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Abstract: This study reviews obstacle detection technologies in vegetation for autonomous vehicles
or robots. Autonomous vehicles used in agriculture and as lawn mowers face many environmental
obstacles that are difficult to recognize for the vehicle sensor. This review provides information on
choosing appropriate sensors to detect obstacles through vegetation, based on experiments carried
out in different agricultural fields. The experimental setup from the literature consists of sensors
placed in front of obstacles, including a thermal camera; red, green, blue (RGB) camera; 360◦ camera;
light detection and ranging (LiDAR); and radar. These sensors were used either in combination
or single-handedly on agricultural vehicles to detect objects hidden inside the agricultural field.
The thermal camera successfully detected hidden objects, such as barrels, human mannequins, and
humans, as did LiDAR in one experiment. The RGB camera and stereo camera were less efficient
at detecting hidden objects compared with protruding objects. Radar detects hidden objects easily
but lacks resolution. Hyperspectral sensing systems can identify and classify objects, but they
consume a lot of storage. To obtain clearer and more robust data of hidden objects in vegetation and
extreme weather conditions, further experiments should be performed for various climatic conditions
combining active and passive sensors.

Keywords: obstacle detection in vegetation; lidar; radar; thermal camera; autonomous vehicle spatial
sensing; data fusion

1. Introduction

Autonomous guided vehicles (AGVs) are widely used for different applications,
such as military tasks, disaster recovery during natural calamities for safety operations,
astronomy, lawn mowers, and agricultural use. To improve workflow, optimize function-
ality and reduce manual labor, AGVs are needed with precision route plans guided by
advanced sensing technology. However, the biggest challenges of these systems today are
sensing the surrounding environment and applying the detected information to control
vehicle motions. The surrounding environmental problems for AGVs include navigating
through off-road terrain while sensing a variety of ferrous and non-ferrous materials, facing
illumination effects such as underexposure and overexposure, shadow, and working in bad
weather conditions [1]. Detecting organic obstacles such as tall grass, tuft, and small bushes,
for a traversable path in navigation is difficult for AGVs. Adding to organic obstacles,
camouflaged animals in the field are threatened when AGVs are working as demonstrated
in previous research work [2]. In addition, on bumpy (positive obstacle) and dirt roads,
AGVs should constantly scan their surroundings to determine the travelability path based
on bumps and the size of holes (negative obstacles) [1]. In general, AGVs should classify
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different obstacles (organic obstacles, positive and negative obstacles, hidden obstacles,
etc.) efficiently to navigate through a field which is currently a challenge for AGVs. To
help AGVs classify different obstacles by various sensors and to avoid potential risks, this
study focuses on the objective of finding the right sensors for AGVs by reviewing the latest
technologies.

The advanced spatial sensing systems (including, active and passive sensors) equipped
on AGVs have the potential to detect all kinds of obstacles on the route. In order to clearly
navigate through vegetation, it is necessary to find suitable sensors that can work in all
weather and light conditions and identify obstacles of various material composition with
acceptable processing time that are more efficient, safe, robust, and cost competitive. Sensor
selection depends on the specific application and environment conditions. The following
paragraph illustrates the importance of electromagnetic spectrum for sensor selection.

2. Sensors and the Electromagnetic Spectrum

In order to detect obstacles through vegetation, it is important to know the vegetation
range in the electromagnetic spectrum. Because plants use light for photosynthesis, their
remote sensing application range varies between the ultraviolet (UV) (range 10–380 nm),
visible (450–750 nm), and infrared spectra (850–1700 nm) [3].

