formula extracted (Equations (10) and (11)) with the help of curve fitting tools in MATLAB 

based on the following process is applied to the outcomes of the vehicle speed detection 
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model. For this aim, the UAV was placed at a height of 3 m in the fixed point test, and a 

vehicle with a speed range of 10–70 km/h was used to test the system, considering the 

maximum speed limit of the city traffic police. A car with a driver and one of the research-

ers as an assistant driver was used. Before the vehicle starts to move, the driver is informed 

about the target speed then the driver brings the car’s speed to the desired speed at the 

UAV location. Then, when passing the drone’s position, along with checking vehicle iden-

tification, the UAV speed reading and the vehicle speed from the odometer are read and 

recorded by the driver’s assistant. It should be noted that speed comparison is based on 

the two-way remark as direction 1, the path which has the minimum distance with the 

UAV and the vehicle is moving towards the UAV, and direction 2, going away from the 

UAV with the maximum distance and located on the other side of the street. The test is 

repeated five times, and the average is considered the final detected speed. Table 6 shows 

the system performance in real vehicle tests for the mentioned speed range. 

Table 6. The real car speed and detected speed with the proposed system over different car direc-

tions (Direction 1: near side and Direction 2: faraway side). 

Speed (km/h) Direction 1 (y1) Difference Direction 2 (y2) Difference 

10 7.76 2.24 6.96 3.04 

20 15.62 4.38 15.29 4.71 

30 23.18 6.82 24.91 5.09 

40 33.729 6.271 54.26 −14.26 

50 43.1 6.9 32.83 17.17 

60 73.08 −13.08 73.32 −13.32 

70 83.22 −13.22 80.5 −10.5 

The result shows that when the UAV is in the car’s direction side, the detected speeds 

are nearer than the cases with more than 16 m (Figure 9). 

 

Figure 9. The measured and real vehicle speed differences in two directions. 
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Figure 9 shows that the car has a different curve in each direction. Then, to have a 

better-speed estimation, the results from Table 7 were formulated with the help of the 

curve fitting tool in MATLAB software, and the extracted curve is shown in Equations 

(11) and (12). 

�1 = (−2.283 × 10��)�� + (0.0004265)�� + (−0.0291)�� + (0.9024)�� + (−11.7)� +  59.67 (11)

�2 = (−4.958 × 10��)�� + (0.001001)�� + (−0.07487)�3 + (2.542)�� +  (−37.01)� +  188.9 (12)

As per as analysis in MATLAB with the mentioned coefficient in Equations (10) and 

(11), the best R2 for direction 1 is 0.9968 and for direction 2 is 0.9033. 

Table 7. Vehicle Detection Accuracy on the UAV Height Variation. 

UAV Height (m) Number of Vehicles on Street Number of Detected Vehicles Detected Car (Error %) 

0.7 32 42 31.25 

1.0 19 24 26.32 

1.25 25 31 24.00 

1.50 32 38 18.75 

1.75 34 40 17.65 

2.50 34 38 11.76 

3.0 34 38 11.76 

3.5. Real Vehicle Test 

The real vehicle test includes experiments regarding changes in UAV height from 0.7 

to 3 m with the fixed location, changing the UAV degree with X-axis from −15 to +15, 

changing the camera degree with X-axis from −90 to +90, changing the camera degree with 

Y-axis from −90 to +90. Finally, a random test with dynamic height and degree was con-

ducted (Figure 10). A vehicle was driven along a specific road (JXUST university golden 

campus, Ganzhou, China) with minimum traffic. 

 

Figure 10. The schematic view of real vehicle tests with various location of A to D. 
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3.6. Vehicle Detection and Tracking 

In the experiments, the car driver is asked to set a specific speed, so the real speed of 

the vehicle can be compared to the one obtained by the proposed system. In the first stage, 

the UAV was flown from 0.7 m height to 3 m. The maximum height of 3 m is assigned 

based on security issues. At each height, the estimated car speed was logged. The vehicle 

detection results on both roadsides are shown in Table 8. 

In the next step, the car detection algorithm is tested when changing the UAV angle 

to the road with the x-axis from −15° to +15° at a UAV height of 3 m. The vehicle detection 

results on both roadsides are shown in Table 8. 

Table 8. Vehicle detection accuracy on the UAV X-axis degree variation. 

X-Axis Change (Degree) Number of Vehicles on Street Number of Detected Vehicles Detected Car (Error %) 

−15 39 36 7.69 

+15 26 30 15.38 

The previous test is repeated for the changes in the Y-axis degree with the UAV 

height of 3 m. The results show that the UAV can monitor the road between +15 and −30 

in the Y direction Table 9. 

Table 9. Vehicle detection accuracy on the UAV y-axis degree variation. 

Y-Axis Change (Degree) Number of Vehicles on Street Number of Detected Vehicles Detected Car (Error %) 

−30 22 28 27.27 

−15 18 21 16.67 

+15 21 25 19.05 

+30 The road is out of range 

The last test is the system performance in a random situation with dynamic UAV 

height and a camera degree. This test in each step is repeated 5 times randomly, and the 

average is considered the final value is shown in Table 10. 

Table 10. Vehicle detection accuracy on the system random test. 

