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Abstract: In many big cities, train delays are among the most complained-about events by the
public. Although various models have been proposed for train delay prediction, prior studies
on both primary and secondary train delay prediction are limited in number. Recent advances
in deep learning approaches and increasing availability of various data sources has created new
opportunities for more efficient and accurate train delay prediction. In this study, we propose a
hybrid deep learning solution by integrating long short-term memory (LSTM) and Critical Point
Search (CPS). LSTM deals with long-term prediction tasks of trains’ running time and dwell time,
while CPS uses predicted values with a nominal timetable to identify primary and secondary delays
based on the delay causes, run-time delay, and dwell time delay. To validate the model and analyse
its performance, we compare the standard LSTM with the proposed hybrid model. The results
demonstrate that new variants outperform the standard LSTM, based on predicting time steps of
dwell time feature. The experiment results also showed many irregularities of historical trends,
which draws attention for further research.

Keywords: train delay; long short-term memory; traffic management; long-term prediction; deep learning

1. Introduction

Recent trends have showed a great need for the adoption of intelligent transport
systems (ITS), especially in metropolises. This would generate various impacts on both
passenger transport and freight logistics [1–3], which helps to reduce traffic emissions and
energy consumption [4–7]. Moreover, train transport plays an essential role in a multimodal
transport system for both inter-city and intra-city travelers. The train timetabling problem
(TTP) aims to find a periodic timetable that provides a preoperational schedule for a set
of trains and follows operational constraints [8,9]. Nevertheless, train delays may cause a
scheduled timetable to become infeasible and lead to inefficient operations, poor services,
and longer travel time to complete passenger journeys. Therefore, accurate prediction
of train delays is a vital task for control of railway traffic. Traditional model-driven
methods have been widely studied in train delay prediction, such as micro and macro
simulation methods [10–12]. In simulation-based approaches, each simulation model
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requires numerous parameters. Due to time-varying operating conditions and interactions
between different subsystems subject to infrastructure and operational rules, parameter
calibration is a significant challenge in building a successful simulation model [13].

In railway transport systems, diverse data are collected from various sources contain-
ing sensors, smart cards, Global Positioning System (GPS), and video detectors. With the
fast development of big data techniques, many studies have focused on machine learning
algorithms to learn the general rules that map a set of inputs to outputs in spatio-temporal
prediction. State-of-the-art delay prediction models can be divided into two categories:
deterministic and stochastic prediction models. Deterministic prediction models, such as
neural networks and ensemble learning, usually use past observations to produce a fixed
best-estimate value, while stochastic prediction models such as Bayesian networks consider
a probability distribution. A diversity of factors may cause train delays. For example,
primary congestion predictive factors have the most significant impacts on congestion
delay, including meets, passes, and overtakes [14]. Hence, although the train delay can
be reduced, it cannot be avoided. The types of train delay prediction can be classified
as real-time/short-term, and medium-/long-term prediction [15]. Train delays can be
classified as primary and secondary delays [16]. Due to the effects of the delay propagation,
a primary delay (an initial delay) occurring at a station often causes secondary delays (or
knock-on delays) at subsequent stations.

Ref. [17] proposed a fuzzy Petri net (FPN) model to simulate train primary delays
and knock-on delays in a railway system. Ref. [18] developed an artificial neural network
(ANN) to predict delays of passenger trains. The application of support vector regression
(SVR) achieved better performance than ANN [19]. Ref. [20] used a microscopic graph
model for online prediction of event times based on a directed acyclic graph (DAG) with
dynamic arc weights. Ref. [21] presented and compared the accuracy and computation
time of global and local data-driven approaches for calibrating the microscopic prediction
model in real-time. Ref. [22] constructed a decision tree to estimate the root causes and
effects of knock-on delays. Ref. [23] established a dynamic train delay prediction system
(DTDPS) based on shallow extreme learning machine (SELM) and deep extreme learning
machine (DELM), which used a repeated learning process with historical train movement
data and exogenous weather data for long-term prediction of train delays in a large-scale
railway network.

