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Abstract: Standard driving cycles (DCs) and real driving emissions (RDE) legislation developed by
the European Commission contains significant gaps with regard to quantifying local area vehicle
emission levels and fuel consumption (FC). The aim of this paper was to review local DCs for
estimating emission levels and FC under laboratory and real-world conditions. This review article
has three sections. First, the detailed steps and methodologies applied during the development of
these DCs are examined to highlight weaknesses. Next, a comparison is presented of various recent
local DCs using the Worldwide Harmonized Light-Duty Test Cycle (WLTC) and FTP75 (Federal
Test Procedure) in terms of the main characteristic parameters. Finally, the gap between RDE with
laboratory-based and real-world emissions is discussed. The use of a large sample of real data to
develop a typical DC for the local area could better reflect vehicle driving patterns on actual roads and
offer a better estimation of emissions and consumed energy. The main issue found with most of the
local DCs reviewed was a small data sample collected from a small number of vehicles during a short
period of time, the lack of separate phases for driving conditions, and the shifting strategy adopted
with the chassis dynamometer. On-road emissions measured by the portable emissions measurement
system (PEMS) were higher than the laboratory-based measurements. Driving situation outside the
boundary conditions of RDE shows higher emissions due to cold temperatures, road grade, similar
shares of route, drivers’ dynamic driving conditions, and uncertainty within the PEMS and RDE
analysis tools.

Keywords: driving cycle; emissions; PEMS; real driving emissions (RDE)

1. Introduction

Exhaust emissions from vehicles present a serious risk in urban areas, affecting air
quality and human health [1]. Vehicle emissions are influenced by on numerous issues
such as driving style, traffic congestion, emission control devices, vehicle performance, fuel
quality, and ambient operating conditions [2].

The DC has been defined by various authors as “a series of data points representing
speed versus time, and gear selection as a function of time, speed versus distance in a
specific region, or a part of a road segment” [3] and “a speed-time profile for a study
area within which a vehicle can be idling, accelerating, decelerating, or cruising” [4]. The
most important functions of vehicle driving cycles are to determine emission levels and
FC [4,5], evaluate vehicle performance [6], estimate driving style [7], and simulate driving
circumstances on a laboratory chassis dynamometer (CD) [8], which provides the basis for
vehicle design [9]. For electric vehicles, the driving range calculation and state of charge
estimation are generally performed on the basis of the standard driving cycle [9].
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Several DCs have been developed in different countries to represent local driving
conditions. DCs can be legislative or non-legislative [9,10]. Legislative DCs have been
established in the US, the European Community, and Japan; FTP75, New European Driving
Cycle (NEDC), and JC08 respectively, they have been used for exhaust emissions specifica-
tion imposed by governments for car emission certification [10]. Non-legislative DCs have
been investigated in different countries and cities such as Vadodara [1], Bangalore [5], the
Malaysian Urban Driving Cycle (MUDC) [11], Hong Kong [12], Pune [13], Edinburgh [14],
Athens [15], Singapore [16], and 11 Chinese cities [17]. Non-legislative cycles have broad
application in research for energy conservation and pollution evaluation. All have been
employed in research ranging from performance estimation to vehicle design.

Emissions from vehicles are affected by DCs which mainly depend on traffic condi-
tions [15]. Therefore, many research studies have been targeted at developing DCs using
recorded real-world driving data encountered in road driving. As DCs vary from city
to city and area to area, existing DCs in certain countries may not be suitable to other
countries. Researchers strongly agree that the driving characteristics are unique due to
different vehicle fleet composition, driving behaviour, and road network topography [18].

The WLTC developed by the UNECE [19] replaced the NEDC for the type of approval
testing of light-duty vehicles with the transition to the Euro 6c emission standard in
September 2017 [20]. Compared with NEDC, WLTC has a higher maximum velocity,
higher acceleration, and lower percentage of vehicle idling time. It also covers a wider
range of operating conditions [21], considers more real-world factors [22], and enables best
and worst values to be shown in customer information [23]. The WLTP is performed under
CD conditions, which cannot take into account weather conditions, traffic situations, and
driving style; thus, it is complemented by real driving emissions (RDE) [23]. The FC rate
under the China Light-Duty Vehicle Test Cycle (CLTC) shows a 13.5% higher value than
WLTC test results [24]. The acceleration and deceleration modes of WLTC show relatively
more aggressive driver behaviour due to their large time proportions [25]. Ma et al. (2019),
indicate that, in China, fleet average FC for off-peak and peak DCs are 6.6% and 27.8%
greater than the average simulated FC of WLTC [26].

The driving cycle developed by the US Environmental Protection Agency (EPA) un-
derwent numerous changes until the end of 2008. It comprises four parts: city driving
(FTP75), highway driving (HWFET), aggressive driving (SFTP US06), and the operational
air conditioning test (SFTP SC03). The emission value for certification of passenger cars
(PCs) and light-duty trucks (GVWR under 3.86 tonnes) is calculated as a weighted com-
posite value of emissions comprising 35% FTP75, 28% US06, and 37% SC03 [27]. For FC,
the FTP75 test cycle has a weighting of 55%, and the test of the HWFET 45% [28]. The US
cycles are closer to real-world driving style behaviour [29]. It is accepted by many that the
shortfall between certified and on-road fuel consumption has increased in US passenger
vehicles [30]. Seers et al. (2015) revealed at least a 31% increase in FC over FTP75 for utility
vehicles [31].

The Japanese driving cycle JC08 [32] has been used for emission certification of PCs
and light-duty trucks since 2011 [33]. JC08 is highly transient with a minimum cruising
time and long idling period, with a cold start weighted at 25% and a hot start at 75% [27].

The CD and emission model software are used most to determine vehicle emission
factors. However, in recent years, researchers have found a significant gap in emissions
reported using the above two methods. Measuring vehicular emissions on a CD involves
driving a vehicle through a predetermined DC [6,19] by a human driver, with a device
known as a driver’s aid informing the driver how to drive the vehicle, including speed
tolerances around the target speed trace [28]. During this test, the exhaust flow rate is
continuously monitored, and the exhaust gas is collected in sample bags for subsequent
analysis of content and concentration after dilution with ambient air. A constant volume
sampler (CVS) system based on a CD is displayed in Figure 1 [2].
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Figure 1. Experimental set-up of a CD for measuring emissions and FC [2].

COPERT 5 software overestimated CO by 131.9% and underestimated NOX by 63%,
compared with the on-road measurement [34]. COPERT also estimated that FC was
9% lower than the experimental data due to COPERT being an average based numeric
model [35]. Amin et al. (2018) compared on-road emission factors in Mashhad, Iran with
those obtained from the international vehicle emission (IVE) model. On-road emissions
of CO, HC, NOX, and CO2 were 9.45, 0.06, 2.05, and 392 g/km, respectively, and the
simulated emissions by the IVE model of CO, VOC, NOX, and CO2 were 100.52, 0.43, 1.12,
and 335.06 g/km, respectively [36]. Comparing COPERT with PHEM software, the relative
deviations were −32.1% for FC and −24.4% for NOX emissions [37].