Based on the electromagnetic spectrum range for detecting plants, active and passive
sensors are used for detection. Passive sensors detect electromagnetic radiation or light
reflection from the objects. They work well with visible, infrared, thermal infrared, and
even the microwave segment. Unlike passive sensors, active sensors have their own
energy source, and emit pulse energy and receive the reflected energy to detect objects.
Active sensors work well with the radio wave segment, and the typical sensors include
LiDAR and radar. Along with these sensors, we need position estimation sensors such as
accelerometers, gyroscopes, and global positioning system (GPS) [4,5] to track the vehicle’s
location, orientation, and velocity. The information from post estimation sensors is further
needed for synchronizing and registering subsequent frames from the imaging sensors.
Tight integration of position solution with object detection is needed if object persistent
principles are use in the object detection algorithms. As shown in Figure 1, one of the
passive sensors detects the hidden objects in the field such as rocks and processes the data
to the estimator sensor, which guides the vehicle in the right direction without damaging
the vehicle.
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Figure 1. Concept of self-driving vehicle in the field. 
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The sensors allow self-driving vehicles such as AGVs to detect obstacles, while gener-
ating large amounts of sensing data, including point or pixel-based data. Processing those
data is a challenge. The popular data-processing methods focus on point and pixelwise
image classification, commonly referred to as semantic segmentation, which serves as a
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generic representation that allows for subsequent clustering, tracking, or further fusion
with other modalities. Semantic segmentation can be first used to detect objects from
the background [6,7]. Obstacle avoidance can be performed using a 2D or 3D bounding
box to describe object location, trajectory, and size. Vehicle motion behavior can further
distinguish passable obstacles (that must be traversable) and non-passable obstacles (that
may be non-traversable).

2.1. Passive Sensors

Passive sensors measure the reflected solar electromagnetic energy from a surface in
the presence of light [8,9]. These sensors do not have their own source of light and hence
their performance is affected at night or by poor illumination conditions, except for thermal
sensors. These sensors include cameras and computer vision technology that measures the
distance of an object by receiving information about the position of the object [10]. Stereo
cameras and RGB cameras detect protruding objects during the day. Thermal cameras
work well in all light conditions. The following sections provide details on the passive
sensors that may be used for obstacle detection under vegetation.

2.1.1. Stereo Cameras

There are two types of systems for passive sensing: monovision systems and stere-
ovision systems. In the monovision system, one camera is used to estimate the distance
which is based on reference points in the given camera field of view. The inconvenience of
the monovision method is in estimating distances, recognizing the detected objects, and
the complexity of the algorithm to classify the object categories while matching the real
dimensions of the objects in different positions [11]. The stereovision system is a system
that uses stereoscopic ranging techniques to calculate distance. This system is effective
for depth sensing which uses two cameras as one and computes the distance with high
accuracy [10]. The depth estimate is constrained by the distance of the baseline of two
cameras. Short distances between two cameras results in a limited depth accuracy, whereas
wide-baseline cameras provide better depth accuracy, but result into partial loss of spatial
data and frequent occlusions [12].

A stereo camera generates information on depth and 2D color image. Zaarane
et al.’s [8] method starts with capturing the scenes using both cameras. A vehicle de-
tection algorithm (obstacle detection) is used in one image and a stereo matching algorithm
is used on the other to match the detected vehicle (obstacle) [8]. The horizontal centroids
of both objects are used to calculate and measure the distance and detect the depth of the
obstacle.

Protruding objects and visually camouflaged animals can be identified with both the
depth information and the 2D imaging data. In this way, depth-aware algorithms can be
created based on the different perceptible characteristics (e.g., color, texture, shape, etc.) of
object and depth data. The drawback of using a stereo camera is that the image quality and
detection of obstacles is badly affected by illumination of light and weather conditions.

2.1.2. RGB Cameras

An RGB camera, captures the visible segment of an electromagnetic spectrum to
provide information on the identified object’s color, texture, and shape in high resolution
at a low cost. For RGB cameras, non-protruding (non-exposed) objects in tall grasses
are noticeable to some extent. The performance of camera, however, is affected by bad
weather conditions (e.g., fog, snow, and rain) and illumination conditions such as low
light, night conditions and shadows. An RGB camera only provides 2D image data, and is
unable to provide depth information of objects in 3D space. To compensate for the loss of
depth information and obtain the positions of surrounding obstacles, the technologies of
visual simultaneous localization and mapping (SLAM) [13,14] and structure from motion
(SFM) [15,16] have been developed [17]. SLAM and SFM use multi-view geometry to
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estimate the motions (rotation and translation) and construct the unknown surrounding
environment. However, they are limited to large scenes or quick movements.