Furthermore, Ref. [24] demonstrated a dynamic stochastic model that predicts con-
ditional probability distributions of train delays in real-time. The model applied prior
probabilities for parent nodes to update calibration results of Bayesian networks with the
probability distribution and regression coefficients for every two related events. Similarly,
Ref. [25] presented an algorithmic performance comparison of three Bayesian network train-
ing methods, including hill climbing, primitive linear, and hybrid structures. The hybrid
structure combined data-driven approaches with some domain knowledge which outper-
formed the other models. Ref. [26] proposed a data-driven ensemble forecasting model
for medium-term prediction of train delays. The model combined a context-aware Ran-
dom Forest (RF) and a regression with a mesoscopic simulation-based approach. Ref. [27]
indicated a bi-level RF approach to estimate near-term train delays. The approach incorpo-
rated an RF classifier for predicting the increase, decrease, or lack of change for a current
delay at the primary level, and three RF regression models for measuring the change in
delay at the secondary level. Ref. [28] proposed a generic delay prediction framework to
establish a connection between expert knowledge with long short-term memory (LSTM).
The Convolutional Neural Network (CNN) [29], Gated Recurrent Unit (GRU) [30], and
LSTM can be combined to form a more complex structure. In some circumstances, hybrid
methods (e.g., Bidirectional LSTM and GRU-LSTM) can reach a better performance than
a simple structure for unlocking hidden patterns in data [31,32]. Ref. [33] showed a hy-
brid method to merge the knowledge of the network and the experience of the operators,
and data-driven models based on operational data and exogenous information to predict
running time, dwell time, train delay, penalty cost, and train overtaking. Ref. [34] pre-
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sented a train spatio-temporal graph convolutional network (TSTGCN), which included
weather variables as input variables to predict the number of delayed trains in a certain
period. Ref. [15] proposed a rule-driven automation approach for multi-scenario real-time
prediction, which consisted of a delay status labeling algorithm, resilience of section and
resilience of station factors.

Although various models have been proposed for real-time or long-term train delay
prediction, to the best of our knowledge, no prior work has applied a deep learning
approaches to both primary and secondary delay prediction. In this paper, we propose
a comprehensive architecture of deep learning methodology for long-term train delay
prediction. The contributions of this paper are summarized as: (1) The causes of train delay,
run-time delay and dwell delay are accurately investigated and distinguished. We aim
to predict the running time and dwell time instead of performing train delay prediction
directly. (2) Several machine learning models are trained and evaluated using General
Transit Feed Specification (GTFS) time series dataset, and the experimental results show the
effectiveness and efficiency of the proposed model. (3) Detailed guidelines on generating
multivariate regression features and building a robust train delay forecasting system
are introduced.

The remainder of the paper is organized as follows. Section 2 describes the train delay
and interprets the causes of train delays; this section also introduces a preliminary critical
point search (CPS) classification algorithm, supervised learning setting, and multivariate
time series models. Section 3 of experiments discusses static and real-time train operation
data fusion, evaluation methods, and prediction results. Section 4 presents a summary of
this study.

2. Methodology
2.1. Train Delay Problem

A railway network can be expressed as a graph. The nodes on the graph present
a series of stations. Passenger trains are typically run along railway tracks based on
regular schedules. Each trip has an original station, a destination station, and some
intermediate stations. In this paper, we consider a train T serving a series of stations
Sm, where Sm ∈ {S1, S2, . . . , Sl}. The train operational variables and spatio-temporal
variables are defined as actual arrival time ata (T, Sm), actual departure time atd (T, Sm),
scheduled arrival time sta (T, Sm), scheduled departure time std (T, Sm), actual dwell time
da = atd (T, Sm) − ata(T, Sm), and actual running time ra = ata (T, Sm) − atd (T, Sm − 1),
respectively. If the difference of arrival time ata (T, Sm) − sta (T, Sm) and departure time
atd (T, Sm) − std (T, Sm) are more than 30 s and 60 s, an arrival delay and a departure
delay occur at the corresponding station, respectively. Furthermore, each trip has a real-
time record from which it is to retrieve the category of the trip. Each station has a unique
sequence value from which it is to specify the order of the stations.