Several researchers developed the local DCs, but these need to be examined in relation
to the quality and quantity of raw driving data. Based on the reviewed papers, there
are different DC construction methods, data clustering, and cycle assessment parameters.
The aim of this paper is to explore the detailed methods applied in each step of the DC
development and compare the recently developed local DCS with standard DCs such as
WLTC and FTP75. This will help to guide the selection of methods that can be applied for
DC development and assessment. This review paper has three sections. First, the detailed
steps and methodologies applied during the development of the DCs are examined to
highlight their weaknesses. Next, a comparison of various recent local DCs with WLTC
and FTP75 are presented in relation to the main characteristic parameters. Finally, the gap
between RDE with laboratory-based emissions measurement and real-world emissions is
discussed. Recent papers were selected whose full text could be accessed and that present
local DCs with values of the main cycle assessment parameters.
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2. Driving Cycle Development Process

As shown in Figure 2, there are six common major steps in the development of vehicles DCs.
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2.1. Route Selection

Traffic congestion in an urban environment is believed to vary depending on the
route and time, with heavier traffic congestion expected during normal weekdays and at
peak times compared with weekends or public holidays and off-peak times [11]. From the
actual road network of the study area, representative routes should be selected, considering
traffic flow conditions affected by road type, topography, intersections, population density,
gradient, and weather conditions [38]. To select the routes, actual situations that occur
along each route must be identified and ascertained [6]. The chosen routes require the
following features: (1) a high traffic volume, (2) connecting major centres of population,
(3) high emissions on the transit route, (4) various squares and intersections, and (5) access
to public transport systems [36].

Route selection is an essential process when developing DC. Researchers typically use
their knowledge and understanding of local conditions to select the sample routes [39].
This method of route selection may cause a selection bias if the relevant factors are not
considered. Peng et al. (2019) collected driving data from seven vehicles without route
planning for 20 weeks in Fuzhou city [40], while Anida (2019) simply selected the five most
frequent routes [41]. To develop the Mashhad DC, two major routes were chosen that had
the same starting point and destination (Azadi square—Barq square), both 15 km in length.
The reason for their selection was that Azadi and Barq squares connect East–West and
North–South Mashhad and have the highest traffic volume [36]. To develop the MUDC,
five routes were selected based on observations, and the test was conducted on weekdays
without public holidays, from Monday to Friday, during peak hours from 07:30 to 11:30,
thus encompassing a mixture of halt traffic, slow traffic, smooth traffic, and highway
driving within the area of study [11].

Some researchers have developed a methodology or an approach for selecting the most
representative routes. Zhao et al. (2018) analysed the overall topological structure of urban
roads in Xi’an using ArcGIS software, established monitoring points on various types of
selected sample roads, and then investigated traffic flow to identify peak and off-peak times,
before ultimately deciding on the length of each test route [9]. Galgamuwa et al. (2016)
developed an economic approach to collect speed–time data in Colombo, Sri Lanka by
considering vehicle travel activity patterns throughout the city using origin-destination
survey data. The selected routes were divided into links using nodes or physical junctions
to minimise segment length, then divided again into five groups according to daily traffic
to identify the proper weightage for these routes. Traffic flow variation in a typical day
was divided into seven segments with noticeable variations, and finally, a route with the
highest daily traffic within the group was selected as a point estimator to represent each
group in order to avoid underestimation [42].

During the development of the Ljubljana urban DC, the path of vehicles was not
predetermined. Vehicles were allowed to travel randomly according to travellers’ needs.
The study authors then used a geographical information system (GIS) to identify data
for the study area. Out of a total of 6,825,444 collected records, GIS analysis identified
416,471 records as the data within the analysed area that provided the database for further
procedures [43].

In the Delhi DC, the study authors classified traffic as congested, semi-urban, urban,
and extra urban conditions [44]. In CLTC, traffic conditions were classified based on the
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vehicle speed phase: a low, medium, and high-speed phase with the threshold of 60, 80, and
120 km/h, respectively, based on the weighting factors of the different speed phases. Finally,
the values obtained for a low, medium, and high-speed phase were 674, 693, and 433 s,
respectively [24]. The most common steps needed for a representative route selection are:

• determining the peak ratio of peak hour;
• preparing criteria for categorizing routes as urban, rural, or highway;
• ranking the routes based on the level of service (LOS);
• selecting and determining the sample route length for urban roads, rural roads,

and highways.

2.2. Driving Data Collection

From the fleet in the study area, representative vehicles should be selected and
equipped with instruments that collect and store driving activity data from the selected
routes. Three methods have commonly been used to collect driving data [11,36]:

1. The chase-car method. Here, a vehicle fitted with a data collection device is allowed to
follow the target vehicle. With this technique, the vehicle to be followed is randomly
selected, and then, the operations of this vehicle are replicated at a distance. If the
selected vehicle drives out of the area of study, the chase car immediately chooses a
new vehicle to follow. At the end of each route, the logged data are briefly reviewed
to ensure there are no errors before proceeding to the next route [11]. This approach
to data collection can record only a specific section of the driver’s trip [45], can omit
details of the entire trip, and is applicable for areas with minimal and smooth traffic
flows [42]. With this technique, two methods are available for collecting data from
target vehicles: laser technology and unlock data [45].

2. The on-board measurement technique: to use this technique, instruments are fitted on
target vehicles to record the speed data as they travel along the predetermined routes.
This can be used in areas with high and aggressive traffic flow [42].

3. The hybrid technique: this is a combination of on-board measurement and circular
driving, in which a test vehicle with the instrument travels along the selected routes
during peak and off-peak hours several times [9].

For the accurate development of DCs, a large sample of representative driving data is
required [43]. Among the current technologies, GPS and an on-board diagnostics (OBD)
interface are the most common instruments for the collection of driving data.

GPS: provides data on a vehicle’s velocity, time, date, latitude, longitude, and altitude.
Galgamuwa et al. (2016) used the on-board measurement method with five GPS devices
for data collection in the study area, collecting data on 78 trips at one second intervals [42].
GPS-based data collection has the advantages of being small and easy to carry on vehicles,
device installation and operation not affecting the operation of a vehicle, good signal
reception, bulk data storage, and being a high frequency data acquisition system [46]. A
similar approach was taken by [25,41,47–49] for data collection using GPS.

OBD interface: provides data on engine RPM and load, vehicle speed, and fuel flow
rate. It has a better data quality and greater accuracy than GPS-derived speed data [16].
Various devices are available for connecting to the OBD II port; some are car chip devices [8],
and others are ELM TM Bluetooth devices [38].

Zhao et al. (2018) used a hybrid method to record driving data, with speed–time data
recorded by OBD being used to enhance abnormal GPS data [9]. Lipar et al. (2016) used an
on-board measurement technique that included an OBD II interface, a GPRS/GMS module,
and a GPS to record driving data [43]. Liu et al.’s (2021) data acquisition equipment
included vehicle and engine speeds sampled from the OBD interface and longitude and
latitude obtained by GPS devices [50].

A comparison of raw data gathered for local DCs and WLTC is presented in Table 1.
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Table 1. Comparison of raw data gathered for developed DCs and WLTC.