2.1.3. Thermal Infrared Cameras

All objects emit infrared (or thermal) radiation for a temperature above absolute
zero. Infrared radiation lies within the wavelength spectrum of 0.7–1000 µm. The mid-
wavelength and long-wavelength infrared in the infrared spectral regions are often referred
to as thermal infrared (TIR). TIR cameras with a detector are sensitive to either mid-wave
infrared (MWIR) (3–5 µm) or long-wave infrared (LWIR) radiation (7–14 µm). The objects in
the temperature range from approximately 190–1000 Kelvin emit radiation in this spectral
range [18]. Thermal cameras detect electromagnetic spectrum radiation emitting from
the target objects to form thermal images, which illustrate the heat and not the visible
light of objects. They continuously provide daytime and nighttime thermal image data of
passive terrain perception under any light, as well as foggy conditions. Rankin et al. [19]
introduced a TIR camera to provide imagery over the entire 24-h cycle.

An emissivity signature is a potential way to distinguish vegetation from objects or
materials such as soil or rock. Each object has a specific emissivity for each spectral band
and a certain temperature, and thus objects are clustered according to different regions of
infrared color space of its emissivity, making it possible to distinguish into several classes.
Vegetation and soil/rock materials have sufficiently different emissivity in both the broad
MWIR and LWIR bands, which is illustrated in a study conducted by researchers from the
California Institute of Technology, Jet Propulsion Laboratory (JPL) [19].

2.1.4. Hyperspectral Sensing

Hyperspectral sensing is the technology of getting information about the chemical
composition from the object’s emitted energy. The process involves dividing the elec-
tromagnetic spectrum into several narrow bands to read the spectral signatures of the
materials in the generated image. This makes it easy to identify objects from a scene [20].
To detect the targeted object, the spectral signature of the object is obtained and matched
with the spectral signature matching algorithms for a hyperspectral sensing image analysis.

Kwon et al. [21] provided the overall idea of using hyperspectral sensing technology
for obstacle detection in military application. Three hyperspectral sensors with different
operating spectral ranges, dual band hyperspectral imager (DBHSI), an acousto-optical
tunable filter imager, called SECOTS, and a visible- to near-infrared spectral imager SOC-
700, were used to provide spectral data to the hyperspectral detection algorithms. DBHSI
operates at the mid- and long-wave infrared bands and collects 128 bands of images simul-
taneously with a dual-color focal plane array to obtain hyperspectral images in two separate
infrared spectral regions. SECOTS and SOC-700 span small, portable hyperspectral imagers
operating at the visible to near-infrared bands. Newly developed hyperspectral anomaly
and target detection algorithms were applied to the hyperspectral images generated and
detect objects such as military vehicles, a barbed wire, and a chain-link fence [21]. This
developed hyperspectral sensing system is expected to help unmanned guided vehicles to
navigate safely in an unknown area.

It is possible to detect camouflaged animals using this system. However, it requires
more data storage and consumes computation complexity to identify objects because of
hyperspectral band selection. Gomez [20] found that taking advantage of sensors such as
radar and LiDAR, in addition to hyperspectral imaging, is advisable for developing remote
sensing program strategies to produce specific application products.

2.2. Active Sensors

Active sensing methods measure the distance of objects by sending pulse signals to a
target and receiving the signal bounced back, which are generally based on computing the
time of flight (ToF) of laser, ultrasound, or radio signals of the electromagnetic spectrum to
measure and search for objects [10]. LiDAR and radar are both active range sensors that
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provide distance measurements useful for detecting obstacles based on geometry, whereas
passive camera sensors (e.g., color, thermal) provide visual clues useful for discriminating
object classes.