2.2. Critical Point Search Classification

Classifying the predicted data by train delay categories helps us to understand the
model output. A classification algorithm is required to incorporate domain knowledge
to extract the information from the output of a predictive model. CPS is a rule-based
classification method to search primary, secondary and on-time points [28]. It can be
extended to identify those train stations that cause major disruption to services. If it is
able to predict the primary delay and secondary delay, we can reduce or avoid delays
in advance. The CPS algorithm (Algorithm 1) has If–Then rules to identify the primary
delay and secondary delay at the corresponding arrival stations from arrival delays of a
trip list ADSm . By comparing the difference of arrival delays of adjacent train stations, the
two types of delay points or on-time running points can be added to the lists, L1, L2 and
L3, where L1 denotes a list of on-time running points, L2 represents a list of secondary
delay points, and L3 is a list of primary delay points. The algorithm also can be applied to
departure delay calculation.
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Algorithm 1. CPS Algorithm

Input: Given a trip R with a set of arrival delay ADSm =
(

ADS1 , ADS2 . . . ADSl

)
,

and pre-defined thresholds V1, V2
Output: L1, L2, L3
m = 0
For each arrival delay

(
ADS1 , ADS2 . . . ADSl

)
if ADSm+1 < V1:

L1.add
(

ADSm+1

)
else:

if ADSm+1 – ADSm ≥ V2:
L3.add

(
ADSm+1

)
else:

L2.add
(

ADSm+1

)
End for

2.3. Supervised Learning Setting

Figure 1 demonstrates the architecture of data visualization for the feature generation
process. For a sequence-to-sequence model [35], the time series data as inputs are shown
by Xd, where d presents the number of samples (or stations) for each sequential matrix.
The illustration of Xd is shown in Figure 1 as a set of sequential matrices. The train delays,
Xd, which can be indicated in vector form as Xd =

[
Xd

t , Xd
t+1, Xd

t+2 . . . , Xd
t + n − 1

]
. Xd

with a time-step is from t to t + n − 1. For example, in Xd
t , the time steps of the lag w are

from t − w + 1 to t, which can be expressed explicitly in matrix form as

Xd
t =


x1

t x2
t · · · xd

t
x1

t − 1 x2
t − 1 · · · xd

t − 1
...

...
. . .

...
x1

t − w + 1 x2
t − w + 1 · · · xd

t − w + 1

 (1)
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2.4. Multivariate Time Series Forecasting Model

This section demonstrates the design and development of a comprehensive LSTM-CPS
network architecture for multivariate delay predictions. As demonstrated in Figure 2, a
multivariate forecasting model is composed of Long Short-Term Memory (LSTM), two
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rectified linear units (ReLU), two dense layers, a dropout layer, and a CPS component. The
last dense layer outputs a range of future values. Additionally, the outputs are passed to the
CPS as inputs in a list. In addition, the CPS classifies the predicted values, which include
not only the primary delays, secondary delays, and on-time running of corresponding
stations, but also the status of the entire trip in the future at a given history. Furthermore,
different machine learning methods and model hyperparameters are introduced in the
following content.
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Figure 2. LSTM-CPS network topology.

Ref. [36] introduced an LSTM network, which consisted of an input gate i, a forget gate
f , a cell c, and an output gate o. As shown in Figure 3, a standard LSTM contains two types
of states: the long-term state and the short-term state. Specifically, the short-term state
ht − 1 and the current input Xd are fed to three Sigmoid functions and a tanh activation
function. Moreover, the long-term state ct − 1 traverses the network to ct. Firstly, it drops
some memories in the forget gate, secondly, some new memories are added to the input
gate by using the addition operation. Additionally, then the long-term state is passed
through the tanh activation function. Finally, the output gate filters the results, generating
the output yt and the short-term state ht (yt is equal to ht at the time step). Wxi, Wx f , Wxc,
and Wxo denote the weight matrices that connect the input to the corresponding gates.
Whi, Wh f , Whc, and Who present the weight matrices that connect the hidden vector to the
corresponding gates. bi, b f , bc, and bo refer to bias vectors. In this paper, we follow the
version of fully connected LSTM (FC-LSTM) from [37]. The key equations of LSTM are
indicated in Equation (2) below, where σ is the logistic sigmoid function and the operator
‘◦’ is the Hadamard product:

it = σ
(

Wxi Xd + Whiht − 1 + Wci ◦ ct − 1 + bi

)
ft = σ

(
Wx f Xd + Wh f ht − 1 + Wc f ◦ ct − 1 + b f

)
ct = ft ◦ ct − 1 + it ◦ tanh

(
WxcXd + Whcht − 1 + bc

)
(2)

ot = σ
(

Wxo Xd + Whoht − 1 + Wco ◦ ct + bo

)
ht = ot ◦ tanh(ct)

Multiple LSTMs can be combined to build a more complex network structure. Such
a model is capable of solving real-world sequence learning problems. In some cases, it
generates good outcomes where the model presents performance improvement, rather than
a simple structure for discovering trends, seasonality, and cyclicity patterns [31,32]. Since
the absolute error is more robust to outliers, we use an L1 loss to measure the performance
of our model. Hence, the loss function of the hybrid LSTM-CPS learning architecture for
multivariate prediction tasks can be expressed as

ĥn = argmin
1
n

n

∑
i = 1

l
∣∣∣yi − h

(
Xd
)

i

∣∣∣ (3)
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where ĥn are training loss and validation loss; yi is the ground truth; and h
(

Xd
)

i
expresses

the prediction of the model.
We sum up the main characteristics of our hybrid LSTM-CPS learning architecture in

the following.

• The CPS algorithm can obtain primary delay and secondary delays on each trip, which
presents essential time–space relationships in the status of the railway network.

• A multivariate LSTM model is developed to estimate regression coefficients for multi-
ple stations.

• The hybrid LSTM-CPS is a batch-based prediction architecture to process structured
time series. It is not only able to have multi-inputs and multi-outputs (MIMO) features
but is also able to be extended to tackle spatio-temporal sequence learning tasks.
Notably, this architecture allows deep learning models to reach higher efficiency and
accuracy for large-scale railway networks.
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3. Experiments
3.1. Data Description

To evaluate the performance of the proposed LSTM-CPS network architecture, com-
prehensive experiments have been conducted on the fused train dataset from the Transport
for NSW’s open data hub. The dataset contains 161-day historical observations of the trip
‘600D’ (8:30 a.m.–9:00 a.m.) in the period 11 April to 21 November in 2019. The line is
from Sydney’s Bondi Junction Station, Platform 1 to Hurstville Station, Platform 4 in the
Monday to Friday morning peak hours. Meanwhile, the corresponding schedule data
and geographical information are obtained in the same time period. This dataset includes
scheduled arrival time, scheduled departure time, station name, longitude, and latitude.

GTFS offers detailed schedules and associated geographic information in an open-
source data format [38]. A data extraction and pre-processing tool is implemented to
obtain real-time information from a GTFS-realtime application programming interface
(API) provided by Transport for NSW. This dataset contains arrival delay, departure delay,
and stop ID.

The proposed learning architecture is implemented in Python using the TensorFlow
Framework [39] and trained using the Adam algorithm [40].
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3.2. Evaluation Metrics

In this study, the proposed model is evaluated based on five standard metrics: mean
absolute error (MAE), root mean square error (RMSE), mean absolute percentage error
(MAPE), coefficient of determination (R2) and Adjusted R-squared (Adjusted R2) values,
as shown in Equations (4)–(8), where yt is the actual value at time step t, ŷt is the predicted
value, y is the mean of the observed values of the dependent variable, n is the total sample
size, and k is the number of predictors.