Driving Cycle No. of Vehicles
Data

Collection
Duration

Pathway Selection Route Type/LOS Collected Raw
Data Duration of DC

% of Cycle
Duration to
Raw Data

LJURBAN [43] 19 6 months Not predetermined - 416,471 s 1587 s 0.38

Mashhad [36] 1 2 weeks Predetermined Two major routes 25,500 s 1020 s 4

MURDC [51] 1 - Predetermined Normal and highway 224 MTs 16 MTs
1500 s 7.14

Baqubah [8] 1 7 days Predetermined From different routes in
the city

33,512 s
200 km

1052 s
6.33 km 3.14/3.16

Basrah DC [52] 1 5 weeks Predetermined
(4 paths)

light and peak
traffic conditions 20,912 s 1041 s

6.273 km 4.98

CLTC [24] 3767 1 year Not predetermined Urban, rural and
motorway 32 million km 14.48 km 1800 s 4.5 × 10−5

Tianjin [50] 5 2 months Predetermined Main, secondary, branch
roads and Expressways 165,166 s 1800 1.09

Zhengzhou [53] - 2 weeks Predetermined
(2 routes) All level of roads 600,000 s 1184 0.2

Nanjing [25] 1 1 month Predetermined
5 major routes

Considered also
expressways

46,569 s
77.1 km 1172 2.52

TMC [54] 15 8 months Predetermined
Urban, extra urban and
mixed extra urban and

urban in flat road

54,867 s
72 km 6000 s 10.93

Bangalore [5] 1 3 weekdays Predetermined 6 routes 18 h
250 km

2088 s
9.4 km 3.22/3.76

MUDC [11] 1 - Predetermined 5 routes 367 MTs 1138 s

Colombo [42] 5 - Predetermined Both trip type 175 h 1200 s 0.19

WLTC [55] Not predetermined Urban, rural
and motorway 765,000 km 23.21 km

1800 s 3.03 × 10−3
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As presented in Table 1, one vehicle was used in data collection for the development
of the Mashhad, Baqubah, and Basra DCs, etc., but for the development of CLTC, 32 million
km of raw data were collected from 3767 vehicles, of which 34% of vehicles were hybrid
and electric vehicles. In CLTC, the driving data of traditional and electric vehicles were
combined, which is one of its weaknesses. Numerous researchers have developed a
separate DC for hybrid and electric vehicles. To obtain the most representative DC, it is
better to consider peak, off-peak, and weekend-driving situations during data collection.
To evaluate the representativeness of the collected sample size of local DCs, this study
introduced of the percentage of developed cycle duration to the size of the raw data
collected. The data collection duration showed high variation between the compared DCs
of between three days and one year. Regarding the amount of raw driving data collected,
CLTC involved the largest and broadest data collection in the history of DC development.
The percentage of local DCs was between 0.19 and 10.93, except for CLTC, which is
very high compared with WLTC and CLTC at 3.03 × 10−3 and 4.5 × 10−5, respectively.
This clearly indicates that local DCs are less representative. As observed from the local
DCs reviewed, the reason for the collection of the small amount of driving data with a
few vehicles and predetermined route selection is to minimise the budget required for
data collection.

2.3. Raw Data Filtration

There are several errors in the collected data samples from GPS; thus, a data filtration
process is required [56,57]. Based on the reviewed papers, many researchers skipped this
step. However, a few of them applied and proposed a GPS data filtration process.

Nguyen and Bui (2020) proposed a GPS filtering process consisting of nine steps.
Developing a MATLAB code to detect and repair errors in the GPS data, in the last steps of
the filtration process, a modified Kalman filter process was applied to de-noise and smooth
final signals [58].

Duran and Earleywine (2018) applied seven logic-based filters for the filtration pro-
cess to remove duplicated records and negative differential time steps, replace outlying
high/low-speed values, remove zero-speed signal drift when the vehicle stopped, replace
false zero-speed records, amend gaps in data, repair outlying acceleration or deceleration
values, and denoise and smooth final signals using the Savitzky–Golay filter technique [59].

Huertas et al. (2018) disregarded trip data that were missing typical values with less
than 90% of available data. Rather than fixing missing values, they ignored the data [60].

2.4. Data Clustering

The filtered data were clustered into different groups, with each group designed to
represent different driving characteristics and congestion levels. Clustering is applied
for gathering micro-trips with similar speed–acceleration values [60]. Clustering is an
appropriate approach for grouping the large number of micro-trips into a smaller number of
micro-trips, and the candidate DC is generated by chaining micro-trips from an individual
cluster [1].

K-means clustering is the simplest and most popular algorithm used for grouping
enormous data sets [1,38]. K-means algorithms were applied by [1,41,49] for clustering
micro-trips. He (2020) applied the mean shift clustering method to overcome the problems
of K-means clustering [61].

Three clusters were mostly used to reflect the level of traffic congestion level: low,
medium, and high speed. In the development of the Kuala Terengganu city DC, data
were clustered into three clusters: clear traffic conditions, medium traffic conditions, and
congested traffic conditions [41]. During the development of Beijing’s DC, the recurrent
neural network (RNN) was applied for the DC classification task. An RNN is formed by
a variable’s number of connected identical RNN cells, where each cell utilises the state
yielded by the previous one [56].
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Driving Modes

The most common driving modes were idle, cruising, acceleration, and decelera-
tion [57]. In the RDE regulation, acceleration is defined as a > 0.1 m/s2, but there were
slight variations in values between different researchers to categorise driving modes, as
shown in Table 2.

Table 2. Driving mode classification.

References
Driving Modes

Idle Cruising Acceleration Deceleration

Lairenlakpam et al. (2018) [57] V < 1.389 m/s and
−0.1389 < a < 0.1389 m/s2

V ≥ 1.389 m/s and
−0.1389 < a < 0.1389 m/s2 a ≥ 0.1389 m/s2 a ≤ −0.1389 m/s2

Yang et al. (2019) [25] V < 0.278 m/s and
−0.14 < a < 0.14 m/s2

V ≥ 0.278 m/s and
−0.14 < a < 0.14 m/s2 a > 0.14 m/s2 a < −0.14 m/s2

Chauhan et al. (2020) [1] V < 1.389 m/s and
−0.1 m/s2 < a < 0.1 m/s2 - a >0.1 m/s2 a < −0.1 m/s2

Liu et al. (2020) [24] V < 0.1389 m/s and
a < 0.15 m/s2

V ≥ 0.1389 m/s and
a < 0.15 m/s2 a ≥ 0.15 m/s2 a ≤ −0.15 m/s2

2.5. Decide DC Length

DC length is very important for proper representativeness and better measurement of
emission level and FC testing in the CD. It should not take too long or be too complex to
conduct tests in a CD. There should be an agreement between the representative DC and
its responsiveness to the CD [44].

The length of CLTC was determined based on the length of the low-, medium-, and
high-speed phases, which was determined based on the weighting factors of the different
speed phases. The low-, medium-, and high-speed phases had values of 674, 693, and 433 s,
respectively [24]. In Delhi’s DC, the length was set at a duration of 1500 s by considering
the trends of legislative DCs [44]. Similarly, Malaysia’s urban road cycle was 1500 s, with
the authors reporting that this length was sufficient for the experimental works in the CD
laboratory test [51].

2.6. Driving Cycle Formation

The method of cycle formation varies with the use of the DC. The DC can be used to
estimate emission inventories and FC or for traffic engineering purposes [3]. Previously,
there were four major DC formation methods: micro-trip based, segment based, pattern
classification, and modal cycle formation [40,62,63]. Recently, Huertas et al. (2018) devel-
oped a new approach called the fuel-based method. Each method has unique features to
represent its intended purpose [60].

2.6.1. Micro-Trip Based Cycle Construction

The duration between the start of the idle period and the next moment of the idling
period is defined as a micro-trip [40], including the leading idle period [3]. In this method,
the cycle is constructed based on the driving data divided into different bins according
to average speeds when target population parameters are met. Finally, a set of micro-
trips is selected and spliced together to form a candidate DC [3]. The two most common
methods are quasi-random selection [60] and the best incremental method [23]. However,
for the combination of micro-trips, Mahayadin (2018) applied Chi-squared analysis for the
speed-acceleration frequency distribution (SAFD) as a measure of the difference between
the selected micro-trips combination and the whole database, ultimately selecting the
combination with the lowest Chi-squared value [51].