2.2.1. LiDAR Sensors

LiDAR sensors use the ToF of reflected laser pulses to measure distances and detect
objects [22]. A LiDAR camera emits billions of pulses per second up to 360◦ in all directions,
thus generating a 3D matrix for the surrounding environment. Depending on the specs
of different products, a LiDAR sensor generates up to millions of distance measurement
points, as well as information on the position, shape, and movement of objects in seconds.

Although the benefits of LiDAR sensors are obvious, the main problems for obstacle
detection and recognition in agricultural environments are (1) point cloud classification
and (2) multimodal fusion. Point cloud classification deals with the issue of discriminating
3D point structures based on their shapes and neighborhoods for various applications,
such as vehicle identification and tracking [23], pedestrian-vehicle near-miss detection [24],
and background filtering [25]. Kragh [26] proposed two methods for point classification of
LiDAR-acquired 3D point clouds, which address sparsity and local point neighborhoods
and were used for consistent feature extraction across entire point clouds. One method,
based on a traditional processing pipeline, outperformed a generic 3D feature descriptor
designed for dense point clouds. The other method used a 2D range image representa-
tion, semantic segmentation [27] in 2D with deep learning. Together, the two methods
showed that sparsity in LiDAR-acquired point clouds can be addressed intelligently by
utilizing the known sample patterns. A combination of multiple representations may
therefore accumulate the benefits and potentially provide increased accuracy and robust-
ness [26]. To effectively use LiDAR for sensing obstacles in vegetation, LiDAR can be used
in combination with stereo cameras to analyze the cloud data points with 2D images.

Multimodal fusion can increase classification robustness and confidence. It addresses
the question of how LiDAR technology can work with other sensing modalities in agricul-
tural environments. Kragh [26] proposed and evaluated methods for sensor fusion between
LiDAR and other sensors, incorporating spatial, temporal, and multimodal relationships
to increase detection accuracy and thus enhance the safety of self-driving vehicles. The
method consists of a self-supervised classification system using LiDAR to continuously
supervise a visual classifier of traversability. LiDAR and camera data are then fused at
the decision level with deep learning on range images. In the study [28], Larson and
Trivedi put forward a LiDAR-based method that uses geometric features of the outline of
concave obstacles, which are sent to a support vector machine (SVM) classifier to detect
obstacles. However, the laser can be reflected repeatedly in the pit resulting into the loss
of observational information, and thus the suggestion is to combine LiDAR with other
sensors, such as thermal cameras, for better concave obstacle detection.

2.2.2. Radar

Radar fires radio waves at a target area and monitors reflection from the objects within
the area, generating position and distance data for the objects [29]. For remote sensing
of trees and crops, object detection in vegetation was studied by Radar [30]. Detecting
performance of radar involves two critical factors such as penetration depth of radar waves
through the vegetation and angular (or spatial) resolution of the radar system. Penetration
depth is the depth at which the signal strength of the radar is dropped (weaken) to 1/e
(37%) [30] of its original value. The range of wavelengths for remote sensing in vegetation
varies from 70 cm (~0.5 GHz) to 1 cm (~30 GHz) [30]. Microwaves attenuation through
vegetation increases generally with frequency [18]. Obstacle classification by radar can
be summarized as attenuation, backscatter, phase variation, and depolarization [31]. In
the presence of dust and fog, radar was successfully used for perception on autonomous
vehicles [32].
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Convex obstacles such as trees, slopes, and hills can be detected easily by radars
as they have a strong penetrating ability and can work well in bad weather conditions.
Jing et al. [33] used a Doppler-feature-based method to find the height of obstacles and
classify convex obstacles. Since the accuracy is low, fusing the millimeter wave radar with
other sensors is expected.