Random Parameter Vehicles on Street (KM/h) Detected Vehicles (KM/h) Detection Error % 

UAV height 1.5 m 49 58 18.37 

UAV height 1.0 m 34 44 29.41 

UAV height 2.0 m 42 46 9.52 

x-axis −15 degree 36 39 8.33 

4. Discussion 

This research investigated low-amplitude UAV applications for car speed detection 

using Mobile Net-SSD models. Different indoor and outdoor tests were conducted to ex-

plore the camera’s ability and calibrate the hardware. The special advantages of this de-

sign in low-altitude flights include battery energy consumption, reduced UAV charging 

speed, longer flight length, and the ability to develop a design to track vehicle speed at 

dynamic speed points, such as intersections, Joins of roads, traffic lights, etc. Another rea-

son to check the vehicle’s speed at a low height is to use a camera with fewer pixels and 

increase the UAV operating hours, as well as not interfere with the wind speed in the 

performance and control of the quad. In addition, this solution can be used in intersections 

and schools, kindergartens, and hospitals where vehicles generally accelerate at once. The 

system setup calibration demonstrated that a centroid tracking algorithm used for vehicle 

detection and tracking requires the camera to be perpendicular to the road to prevent ob-

stacles. It seems that using any value for max disappear more than 15 with the given res-

olution of 640 × 480 would render speed detection impossible in most cases. Max distance 
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higher than 175 cm could cause the centroid to disassociate from the object and fail to 

detect the vehicles. 

Furthermore, it has been observed that heat substantially reduces the performance of 

the system. It affects the Intel neural compute stick (system shutdown due to the heat). 

The results show that vehicle detection error reduces when the UAV height increases. This 

means that by increasing the UAV height, vehicle overlapping decreases, and sudden 

speed changes in vehicles can be detected easier. A system with a UAV positioned at lower 

heights leads to a loss in the system’s tracking process. Experimental results of vehicle 

speed detection show that the minimum speed detection error obtained from a setup for 

the camera has a −15-degree angle to the X-axis, and the maximum error is a −30-degree 

angle. Another parameter which influences the system’s accuracy is the distance from the 

road. As the vehicle moves further, the accuracy of vehicle detection reduces. This is es-

pecially critical for highways and wide roads because vehicles will not always drive along 

the road edge [33,34]. High-speed vehicles are more likely to avoid detection by the UAV 

speed detector. In addition, the speed of the vehicle is also one of the factors influencing 

the accuracy of the system, since vehicles do not always move at a constant speed. Some-

times, they may reduce speed to avoid a collision or react suddenly to a traffic situation. 

Moreover, vehicles are partly obscuring each other in a 2D frame due to their variable 

speeds. They sometimes stop in front of the camera and block other vehicles behind them. 

Final observations from the data show that any speed above 50 km/h reduces the system’s 

performance. The UAV used in this project can also be autonomously controlled using 

modern trajectory planning algorithms, such as the evolutionary trajectory planning al-

gorithm (ETPA), which is based on deep learning [35,36]. Besides the system can be 

equipped with pedestrian detection so that the UAV maintains its path avoiding pedes-

trians [37,38]. The mentioned improvement and utilization of modern technologies in 

making cities smart, especially in the transportation department, increases various param-

eters, such as the economy, environment, and infrastructure, from 10% to 30% [39]. More-

over, the data (image, video, graphics etc.) from these applications can help find behavior 

and support predictions using big data learning and discovery techniques [40]. 

5. Conclusions and Future Work 

In this research paper, we have proposed a novel solution using extended UAVs, an 

application of remote sensing, to improve IoT-based smart city services. To show its su-

perior performance, several different indoor and outdoor scenarios have been evaluated 

through implementation. The superior performance mainly stems from the accurate cali-

bration of the UAV’s camera, obtained in one of the implemented scenarios, supporting 

accurate vehicle speed detection. The results show that vehicle detection error reduces 

when the UAV height increases. Specifically, by increasing the UAV height, vehicles’ sep-

arations are decreased, facilitating the easier detection of sudden speed changes in vehi-

cles. Even in the case of connecting roads, such as the location of traffic lights, the car’s 

speed generally varies, and sudden changes cause interference in the measurement of the 

actual speed, but the promising results of the solution elaborate on its effectiveness in 

crowded roads or junctions where vehicles have variant and non-stable speeds. In addi-

tion, our solution has the capability to connect to the traffic police with a friendly and 

easy-use GUI, which can handle the data and helps the end-users in the smart city to con-

trol the camera and record. In future work, we aim to evaluate it using the three different 

angles (yaw, pitch, roll) along with implementing other deep learning methods and com-

paring the measured system speed result with the city police control traffic cameras for 

better calibration and evaluation. It is also planned to check and average the vehicle’s 

speed based on job distribution and a swarm of UAVs.  
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Nomenclature 

AVG H_FOV Average Horizontal Field Of View 

Band Band values 

Coords� Centre of points A 

Coords� Centre of points B 

d(x, y) Distance between x, y 

d�� Distance in meters between A & B 

d/t Distance over time 

DL Distance From Lens 

DI_L Diagonal Length 

D_FOV Diagonal FOV 

FOV Field of View 

HL Horizontal Length 

H_FOV Horizontal FOV 

Km/h Kilometer per hour 

L1 Length of base 1 of the trapezoidal image area 

L2 Length of base 2 of the trapezoidal image area 

MT Median of the trapezoidal image area 

NormBand Normalized band 

OUT out object 

PPM Pixel per meter 

P�� Pixel spacing between a & b 

UAV Unmanned aerial vehicle 

VL1 the Vertical Length of base 1 

VL2 the Vertical Length of base 2 

VMT Vertical Median of Trapezoidal Frame 

V_FOV Vertical FOV 

μ���� The mean of each red, green, and blue band 

∆t�� Timestamp between a and b 

σ Scaling factor for normalization 
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