The Vadodara [1], Ludhiana [49], Bangkok [64], Hong Kong [65], Pune [13], and
CLTC [24] driving cycles were developed using the micro-trip-based cycle construction
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method. The advantages and disadvantages of the micro-trip methods are presented in
Table 3. To minimise the limitations of the micro-trip method, Kiran and Verma (2018)
proposed a new method called the trip segment method, along with an algorithm to extract
those units from the given data [5].

Table 3. Advantages and disadvantages of driving cycle construction methods.

Method Advantages Disadvantages

Micro-trip

A good representation of FC and emissions [66].
Covers each stop–go condition that happens due to traffic
congestion [3].
A cycle is generated based on real driving data [3].

The starts and ends of micro-trips are specific speed, acceleration and
duration [67].
Not possible to differentiate micro-trips by different types of levels of
services (LOS) [3].
It is repeatable but not reproducible because it is stochastic in nature [68].

Segment-based

Considered LOS [67].
The cycle starts and ends at any speed [4].
Suitable for traffic engineering purposes [3].
Suitable for expressways [3].

Chaining the trip segments into a DC requires the speed and acceleration
between two consecutive connection points to be matched [4,38].
Not suitable for emission and FC estimation [3].

Pattern-based
Not directly related to emissions-related DC, highly statistics-based,
requires more information to divide collected data into kinematics
sequences and to classify the route [69].

Markov chain

Driving patterns are divided into four driving modes.
It represents the actual traffic condition because to chain
the modal bins it uses the possibility of the occurrence of
each mode on the road [3].

If the traffic behaviour of the road is smooth, then it is possible that the
occurrence matrix has some gaps, or the duration of the modal event is
much longer than the total length of the cycle [3].

Fuel-based
Fuel-based DCs are almost the same as the measured FC
in flat roads [60].
It is repeatable and reproducible [70,71]

The duration of the selected DC cannot be controlled [70,71].

2.6.2. Segment Based Cycle Formation

In this approach, the roadway type or LOS is considered, when selecting a trip segment
instead of adjacent stops [67]. As a result, the trip segment can represent the actual traffic
conditions and characteristics of the road based on LOS [4,68]. Therefore, when chaining
the trip segments into the DC, it is necessary to match the speed and acceleration between
two consecutive connecting points [4,70]. This method is suit-able for a DC for traffic
engineering purposes and expressways, because there are no adjacent stops between
the origin and destination [3]. The Australian Composite Urban Emission Drive Cycle
(CUEDC) was developed using this method [72].

2.6.3. Pattern Classification

In this method, DCs are constructed based on the statistical method by a random se-
lection of kinematic sequences from segmented activity classes considering the probability
and events of kinematic sequences [71]. ARTEMIS driving cycles were developed using
this method [3].

2.6.4. Modal/Markov Chain Approach

In this method, real-world driving data patterns are divided into acceleration, deceler-
ation, cruising, and idling components based on Markov chain theory which assumes that
the likelihood of a particular modal event depends only on the previous modal event [3].
The “wavelet theory” is applied to analyse the different frequency components of driving
data. It is applied to analyse the components of velocity and decomposing cycle formation
into several signals with different frequencies [72]. Researchers in [42,48,53,66] applied the
modal cycle construction method, which is the Markov chain approach.

2.6.5. Fuel-Based Approach

The instant vehicle fuel flow rate is measured through the engine control unit (ECU),
providing the opportunity to construct a driving cycle based on the FC principle. In this
approach, the average specific fuel consumption (SFC) of the trips sampled is computed.
Then, the trip with the SFC closest to the average SFC is selected as a representative
DC [59,73].
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Huertas et al. (2018) suggest a method to develop a local DC that uses FC as a criterion.
Data were collected from a fleet of 15 vehicles of similar technology using the OBD interface
provided by the engine manufacturer to read, report, and store instantaneous engine FC at
a 1 HZ sampling period and with GPS to monitor the position, altitude, and speed of the
vehicle as a function of time during eight months of normal operation in four regions with
diverse topography and roads with diverse LOS. The results confirmed that characteristics
parameters and SAPD of the fuel-based DCs were almost the same as the measured FC on
flat roads [60].

2.7. Conformity Assessment

A number of candidate cycles can be obtained from different run series of similar raw
driving data. Thus, the most representative candidate cycle that confirms the best cycle in
relation to real-world driving data should be determined. The conformity evaluation of
the candidate cycles with real-world driving data is analysed based on:

• speed acceleration frequency distribution (SAFD)—the smallest SAFDdiff value is
selected as the best DC [1,47];

• performance value (PV) [49];
• sum squared difference (SSD) [49];
• correlation factor (CF)—CF value close to one can be selected as the representative DC

of the route [38];
• Chi-squared—the combination of short trips with the smallest chi-squared value was

selected for CLTC [24];
• Euclidean distance—the smallest Euclidean distance for each DC derived should be

chosen [52];
• relative error—an error of 5% is considered acceptable for each parameter, and if the

error is more than 5%, develop a DC again by a random combination of micro-trips,
continuing the process until the error rate is less than 5% [1].

2.8. Assessment of the Developed DC

The developed DC should be evaluated to ensure that it represents the on-road data
collected and can be compared with the standard DC to specify its deviation. Characteristics
parameters are used in cycle assessment, which ensures that the developed cycle correctly
reflects the real driving pattern [48]. Researchers have used different parameters to compare
developed DCs with collected real data and other DCs. There are more than 58 parameters.

From the reviewed papers, many of them used a set of cycle assessment parameters,
following the experience of previous studies but without providing strong justifications
for this. However, to select target parameters that significantly affect emission levels and
FC, Nguyen (2019) applied the hierarchical agglomerative clustering (HAC) method to
determine a minimum subset of representative variables from 33 variables, ultimately
selecting the 14 that were most representative [48]. Ericsson (2001) used factorial analysis to
reduce the initial 62 parameters to 16, nine of which were found to have a considerable effect
on emissions [74]. Lee and Filipi (2011) used statistical regression analysis to determine
the significance of each parameter for the representation of the response of DCs and found
eight of the 27 variables to be significant variables for assessing the DC [75].

The emission rates of CO2, CO, and NOX are more sensitive to speed and acceleration,
decreasing with the increase in absolute value of acceleration in low-speed and medium-
speed zones and rising with the increase in speed and acceleration in high-speed zones [25].
The emission rates of CO and NOX reach a peak when speed and acceleration are at their
maximum, but the maximum HC rate is often found in the medium-speed and high-
acceleration zone. When tested in local DC, the highest emission rates of CO2, CO, and
NOX appeared in acceleration mode, and the lowest values appeared in idling mode [25].
However, with modern vehicles and after treatment devices, a direct correlation is not
always seen [76]. Table 4 offers a simple portrayal of the most frequently used parameters.
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Table 4. DC characteristic parameters.