One experiment by Gusland et al. [34] used radar with a pulse length of 250 µs,
0.4-GHz bandwidth, and four horizontally polarized transmit antennas. The obstacles
included in this experiment were a small rock, large rock, concrete support, tree stub,
and paint can. The experiment confirmed system functioning and cross-range resolution
improvement due to the multiple-input, multiple-output configuration, and the initial
results indicate that the system is capable of detecting obstacles hidden in vegetation. The
contrast between relevant obstacles and vegetation clutter is of critical importance, defined
as the maximum reflected power of the resolution cell containing the obstacle compared
with the maximum of the vegetation surrounding it [34].

3. Comparison of Sensors

Table 1 summarizes the advantages and disadvantages of each sensor and the potential
use of each sensor to detect obstacles.

Table 1. Sensor Comparison.

Sensor
Performance
Affected by

Weather

Performance
Affected by

Illumina-
tion

Resolution Range Typical
Algorithms

Camouflage
Detection Cost Depth

Sensation

RGB Camera Yes Yes Dense Medium

Convolutional
neural network to

obtain
semantic labels

No Low No

Stereo
Camera Yes Yes Dense Medium Stereovision

algorithm Yes Medium Yes

Thermal
Camera Yes No Dense Medium

Off-the-shelf
algorithms for

terrain
classification, tree

trunk
detection, and

water detection

Yes Medium No

Hyperspectral
sensing Yes Yes Dense Medium

Kernel-based
image

processing
algorithm

Yes Medium No

LiDAR No No Sparse Long
Point cloud

classification with
deep learning

Yes High Yes

Radar No No Highly
Sparse Medium

Deep learning and
conventional

methods
Yes Medium Yes

RGB cameras are low-cost compared with other sensors. The disadvantage of this
sensor is that it cannot sense the depth of the object or work well in bad weather. Compara-
tively, stereo cameras can detect and sense obstacle depth, as well as identify camouflaged
animals and protruding objects. A key ability of thermal cameras is that the sensing data
are not affected by camouflaged animals and the illumination effect while the performance
capabilities are affected by the ambient temperature [26]. Another drawback of thermal
cameras is the low resolution and loss of range data when the camera is in motion, as well
as when there is texture difference.

Hyperspectral imaging sensors provide better resolution and acquire images across
several narrow spectral bands ranging from the visible region to mid-infrared region of
the electromagnetic spectrum [35–40]. Thus, object identification and classification become
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easy. Although equipped with a wide spectral band, sensor performance is affected by
variation in illumination, and the system is not robust with respect to the environment [41].

LiDAR provides more accurate depth information for a longer range while capturing
the data horizontally up to 360◦. The drawback of LiDAR is in recognizing the objects due to
the lack of visual and thermal information [42]. Radar also lacks in giving a good resolution
due to the sparsity of data and thereby making object recognition a challenging task.

Thus, both active and passive sensors have certain limitations. The main inconve-
nience of using active sensors is the potential confusion of echoes from subsequent emitted
pulses resulting in sparse data, and the accuracy range of distance for these systems is usu-
ally bounded between 1 and 4 m [10]. Although active sensors have certain disadvantages,
their vision characteristics are not affected by climatic conditions. Comparatively, passive
sensors have dense data but are affected by climatic conditions. Hence, fusing active and
passive sensors can be an effective way to compensate for drawbacks of each type.

4. Fusion of Sensors Applications

The fusion of sensors is performed at two levels: low-level and high-level. Low-level
fusion combines raw data of different sensors, and high-level fusion involves combining
data from the sensors to classify objects into different categories [42]. At low-level fusion,
the outputs of different sensors are fused together, and at high-level fusion, the outputs of
sensors are categorized as obstacles detected by sensors. Cameras provide dense texture
and semantic information about the scene, but have difficulty directly measuring the shape
and location of a detected object [43]. LiDAR provides an accurate distance measurement
of an object; however, precise point cloud segmentation for object detection involves
computational complexity due to the sparsity in horizontal and vertical resolution of the
scanning points. Radar provides object-level speed and location via range and range-rate
but does not provide an accurate shape of the objects. Thus, passive sensors are used
for sensing the appearance of the environment and the objects, whereas active sensors
are used for geometric sensing. There have been several approaches made to combine
different sensors to detect obstacles hidden under vegetation. The following sections
identify popular fusion methods from recent research.