MAE =
1
n

n

∑
i = 1
|yt − ŷt| (4)

RMSE =

√
1
n

n

∑
i = 1

(yt − ŷt)
2 (5)

MAPE =
1
n

n

∑
i = 1

(
yt − ŷt

yt

)
(6)

R2 = 1 − ∑n
i = 1(yt − ŷt)

2

∑n
i = 1(yt − y)2 (7)

Adjusted R2 = 1 − n − 1
n − (k + 1)

(
1 − R2

)
(8)

For training a deep learning model, the first 100 days of the 161-day dataset is compiled
as the training dataset and the remaining data is used as the validation dataset, roughly
70/30 split. According to the network structure of Figure 2, we select a batch size of 32 and
150 epochs as the parameters of the training model. Figure 4 illustrates the loss during the
training and validation procedures. Both the training loss and validation loss converge after
approximately 60 epochs. In this experiment, the batch size and the number of epochs are
set as 32, and 60 for running time prediction and 20 for dwell time prediction, respectively.
MAE is exploited as a loss function in the training process. Since the performance difference
between training and validation is acceptable, the model does not overfit the training data.

3.3. Model Comparison

Figure 5 reports the performance of our proposed models with different LSTM variants
or combinations of CNN, LSTM, and GRU for predicting one day ahead running time
of seven intermediate stations from the trip ‘600D’. All x-axes express the corresponding
metrics. The y-axis of RMSE and MAE shows the error in seconds; the y-axis of MAPE
denotes the proportion of the error; the y-axis on the right of the figure represents the
training time (seconds) of the corresponding models. In addition to Random Forest, other
models do not show significant differences in model performance. The standard LSTM
reaches the lowest MAPE value. Random Forest reaches minimum training time. In
summary, the standard LSTM has a sufficiently good prediction performance in terms of
all validation metrics.

The expressions for the x-axis and y-axis in Figure 6 are the same as in Figure 5, but the
performance of the proposed models for dwell time prediction, and estimation accuracies
in terms of all validation metrics with one day ahead are reported instead. Random Forest
provides the highest accuracy in RMSE. For MAE, and MAPE, GRU-LSTM achieves the
highest prediction accuracy; however, the time cost of the model is the highest. To sum
up, compared with the LSTM variants, the Random Forest, standard LSTM, and CNN
have more substantial errors and less training time. LSTM variants do not have significant
performance differences.
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Tables 1 and 2 demonstrate the results of the proposed models. In Table 1, it is observed
that Random Forest has the lowest training time. For 7-steps ahead prediction, LSTM
achieves lower MAE and MAPE, compared to others. However, in Table 2, GRU-LSTM
performs well for 7-steps ahead prediction. Additionally, the differences between all LSTM
variants in performance are slight.

Table 1. Performance on running time prediction.

Model RMSE (sec) MAE (sec) MAPE (%) Training Time (sec)

Random Forest 148.431 107.15 62.825 1.2
CNN 20.0 15.411 14.583 8.3
LSTM 20.419 14.973 11.779 56.6

Bidirectional-LSTM 25.256 19.136 14.907 63.7
CNN-LSTM 24.218 17.076 15.066 47.1
GRU-LSTM 21.527 18.086 15.960 85.2

Table 2. Performance on dwell time prediction.

Model RMSE (sec) MAE (sec) MAPE (%) Training Time (sec)

Random Forest 13.418 9.980 23.688 1.2
CNN 18.128 14.491 24.014 3.8
LSTM 16.670 12.125 18.897 17.7

Bidirectional-LSTM 15.586 11.147 17.107 24.3
CNN-LSTM 14.837 10.229 15.498 19.8
GRU-LSTM 14.717 9.844 14.480 29.9

As shown in Figure 1, the trend volatility line of running time (red line) is more regular
than the dwell time (green line). It shows that dwell time demonstrates higher randomness,
due to delays caused by the non-fixed daily number of passengers or uncertain events
that occurred at the corresponding train station. For run-time prediction, a simpler neural
network model can quickly achieve good performance. For dwell time prediction, a more
complex network structure can better capture hidden patterns and trends in the dataset.
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To establish a real-world deep learning application, we also need to balance or even
trade-off accuracy and training time and prevent overfitting of the model. Time series
data have a certain degree of randomness. In some cases, certain model approaches
a high accuracy, but overfitting occurs. It dramatically reduces the portability of the
model. In addition to accurately assessing the maximum predictability of the dataset, in
further studies, we need to explore automated model selection techniques to identify an
appropriate predictor for the corresponding inputs.