Category Parameters Units
[49] [11] [48] [52] [41] [53] [54] [58] [51] [50] [43]

LuDC MUDC HB
DC

BCC
DC

KT
DC ZDC TMC HDC MURDC TDC LJDC

Cycle distance
and time related

CL km 5.86 18.32 6.27 10.07 4.92 18.32 13.29 10.31 10.19

CT s 1138 3936 1041 1089 1184 3936 1500 1800 1587

Driving mode
related

% of tdriv % 63.18 77.5

Pc % 2.39 14.1 4.68 14.49 29.3 3.6 61.73 22.55

Pa % 51 32.43 34.17 45.78 33.32 27.2 46.90 10.13 27.73

Pd % 41.17 30.76 32.70 42.84 28.78 23.7 48.79 8.73 28.23

Pi % 5.40 36.82 7.62 6.7 22.93 19.3 3.37 19.4 26.7 22.5

Pcr % 11.41

tacc s 1345 440

tdec s 1287 448

tcru s 555 342

tcre s 449

tidl s 419 300 357

tdriv s 1230

Vehicle speed
related

Vtrip km/h 20.6 16.76 36.27 17.38 37.17 29

Vavg km/h 24.83 21 18.14 21.63 33.27 14.96 11.2 16.67 31.89 20.62 22.5

SD of V km/h 21.4 10.52 13.56 9.7 10.71 0.78 18.57

75th–25th% of V km/h 35

95th% of V km/h 33 36.4

Vmax km/h 91 44 63.62 49.63 28.4 46.3 83.4 70
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Table 4. Cont.

Category Parameters Units
[49] [11] [48] [52] [41] [53] [54] [58] [51] [50] [43]

Acceleration
related

aavg m/s2 0.53 0.5 0.53 0.4 0.46 0.75 0.47 0.83

davg m/s2 −0.52 0.56 −0.5 −0.44 −0.89 −0.77

aSD m/s2 0.49 0.7 0.2 0.06 0.02 0.61

dSD 0.4 0.05

a95th m/s2 1.11

d95th m/s2 −1.11

No. of a 79 151

No. of ‘a’ per km /km 13.48 7.4 14.82

amax m/s2 3.06 2.66 4.031 1.6 3.85 2.43

dmax m/s2 −2.78 −3.09 −5.4 −2.1 −3.39

Stop related

No. of stops 18 21 7 21

Stops per km /km 3.07 1.15 0.87 2.08

Avg. distance
between stops m 485.19

PKE m/s2 0.34 241.3 0.51

RMSA m/s2 0.49 0.72 0.4

Slope
related

imax - 4.79

imin - −3.4

iavg - −0.23

LuDC is the Ludhiana driving cycle, HBDC is the Hanoi driving cycle, KTDC is the Kuala Terengganu driving cycle, ZDC is the Zhengzhou driving cycle, TMC is the Toluca-Mexico city driving cycle, HDC is the
Hanoi driving cycle, MURDC is the Malaysia’s urban road driving cycle, TDC is the Tianjin driving cycle, LJDC is the LJURBAN driving cycle, CL is the driving cycle length, CT is the driving cycle duration, tdriv is the
driving time, Pa is the percentage of acceleration time, Pd is the percentage of deceleration time, Pi is the percentage of idle time, Pc is the percentage of cruise time, Pcr is the percentage of creeping mode, tacc is the
acceleration time, tdec is the deceleration time, tcru is the cruising time, tcre is creeping time, tidl is the idling time, Vtrip is average trip speed, SD is the standard deviation, V is the vehicle speed, Vavg is the average
driving/vehicle speed, Vmax is the maximum vehicle speed, aavg is the average acceleration, davg is the average deceleration, a95th is the 95th percentage of acceleration, d95th is the 95th percentage of deceleration, PKE
is the positive kinetic energy, RMSA is the rroot mean square of acceleration, VSPmax is the maximum specific power, imax is the maximum slope, imin is the minimum slope, and iavg is the average slope.
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2.9. Comparison of Driving Cycles

A comparison of the cycle parameters of the TDC [50], CLTC [24], HDC [58], LuDC [49],
Vadodara [1], ZDC [53], HBDC [48], KTDC [41], Nanjing [25], TMC [54], Bangalore [5],
MURDC [51], Mashhad (MDC) [36], MUDC [11], Baqubah [8], Colombo [42], LJDC [43],
and Toronto Waterfront Area (TWFA) [77] DCs developed from 2016 to 2021 with WLTC
and FTP75 are presented in Table 5.

Table 5. Comparison of local and standard DCs.

Name of DC Year Vavg
(km/h)

Vmax
(km/h)

% of
Pi

% of
PC

% of
Pa

% of
Pd

CL
(Km)

CT
(Sec) Considered Routes

TDC [50] 2021 20.62 83.4 26.7 10.31 1800 Expressways, main roads, secondary
roads, and branch road

CLTC [24] 2020 28.96 114 22.11 22.83 28.61 26.4 14.48 1800 Urban, rural and motorway

HDC [58] 2020 16.67 46.97 7.62 14.1 34.17 32.7 18.32 3936 Urban area

ZDC [53] 2020 14.96 49.63 22.93 14.97 33.32 28.8 4.92 1184 Not clear but heterogeneous traffic
condition was considered

HBDC [48] 2019 18.14 44 7.62 14.1 34.17 32.7 18.32 3936 Inner-city (circular, radial, and straight
route types)

KTDC [41] 2019 33.27 65 6.7 4.68 45.78 42.8 10.07 1089 Not clear

Nanjing [25] 2019 30.73 85.65 20 30 27 23 10 1172 Expressways, arterial roads, secondary
trunk roads, and branch roads

TMC [54] 2019 11.2 28.4 19.3 29.7 27.2 23.7 18.67 6000 Urban, extra-urban, and mixed urban
and extra-urban of medium traffic flow

Bangalore [5] 2018 20.71 65.17 21.75 13.56 34.74 30 9.4 2088 Not including motorways

MURDC [51] 2018 31.89 90 19.4 61.73 10.13 8.73 13.29 1500 Urban, highway

MDC [36] 2018 20.41 60 21.75 3.22 37.34 37.69 5.78 1020 Arterial road

MUDC [11] 2018 21 91 36.82 - 32.43 30.8 5.86 1138 Standstill, slow, smooth, and
highway driving

Baqubah [8] 2017 21.63 68 25.56 0 50.33 48.5 6.33 1052 Not clear

Colombo [42] 2016 20.3 58 20.5 12.75 36.1 30.7 6.77 1200 Considered different routes based on
daily traffic conditions

LJDC [43] 2016 22.5 70 22.5 21.55 27.73 28.2 10.19 1587 Not considering motorway

TWFA [77] 2015 18.4 17.1 3 43.8 36.1 9.2 1800 Major arterials

WLTC * [24] 46.42 131 12.7 27.8 30.9 28.6 23.21 1800 Urban, rural, and motorway

FTP75 * [24] 33.9 90.16 17.2 24.7 31.1 27.1 17.68 1874 Cold, stabilisation, and hot phase

JC 08 * [27] 24.4 81.6 28.74 1.5 36.13 33.64 8.16 1204 Including motorway, but it is shorter
(154 s)

ARTEMIS [36] 59.2 150.4 9.64 16.19 38.84 35.32 51.69 3143 URM 150 (urban, rural,
and motorway)

NIER−09 * [78] 34.1 70.9 11.7 0 43.4 44.9 8.74 926

CUEDC Petrol * [27] 38.95 94 20.42 25.26 26.82 27.49 19.44 1797 Congested, residential, arterial,
and freeway

(*) Indicates standard driving cycle, CUEDC (Composite Urban Emissions Drive Cycle), ARTEMIS (Assessment and Reliability of Transport
Emission Models and Inventory System), NIER (National Institute of Environmental Research).