No single sensor can detect objects reliably and single-handedly in all weather condi-
tions. Active sensors such as radar and LiDAR, and passive sensors such as RGB camera,
stereo camera, and thermal camera and hyperspectral sensing have different pros and cons
concerning illumination, weather, working range, and resolution, and thus a combination
of these sensors are needed to accommodate various working environments [30].

4.1. RGB and Infrared Camera

Microsoft’s Kinect sensor uses structured-light and ToF-based RGB-D cameras to
detect obstacles [44]. It is a typical RGB and infrared combination camera. The cameras
emit their own light and are more robust in low-light environments. However, they are not
suitable for outdoor environments because of the submerged laser speckle under strong
light. The ToF depth cameras emit infrared light and measure the observed object for depth
measurements. They provide accurate depth measurement but have low resolution and
significant acquisition noises [45].

Nissimov et al. [46] used the sensor to detect obstacles in a greenhouse robotic appli-
cation. The RGB camera in the sensor takes images and the infrared laser emitter senses
the depth of the image by emitting the infrared dots captured by infrared camera. Thus,
the sensor uses color and depth information to detect obstacles. The gradient of the image
is calculated, and based on a threshold value of the gradient, the object is classified as
either traversable or non-traversable. Further, to increase the efficiency of the detected
objects, a local binary pattern (LBP) texture analysis was conducted for the pixels near the
detected objects. The paper confirmed that with the texture analysis, the system can detect
unidentified objects near the detected objects. However, the drawback of this system is that
it cannot be operated in all lighting conditions. The sensor requires the returning beams of
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the infrared emitter to be easily detectable within the image of the infrared camera, and
thus the beams must be significantly stronger than the ambient light [46].

4.2. Radar and Stereo Camera

Reina et al. [47] conducted a fusion of a radar and stereo camera. Radar is a good
sensor for range measurement, and stereo cameras provide clear resolution for detected
objects. Thus, combining these sensors results in improved 3D localization of obstacles
up to 30 m. Radar is used to obtain 2D points of the detected obstacles, which is then
augmented with stereo camera data to obtain the obstacle information. The intensity range
of the radar beam determines the obstacle detection performance. The detected obstacle
range and contour is used with sub-cloud in a stereo-generated 3D point cloud. Sub-cloud
is the volume of interested areas of given radar-labeled obstacles in the stereo-generated
3D point cloud. This helps to obtain stereoscopic 3D geometric and color information of
the detected object.

Jha, Lohdi, and Chakravarty [48] discussed the fusion of radar and stereo cameras,
giving real-time information on the environment for navigation. The research used the
76.5-GHz millimeter wave radar to provide information on the range and azimuth of the
detected objects. The camera output data were collected and processed framewise in real
time by the YOLOv3 algorithm [49]. Thus, the weights of the trained YOLOv3 model were
used to detect and identify objects, which were mapped with radar data to find the distance
and angle of the objects for vehicle navigation. However, the study does not clearly explain
the functionality of the fusion for detecting hidden objects; rather, it provides good results
for object detection and identification.

4.3. LiDAR and Camera

Some researchers used self-supervised systems in which one device is used to monitor
the other device (stereo radar, RGB-radar, and RGB-LiDAR [42]) and improve the detection
performance. The difference between this system and sensor fusion is that fusing sensors
provides accurate data rather than supervising the sensors. According to Kragh and
Underwood [42], assuming perfect calibration between the camera sensor and LiDAR
sensor, involves fusing LiDAR points with camera images. The calibration of sensors is
challenging and involves much computation effort.