Finally, we compared R-squared and Adjusted R-squared values resulting from the
proposed models. Figure 7 reports a standard LSTM for running time prediction and best
performance LSTM variants for dwell time prediction from one day ahead. Moreover,
a baseline model predicts y, which has default values R2 = 0 and R2

adj = 0. The
paper compares the proposed standard LSTM and LSTM variants against the baseline
model. The result shows that the running time has a small variation with high accuracy,
which is to a great extent explained by predictors in the standard LSTM. The proposed
architecture presents reliable predictive power. Additionally, the running time shows a
weak dependence on train delays. Data visualization in Figure 1 indicates that most trains
run at their best performance regardless of departure delays. The impact of running time
on the peak hours of workdays is also weak. Therefore, dwell time is more closely related
to arrival delays.
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Figure 7 shows the R-squared and Adjusted R-squared values for one day ahead.
There is an amount of unexplainable uncertainty, which is represented by R-squared and
Adjusted R-squared. It can be observed that most of the randomness comes from the dwell
time. Our model chooses the appropriate numbers of epochs to achieve the smallest value
ĥn through the method of Figure 4. If we increase the number of epochs to reach the higher
values of R-squared and Adjusted R-squared, it will cause the model to be overfitting
or underfitting.

4. Conclusions

This paper dealt with establishing a hybrid deep learning architecture for long-term
train delay prediction using real-world data collected from different sources in an Inter-
net of Things (IoT)-empowered public transport agency. The LSTM and LSTM variants
could achieve high prediction accuracy by exploiting the long-term temporal dependency
patterns. Several machine learning models, including Random Forest, CNN, LSTM, and
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LSTM variants, were applied to predict the running time and dwell time. Moreover, CPS
utilizes experimental results to implement the predicted primary delays and the predicted
secondary delays. The solution can be directly used for long-term prediction in urban
railway systems. In future work, a stochastic probability model, such as a conditional
Bayesian model, can be used to adjust the delay information of the entire network in
real-time. Meanwhile, we will provide more comparisons with stronger baselines such as
kernel methods, as meaningful future work.

Author Contributions: J.W., J.S. and B.D. conceived and designed the experimental setup and
algorithms; J.W. developed main approaches; performed the experiments; Q.W. contributed data
pre-processing and benchmarking data; and C.C. provided raw data. W.W. and Q.Z. contributed to
review and editing. All authors contributed to the discussion and analysis of the research and to the
writing of the paper. All authors have read and agreed to the published version of the manuscript.

Funding: The authors gratefully acknowledge the support of the Natural Science Foundation of
Shaanxi Province of China(2021JM-344) and National Key R&D Program of China under Grant,
No. 2020YFC0832500. Wu also gratefully acknowledges financial support from the China Scholarship
Council (201608320168).

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Konstantakopoulos, G.D.; Gayialis, S.P.; Kechagias, E.P.; Papadopoulos, G.A.; Tatsiopoulos, I.P. A Multiobjective Large Neighbor-

hood Search Metaheuristic for the Vehicle Routing Problem with Time Windows. Algorithms 2020, 13, 243. [CrossRef]
2. Kechagias, E.P.; Gayialis, S.P.; Konstantakopoulos, G.D.; Papadopoulos, G.A. Traffic flow forecasting for city logistics: A literature

review and evaluation. Int. J. Decis. Support Syst. 2019, 4, 159–176. [CrossRef]
3. Bernardo, M.; Du, B.; Pannek, J. A simulation-based solution approach for the robust capacitated vehicle routing problem with

uncertain demands. Transp. Lett. 2021, 13, 664–673. [CrossRef]
4. Kechagias, E.P.; Gayialis, S.P.; Konstantakopoulos, G.D.; Papadopoulos, G.A. An Application of an Urban Freight Transportation