As shown in Table 5, Ludhiana and Kuala Terengganu DCs have lower idle ratios of 5.4%
and 6.7%, respectively, thus indicating normal traffic conditions, and Vadodara DC and MUDC
have higher idle ratios of 39.2% and 36.82%, respectively, compared with other DCs, thus
indicating greater traffic congestion, and these cities having numerous signalised intersections
within a short distance. Ludhiana and Baqubah have higher acceleration ratios of 50.99%
and 50.33%, respectively, and Malaysia’s urban road cycle has a lower acceleration ratio of
10.13% compared with the other cycles. The statistical analysis of the compared local driving
cycles showed that the mean of idle, cruising, acceleration, and deceleration proportions
were 19.77 ± 7.89%, 17.35 ± 16.07%, 33.25 ± 9.74%, and 30.22 ± 9.27%, respectively. It was
observed that the percentage acceleration and percentage deceleration were high for most
local DCs compared with the standard DCs, meaning that vehicles release more emissions if
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the local DC is used in CD compared with standard DC. The percentages of cruise and idle
were observed to be less than others.

Regarding vehicle velocity, as shown in Table 5, the average and maximum speed of
WLTC is 46.42 km/h and 131 km/h, which is very different from other local DCs. The Vmax
of CLTC is highest at 114 km/h, compared with other local DCs, thus indicating better
road infrastructures in China, while for other local DCs, the lowest maximum speed of
less than 100 km/h indicates the absence of motorways during the data collection period
or a lack of such roadways. From local DCs, the Vavg of the KTDC has the highest speed
of 33.27 km/h, with MURC next at 31.89 km/h, thus indicating lower traffic congestion.
The statistical analysis of the compared local DCs showed that the means of Vavg and Vmax
were 22.06 ± 6.43 km/h and 68.40 ± 23.66 km/h, respectively. The mean of the average
speed of local DCs was observed to be less than standard DCs, except for JC08.

Table 5 shows that the ARTEMIS, WLTC, and TMC are longer than other cycles, at
51.687 km, 23.21 km, and 18.667 km, respectively, and the shortest cycle is MUDC at 5.86 km.
Regarding the cycle duration shown in Table 5, Toluca–Mexico City and Hanoi cycles have
the highest cycle time at 100 min and 65.6 min, respectively. The mean cycle length of
compared local DCs was 11.07 ± 4.59 km, which is less than WLTC, FTP75, ARTEMIS, and
CUEDC, indicating that, on average, the local DC length is shorter than the standard DCs.

3. Comparison of RDE Tests with Laboratory-Based and Real-World Emissions

Since 2017, European emission regulations have had an element of legal homologa-
tion [79] that requires new passenger vehicles to undergo emission testing on public roads
during the certification process [80]. The European Commission (EC) has approved a RDE
test to minimize the gap between manufacturer-reported emissions and those emitted on
the road [80,81]. PEMS is used for second-by-second measurement of CO/CO2, NO/NO2,
and particle number (PN) concentrations in the exhaust gas of vehicles under real driving
conditions [23,82,83] and simultaneously records the vehicle-related parameters and envi-
ronmental conditions, such as location, velocity, altitude, and temperature [80]. RDE, which
was introduced in European Union legislation, has four sequential regulatory packages:
RDE 1 (EU Regulation 2016/427), RDE2 (EU Regulation 2016/646), RDE3 (EU Regulation
2017/1154), and RDE4 (EU Regulation 2018/1832) [84].

Conducting emission tests on a chassis dynamometer (CD) is standard practice for
comparing the vehicle’s emissions and verifying whether they remain under the emission
limit, as per standards. However, CD tests suffer from shortcomings associated with its
non-representativeness of actual on-road driving conditions. Comparison of RDE with
laboratory-based cycles (WLTC, FTP75, and CADC) is presented in Table 6.

As indicated in Table 6, the RDE of CO2 is 3–41% higher than WLTC, except for the
results reported by [85,86]. RDE of NOX is 10–326% higher than the laboratory-based DCs,
except for the tests conducted in Beijing and Xiamen. Similarly, the real-world emissions
of CO and HC also show an increasing trend compared with laboratory-based emissions
measurements. Based on the reviewed articles, on-road emissions and FC are significantly
higher than the values reported using CD due to drivers’ aggressiveness, varying local
weather conditions, traffic conditions, gradients, etc. The main problem with RDE is that it
is not repeatable, compared with laboratory tests. The EU RDE test procedure does not
include congested traffic conditions.
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Table 6. Comparison of RDE with laboratory-based cycles (WLTC, FTP75, and CADC).

DC Year Methods Applied or Source of
Sample Data

Country/City of
RDE Data Vehicle Category

Laboratory-Based
Emissions Level

(g/km)
On-Road Emissions Level

(g/km) Difference FC References

WLTC 2020 WLTP and RDE Gothenburg,
Sweden

Diesel and gasoline
vehicles

143 for CO2
136 for CO2

148 for CO2
151 for CO2

↑3%CO2 for CI vehicles
↑11% CO2 for SI vehicles [87]

WLTC 2020 WLTP and RDE NM Euro 6b diesel - - - ↑18.03% [88]

WLTC 2020
Real-world data from the

consumer website
(Spritmonitor.de)

German WLTP type approved
vehicle (2018) NM NM ↑14% CO2 ↑14% [89]

FTP75,
HWFET 2020

FTP, HWFET, and US06, and
Canadian 5-mode on-road

driving cycle
Canada Gasoline and Diesel

LDVs
<0.0435 FTP limit of

NOX
0.061–0.326 for NOX 1.4–7.5 times FTP NOX limit ↑22% [87]

WLTC 2019 WLTP and RDE Lombardy Euro 6d-temp diesel
(DOC + DPF + SCR) 146.31 for CO2

165.33 for CO2
0.282 for NOX
0.0197 for CO

↑13% CO2 [84]

WLTC 2019 WLTP and on-road testing Thessaloniki,
Greece

Euro 6b diesel (DOC +
DPF + EGR)

CO2 close enough to
the RDE CO2 levels

NOX are 3 times higher than
WLTP level ↓50–100% CO2 and ↑300 for NOX [86]

Standard
road

speed
2019 On-road and CD tests Warsaw Ford focus PV

229 for CO2
6.9 for CO

1.23 for NOX
1.04 for HC

242 for CO2
7.9 for CO

1.17 for NOX
0.68 for HC

↑5.4% CO2 ↑12.6% CO
↓5.12% NOX ↓50.72% HC [90]

CADC 2019 CADC and on-road testing Thessaloniki,
Greece

Euro 6b diesel (DOC +
DPF + EGR)

NOX levels are close
to the levels of the

RDE test
NOX levels are close to the levels

of the RDE test [86]

MIDC 2018
MIDC and the average

real-world emissions of the three
routes

Dehradun city,
India Gasoline (TWC)

216.83 for CO2
0.977 for CO

0.008 for THC
0.011 for NOX

263.35 for CO2
2.03 for CO

0.021 for THC 0.025 for NOX

↑1.12–1.39 times for CO2
↑1.35–2.39 times for CO,
↑2.17–5.0 times for THC

↑2.04–2.32 times for NOX, and
↑18.4% [57]

WLTC 2018 WLTP and pre-recorded RDE
cycle under lab-RDE cycle Italy

Euro 6 gasoline (TWC)
and diesel (DOC + DPF

+ NS)
NC NC ↑10% CO2

↑15% NOX
[91]

WLTC 2018
Powertrain Road Performance
Simulator (PRoPS) within the

Matlab-Simulink
Lombardy Euro 5 diesel

180 for CO2
≈0.31 for NOX

1.21 for CO
0.05 for HC

0.013 for PM10

400 for CO2
≈0.84 for NOX

1.82 for CO
0.28 for HC

0.015 for PM10

↑≈ 122%CO2,
↑≈ 1.71 times for NOX,
↑≈ 350.4% CO,

↑≈ 4.6 times for HC, and
↑≈ 14.5% PM10

[62]

CADC 2018 PRoPS within the
Matlab-Simulink Lombardy Euro 5 diesel

380 for CO2
≈0.08 for NOX
0.095 for CO
0.045 for HC

0.0065 for PM10

400 for CO2
≈0.84 for NOX

1.82 for CO
0.28 for HC

0.015 for PM10

↑ 5.26%CO2,
↑≈ 9.5% times for NOX,
↑≈ 18 times for CO,

↑≈ 5.2 times for HC and
↑≈ 13.77 times for PM10
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Table 6. Cont.