Semantic segmentation for object detection using LiDAR and a camera results in
capturing the objects not easily detected by bounding boxes. By using the LiDAR and
camera fusion as shown in Figure 2, visual information from color cameras is good for
environmental sensing, and 3D LiDAR information serves to distinguish flat, traversable
ground areas from non-traversable elements (includes trees and other obstacles in the
path) [42]. The combination of appearance- and geometric-based detection processes is
performed using the conditional random field [50], which predicts objects based on the cur-
rent data provided by the LiDAR and camera. The results from Kragh and Underwood [42]
show that, for a two-class classification problem (ground and nonground) where LiDAR
distinguishes ground and nonground structures without the aid of the camera. To classify
more objects into various classes (ground, sky, vegetation, and object), both the devices
are needed to complement each other and improve the performance using the conditional
random field (CRF) [42].
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Vehicle and pedestrian detection use a common fusion process of camera and LiDAR,
where LiDAR data generate the regions of interest (ROIs) on the image by extrinsic calibra-
tion and then an image-based segmentation and detection method detects vehicles and
pedestrians [51–54].

Fu et al. [43] used a deep fusion architecture through a convolution neural network
for fusing LiDAR data with RGB images to complete the depth map of the environment.
This method can deal with sensor failure for AGV’s, improving the robustness of the
perception system.

Starr and Lattimer [55] combined a thermal camera with a 3D LiDAR to obtain good
results for low-visibility detection. In their work, two sensors detect objects separately
and then adopt the evidential fusion method (Dempster–Shafer theory [56]). Similarly,
Zhang [57] first proposed a two-step method of calibration between a 3D LiDAR and
a thermal camera. The fusion algorithms between these two sensors are not limited to
low-level fusion but can be extended for high-level fusion.

4.4. LiDAR and Radar

Another research task [58] used low-power, ultra-wideband radar sensors in combina-
tion with higher-resolution range imaging devices (such as LiDAR and stereovision) for
AGV. This combination of LiDAR and radar served effective at sensing sparse vegetation;
however, it was less effective at sensing dense vegetation. This indicated treating dense
vegetation area as a non-traversable path and sparse area as a traversable path, serving the
advantage for detecting obstacles through vegetation [59].

Kwon [59] provides interesting research based on partly blocked pedestrian detection
by using LiDAR and radar. The method considers the blocked depth projected part of
the object to determine the existence of the blocked object. According to this study, radar
detects the partially blocked object easily compared with LiDAR due to the Doppler
(change in frequency) pattern. Thus, a partially blocked pedestrian is detected using the
combination of occluded depth LiDAR data of human characteristics curve and the radar
Doppler distribution of a pedestrian. Thus, this combination of sensor fusion scheme is
useful in an AGV to detect hidden objects and prevent collision [32]. Similarly, object
characteristic point-cloud classification of LiDAR can be experimented with an occluded
hidden object to obtain the desired results.

Table 2 highlights the summary of the sensor fusion used for different applications
and shows the area for potential research. For example, for spare vegetation or partially
hidden objects detection, the LiDAR and radar combination works better. Radar and stereo
camera are suitable for range measurement, object detection, and location tracking.
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Table 2. Sensor fusion and application.

Sensor Fusion Algorithm and Software Applications Potential Research and Review

RGB and infrared camera
(Kinect sensor) LBP texture analysis Greenhouse robotic

application

Cost-effective sensor suitable for
dark environments rather than
bright (sunlight) environments