System for Reduced Environmental Emissions. Systems 2020, 8, 49. [CrossRef]
5. Vieira, B.O.; Guarnieri, P.; Nofal, R.; Nofal, B. Multi-Criteria Methods Applied in the Studies of Barriers Identified in the

Implementation of Reverse Logistics of E-Waste: A Research Agenda. Logistics 2020, 4, 11. [CrossRef]
6. Mohtashami, Z.; Aghsami, A.; Jolai, F. A green closed loop supply chain design using queuing system for reducing environmental

impact and energy consumption. J. Clean. Prod. 2020, 242, 118452. [CrossRef]
7. Sheng, M.S.; Sreenivasan, A.V.; Sharp, B.; Du, B. Well-to-wheel analysis of greenhouse gas emissions and energy consumption for

electric vehicles: A comparative study in Oceania. Energy Policy 2021, 158, 112552. [CrossRef]
8. Caprara, A.; Fischetti, M.; Toth, P. Modeling and solving the train timetabling problem. Oper. Res. 2002, 50, 851–861. [CrossRef]
9. Kang, L.; Wu, J.; Sun, H.; Zhu, X.; Wang, B. A practical model for last train rescheduling with train delay in urban railway transit

networks. Omega 2015, 50, 29–42. [CrossRef]
10. Frede, L.; Müller-Hannemann, M.; Schnee, M. Efficient on-Trip Timetable Information in the Presence of Delays. In Proceedings of

the 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’08), 2008. Avail-
able online: https://drops.dagstuhl.de/opus/volltexte/2008/1584/pdf/08002.Frede.1584.pdf (accessed on 12 November 2021).

11. Berger, A.; Gebhardt, A.; Müller-Hannemann, M.; Ostrowski, M. Stochastic Delay Prediction in Large Train Networks. In
Proceedings of the 11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, 2011.
Available online: https://drops.dagstuhl.de/opus/volltexte/2011/3270/pdf/10.pdf (accessed on 12 November 2021).

12. Zhang, Y.; Li, R.; Guo, T.; Li, Z.; Wang, Y.; Chen, F. A conditional Bayesian delay propagation model for large-scale railway
traffic networks. In Proceedings of the Australasian Transport Research Forum, ATRF 2019-Proceedings, Canberra, Australia,
30 September–2 October 2019.

13. Shi, R.; Xu, X.; Li, J.; Li, Y. Prediction and analysis of train arrival delay based on XGBoost and Bayesian optimization. Appl. Soft
Comput. 2021, 109, 107538. [CrossRef]

14. Gorman, M.F. Statistical estimation of railroad congestion delay. Transp. Res. Part E Logist. Transp. Rev. 2009, 45, 446–456.
[CrossRef]

http://doi.org/10.3390/a13100243
http://doi.org/10.1504/IJDSS.2019.104556
http://doi.org/10.1080/19427867.2020.1752448
http://doi.org/10.3390/systems8040049
http://doi.org/10.3390/logistics4020011
http://doi.org/10.1016/j.jclepro.2019.118452
http://doi.org/10.1016/j.enpol.2021.112552
http://doi.org/10.1287/opre.50.5.851.362
http://doi.org/10.1016/j.omega.2014.07.005
https://drops.dagstuhl.de/opus/volltexte/2008/1584/pdf/08002.Frede.1584.pdf
https://drops.dagstuhl.de/opus/volltexte/2011/3270/pdf/10.pdf
http://doi.org/10.1016/j.asoc.2021.107538
http://doi.org/10.1016/j.tre.2008.08.004


Future Transp. 2021, 1 776

15. Wu, J.; Wang, Y.; Du, B.; Wu, Q.; Zhai, Y.; Shen, J.; Zhou, L.; Cai, C.; Wei, W.; Zhou, Q. The Bounds of Improvements toward
Real-Time Forecast of Multi-Scenario Train Delays. IEEE Trans. Intell. Transp. Syst. 2021, 1–12. [CrossRef]

16. Yamamura, A.; Koresawa, M.; Adachi, S.; Tomii, N. Identification of Causes of Delays in Urban Railways. Comput. Railw. 2013, 13,
403–414.
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