DC Year Methods Applied or Source of
Sample Data

Country/City of
RDE Data Vehicle Category

Laboratory-Based
Emissions Level

(g/km)
On-Road Emissions Level

(g/km) Difference FC References

WLTC 2017 WLTP and simulation of
real-world driving conditions NC Euro 5 gasoline and

diesel 143.9 for CO2 162.6 for CO2 ↑13% CO2 [92]

WLTC 2017
Real-world data from the

consumer website
Spritmonitor.de

German Gasoline and diesel NM NM ↑37% CO2 (gasoline)
↑41% CO2 (diesel) [93]

WLTC 2017 WLTP and RDE Beijing and
Xiamen

Euro 5 gasoline LDV
(TWC)

182 for CO2
0.62 for CO

0.028 for NOX

175 for CO2
0.248 for CO

0.0185 for NOX

↓4% CO2,
↓60% CO, and
↓34% NOX

[85]

WLTC 2016 WLTC simulated on IVE model
and on-road testing Deharsun, India Euro 4 gasoline LDV

(TWC)

111.23 for CO2
0.953 for CO
0.08 for HC

0.086 for NOX

145.7 for CO2
1.4 for CO

0.1304 for HC
0.141 for NOX

↑31%CO2,
↑46.9%CO,
↑63%HC, and
↑64% NOX

[70]

WLTC 2016 WLTP and on road data NM Euro 5 vehicles 130.25 for CO2
0.409 for NOX

143.687 for CO2
0.498 for NOX

↑10.% for CO2 ↑21.83% NOX ↑10.55% [63]

NM—Not mentioned, NC—Not clear, CI—Compression ignition, SI—Spark Ignition, LDVs—Light Duty Vehicles, DOC—Diesel Oxidation Catalyst, DPF—Diesel Particulate Filter, EGR—Exhaust Gas
Recirculation, SCR—Urea solution refill, TWC—Three Way Catalytic converter, and NS—NOX Storage system.
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Parameters That Affect the RDE

RDE tests have weak points regarding testing boundary conditions, PEMS uncertainty,
and data analysis methods. Reproducibility of RDE test is hard to achieve, and both
dynamic and environmental conditions are unique for a specific geographical location,
which can be representative for one location but not for another test site. This review clearly
highlights the major parameters that affect the results of RDE. These are given below.

1. Impact of road grade on the RDE

Ignoring road grade could result in highly inaccurate estimates of vehicles emissions.
Antonietta et al. (2018) found that a route with a 5% road grade involved almost a 100%
increase in CO2 (and FC) with respect to the flat road, but a grade of −4% showed a nearly
70% decrease in CO2 with respect to the flat road, and 4–5% road grades increased NOX
emissions between two- and five-fold, compared with the flat [94]. Gallus et al. (2017)
identified that the road grade from 0–5% led to a CO2 increase of 65–81% and a NOX
increase of 85–115% [95]. Triantafyllopoulos et al. (2019) identified the combination of
dynamic driving on an uphill road resulted in three times higher CO2 emissions and eight
times higher NOX emissions [86]. As shown by Pavlovic et al. (2020), the typical impact of
road grade on the FC gap is often about 56% if segments with road grades lower than −1%
are compared with segments with above +1% [88].

2. Impact of cold temperature on the RDE

In urban areas, a cold start can significantly contribute to vehicles’ overall emissions
and FC due to short trips and frequent starts [96]. Reduction in atmospheric temperature
from 25 ◦C to 8 ◦C during a cold start (in the considered period of 300 s) resulted in
a 16% rise in CO2 (FC), a 195% rise in CO, a 280% rise in PN, and an 11% decrease in
NOX [97]. The EU RD exclusions of a cold start and idling decrease the emission of CO2 in
the urban drive mode by 8% and leading to a decrease in CO emission by 18% [85]. For
diesel vehicles in a RDE test, trips between 5 and 10 ◦C have up to 30% differences in NOX
emissions, but for gasoline vehicles, the difference is not as significant [98]. CO2 emissions
are highest during a cold start, by a factor of 1.6 and 1.3, at temperatures of −7 and +23 ◦C,
respectively, when compared with the warm start at +23 ◦C for a gasoline direct-injection
vehicle equipped with a particulate filter, where the PN emission at −7 ◦C was 2.6 times
higher than the 23 ◦C at ambient temperature [99].

3. Effect of route selection on RDE

In many metropolitan cities, traffic conditions are becoming more congested, and
most passenger vehicles in developing countries are operated more in congested traffic
conditions and signalized intersections. In the EU’s RDE legislation, the share of urban
roads, rural roads, and motorways is nearly the same, but they contribute different emission
levels and FC.

Suarez-Bertoa et al. (2019) investigated on-road emissions of 6d-Temp vehicles on RDE
routes in accordance with EU procedures, city motorway route during prolonged motorway
driving, and the hill route, which comprises only urban operation. NOX median emissions
factor ranged from 34 mg/km on the city route to 318 mg/km during RDE dynamic tests
with more acceleration. PN median emissions were twice as high during dynamic routes
(2 × 1012 #/km) than during RDE routes (1 × 1012 #/km. PN median emissions were
3.5 times lower on the city motorway route than RDE ones. Gasoline vehicles emitted
median CO emissions of 167 mg/km during the hill route test and 2850 mg/km during the
RDE dynamic test [84].

Williams et al. (2018) conducted RDE performance tests on three different test routes.
Route 1 had the largest share of urban driving section and, therefore, a lack of a motorway
section; route 2 was equivalent to driving mainly on rural roads. Route 3 was consistent
with the EU’s RDE legislation. They found that the emission of CO increased in proportion
to the duration of the test, regardless of the type of test route used. They obtained higher
CO and HC in those tests than within the EU RDE test. Such a situation occurs when these
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tests are shorter and the urban and rural part makes up a larger share in the whole test
conducted. The authors confirmed that it is possible to shorten the test distance by about
20% without a significant change in the results of specific distance exhaust emissions [83].

Triantafyllopoulos et al. (2019) conducted on-road testing on two routes in the area of
Thessaloniki, Greece using CI vehicles. The first route was designed in line with the RDE
regulation, and the second route was designed to represent a more dynamic driving profile,
referred to as DYN. CO2 in DYN was 50% to 100% above RDE, while NOX emissions were
two to eight times above RDE and 25–40 times above the emission limit [86].