Radar and stereo camera
Stereoscopic 3D information

using sub-cloud region;
YOLOv3 algorithm

Visible environment for
stereovision and range

measurement

Good object detection and
location tracking fusion but needs

experimentation for hidden
objects and negative obstacles

LiDAR and camera Semantic segmentation; CRF;
CNN

Terrain classification,
environment sensing, vehicle

and pedestrian detection

Suitable for terrain classification
and surrounding sensing at the

cost of computational complexity.
Needs experimentation for

hidden obstacles

Thermal camera and
LiDAR

Fusion method
(Dempster–Shafer theory [59]) Low visibility environment

Potential research and
experimentation needed for

detecting and sensing objects

LiDAR and radar Fusion method, Point cloud
classification

Sparse vegetation, partially
hidden objects

Good identification of sparse
vegetation but lacks in sensing

dense data. Needs work in
geometric identification of objects

4.5. Multimodal Sensors

Kragh [26] established a flexible vehicle-mounted sensor platform at Denmark (Figure 3),
which recorded imaging and position data for a moving vehicle using an RGB camera
(Logitech HD Pro C920), thermal camera (FLIR A65, 13 mm), stereo camera (Multisense S21
CMV2000), LiDAR (Velodyne HDL-32E), radar (Delphi ESR), and two position estimation
sensors, GPS (Trimble BD982 GNSS) and IMU (Vectornav VN-100). The platform illustrated
in Figure 3 includes seven sensors, and thermal and stereo cameras are linked with a frame
grabber and provide image data to the controller via ethernet. The platform collected
real time data from all the sensors where the data were used for offline processing. The
following paragraph indicates detection of a human, barrel, and mannequin hidden inside
the field using a multimodal sensing platform.

1 
 

  
 Figure 3. Experimental setup for multimodal sensor platform [26].

The experiment was conducted in an open-space lawn with high grass, and the objects
were a partly hidden barrel, lying child mannequin, and sitting human (Figure 4). The RGB
camera in the extreme left column of Figure 4, was able to detect the sitting human but was
not able to detect hidden human. Thus, images from the stereo camera (next to RGB image
column) can only detect the sitting human and not the barrel. The LiDAR sensor (extreme
right image column) was more reliable and was able to reflect both the sitting human and
protruded barrel but did not reflect the lying child mannequin. Among all, the thermal
camera (next to stereo camera image column) achieved robust detection performance for
all three objects. However, the thermal camera is affected by the warm climate where the
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temperature of the objects is similar, creating sensing issues [26]. Thus, from this study [26],
we found that the combination of sensors is required for effective detection of all hidden or
partly hidden objects in the field.
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From the experiments and research studies, it was found that the use of multiple
sensors is a difficult process that requires the fusion of various sensor data which adds to
computational complexity. The data set must be expanded in inclement weather conditions
to provide a thorough evaluation for complicated agricultural environments. For future
work, experiments should be carried out on moving obstacles or organic objects (such as
animal bodies).

5. Conclusions and Recommendations

This study preliminarily explores state-of-the-art obstacle detection in vegetation,
introducing a series of sensors and technologies and discussing their attributes in various
environments. Using multiple sensors would add to computational complexity; thus, we
found that fusing two sensors would yield effective results while keeping the computa-
tional burden reasonable. As discussed, active sensors are effectively used for geometric
sensing while detecting an accurate range of obstacles, and passive sensors provide a
high-resolution appearance of environment and objects. Therefore, it was found that fusing
data of an active and passive sensor results in effectively detecting hidden obstacles in
vegetation. Sensor selection should be performed according to the application and environ-
ment. Radar is the affordable solution for an active sensor that penetrates vegetation, and
can be fused with a stereo camera. The second-most effective sensor is the use of LiDAR in
combination with a radar/stereo camera, which is effective in detecting objects. Thermal
cameras effectively detect hidden objects; however, a combination of those sensors sharing
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their advantages is worth exploring for detecting obstacles in complicated vegetation
environments. In addition, the vehicles mounted with sensors are moving, so a stable and
reliable detection capability through the sensors for a self-driving vehicle should be studied
as well. The needs of improving working conditions in the vegetation objects detection
sector, including policy support and technological advancements, as well as the integration
of other services, are critical and necessary for further deploying the sensor technologies in
the real world.
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