4. Effect of PEMS uncertainty on RDE

There are several types of PEMS equipment, such as Horiba, AVL, OBM, and Semtech
DS analyser. PEMS have higher measurement uncertainty due to possible drift of the
analysers overtime and exhaust flow rate [100].

Czerwinski et al. (2016) investigated the results of three PEMS (Horiba OBS ONE,
AVL M.O.V.E, and OBM Mark IV/TU Wien). All three were fitted on the same vehicle
tested on CD according to NEDC, WLTC, and CADC; the results were compared with
the CVS (Horiba MEXA 7100). The deviation between PEMS 1, 2, and 3 with CVS values
considering all cycles were ≈−12%, ≈35%, and ≈−3% for NOX and ≈25%, ≈3%, and
≈55% for CO, respectively. The average deviation between the PEMS and CVS values
considering all cycles were 37% for NOX and 67% for CO. All PEMS indicated more CO2
than CVS and confirmed higher readings of PEMS than of CVS. The authors assumed
that the main reason for the indicated differences was insufficient synchronization of the
transient parameters of exhaust gas mass flow, concentration, and density of the measured
parameter. Furthermore, the authors compared the results of FC, CO2, CO, and NOX from
on-road trips (38 km) with PEMS 1, 2, and 3 and found an average FC of ≈5.7, ≈5.4, and
≈5.5 l/100 km, respectively; for CO2, ≈135, ≈138, and ≈130 g/km, respectively; for CO,
≈400, ≈150, and ≈170 mg/km, respectively; and for NOX, ≈26, ≈30, and ≈20 mg/km,
respectively [101]. The difference between PEMSs were more significant for NOX and
CO emissions.

Giechaskiel et al. (2021) compared PEMS to bags in Italian laboratories testing a diesel
vehicle as a reference for two consecutive years. They found for CO that PEMS were,
on average, 5–20 mg/km higher than bags, ± 5 g/km for CO2, ± 10 mg/km for NOX,
and ± 1 × 1011 p/km for PN. They concluded that PEMS are accurate under controlled
laboratory conditions and the differences between PEMS and the bag were well below the
tolerances allowed by the EU regulation. The authors suggested that the tolerances should
be reduced [102].

Roberto et al. (2018) compared PEMS with laboratory equipment (bags) following
the WLTC and a pre-recorded RDE cycle on the CD in the Vehicle Emissions Laboratory
(VELA 1) of the JRC in Italy. They tested the SI vehicle with PEMS #1 (Horiba OBS-ONE)
and PEMS #2 (M.O.V.E. AVL), while for the CI vehicles, they used PEMS #2 and PEMS #3
(M.O.V.E. and AVL). For NOX emissions, the differences between the instruments were
within 5% for the mean levels of 20 PPM or higher, but the differences increased to 15%
at 7 ppm and 30% at 1 ppm. Finally, the authors concluded that the greatest contribution
to the differences between the PEMS and bag measurement was made by exhaust flow
measurement [91].

The study conducted by Pavlovic et al. (2020) found that 60% of the real-world
driving trips had an average FC higher than the average measured with PEMS on an RDE
compliant trip [88].

5. Effect of data analysis methodology on RDE

The EU RDE identified two methods of RDE data analysis: moving average window
(MAW) and power binning (PB). Currently, some researchers are implementing the vehicle
specific power (VSP) method. Varella et al. (2017) evaluated the on-road data collected
by the MAW, PB, and VSP methods in Lisbon, Portugal. The MAW method provided an
overall difference of around 7% for CO2 and 10% for NOX compared with VSP [103]. In
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Beijing, Xiamen Xin et al. (2018) found that the use of the MAW method had a minimum
effect on overall CO2 emissions but decreased the CO and NOX results by 12% and 21%,
respectively [85]. It is believed that the differences in the results were due to the use of
different analysing methods or the development of a new analysis tool.

RDE is more representative of real-world emissions than laboratory-based DCs, but
there is no guarantee that the results will be the same as those indicated in the RDE report.
This means that the RDE test is not reproducing the same results due to the drivers’ style, un-
certainty of the PEMS, and varying traffic congestion and geographical and environmental
conditions from place to place. The EU RDE experiences difficulties with implementation
in developing countries and does not include congested urban traffic conditions. In gen-
eral, the RDE tests need further investigation to enhance their reproducibility, minimise
the uncertainty of the PEMS, and control geographical and environmental conditions to
provide the best way of obtaining representative results.

4. Conclusions

The DC is an important idea in quantifying vehicle emissions and FC, and it is expected
to effectively represent real vehicle driving patterns so as to obtain reliable estimates of
vehicle emissions. Concern is growing about the gap between actual driving conditions
and the standard DCs used for vehicle certifications and regulatory authorities. A review
of recent and relevant studies on DCs quantifying vehicle emissions and FC has been
undertaken. Local DCs were analysed for their route selection, data collection approach,
cycle formation methods, and cycle assessment parameters and were compared with
standard DCs. Lastly, the gaps between RDE and laboratory and real-world data were
discussed. After performing a comparative analysis of local DCs and standard DCs, the
findings of this study are that:

• A driving cycle that shows the highest coincidence with actual driving data from
on-road vehicles is preferable for estimating emission levels and fuel consumption.
Therefore, typical or local driving cycles should be developed that reflect local driv-
ing patterns or conditions that could be used for type approval tests of new and
existing vehicles.

• Most of the reviewed local DCs do not distinguish between separate phases of urban
rods, rural roads, and motorways.

• Almost all the local DCs reviewed do not identify shifting the strategy followed during
the test on CD.

• Compared with WLTC, the local DCs are capable of producing higher emissions and
FC due to a higher acceleration time and greater representativeness of the local DC at
a particular place.

• The main problem associated with most developed local DCs is related to the small
sample size collected from a few vehicles within a short period of time.

• Researchers mostly used micro-trip and Markov chain methods to construct a driving
cycle for emission levels and fuel consumption, and recently, a new method called the
fuel-based approach has also been introduced.

Future studies on driving cycles should note the importance of route planning, bulk
data collection, data filtration, and selection of the most significant characteristic parameters.
Furthermore, attention should be given to data collection time including peak times, off-
peak times, and weekends.

From the comparison of RDE with laboratory-based emissions measurement and
real-world emissions, the conclusions of this study are:

• RDE measured by PEMS are higher than laboratory-based measurements or CVS.
• RDE are not reproducible as laboratory-based measurements and results are different

within and outside the boundary conditions.
• Under controlled laboratory condition, PEMS resulted in higher emissions than CVS

with low uncertainty; the major causes of PEMS’ uncertainty are drift of the analyser
over time and exhaust flow rate.
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• The gap between RDE and real-world emissions is caused by cold temperatures,
road grade, a similar share of types of route, drivers’ dynamic driving conditions,
uncertainty of PEMS, and RDE analysis tools.

• Driving uphill greatly increases CO2, FC, and NOX emissions due to a higher energy
demand on roads with an inclination.

• Operations in cold temperatures increase CO, PN, and CO2 emissions compared with
warm operation due to a richer air fuel mixture in cold conditions and the catalytic
convertor not reaching an effective operating temperature; however, NOX emissions
showed as decreasing trend during cold operation.

• A more dynamic character than the RDE boundaries resulted in an increase in CO2,
NOX, and PN emissions, long-distance driving on a motorway decreased NOX and PN
emissions, and shorter trips on urban routes resulted in higher CO and HC emissions
than EU RDE.
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