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Abstract: Studies have been implemented in the literature to enhance the safety of traffic barriers by
identification of the contributory factors to those crashes. However, almost all those past studies are
subject to potential pitfalls of just answering the cause-and-effect question by traditional statistical
methods, which fail to account for possible endogeneity. Modeling traffic barrier crash severity with
traditional statistical methods might be biased as many parameters such as barrier’s types is endoge-
nous to unseen factors including policy makers’ decisions in allocating those barriers. Not accounting
for the possible endogeneity in the dataset and ignoring correlation between regressors’ error terms
might result in biased or erroneous coefficients’ estimates. That is especially true in the presence of
strong correlations across models’ error terms. Thus, this study was conducted to model barriers’
crash severity by taking into consideration the endogeneity and correlations across the models’ error
terms. Here, the trivariate copula-based method was implemented to simultaneously model traffic
barrier crash severity, shoulder width and barrier’s types, while accounting for interrelationships
across the models’ error terms. The results provide strong evidence of correlations between the
unseen factors to the selections of barrier’s types, shoulder width installation, and crash injury levels.
For instance, we found in the presence of accounting for endogeneity and correlation between unseen
factors, concrete traffic barrier type and higher shoulder width installation are negatively correlated
with unseen factors contributing to severe barriers’ crashes That is despite the fact that the observed
factors of those predictors were found to have a reverse impact on the severity of barriers’ crashes.

Keywords: endogeneity; trivariate copula; logit model; barrier crash; traffic safety; subjective policy

1. Introduction

Traffic crashes have been ranked as the 7th causes of death in the U.S. [1]. This is
equivalent to $871 billion dollars based on the crash collisions costs [2]. Run-off-road
(ROR) crashes account for significant proportion of those crash collision cost, especially
as those crashes result in a significant proportion of severe crashes. Even though traffic
barriers are one of the well-known countermeasures, which could be employed to reduce
the severity of ROR crashes, the severity of barrier crashes still account for high proportion
of severe crashes.

1.1. Traffic Barriers and Shoulder Width

Due to consideration of three models in this study, and those models are related
to crash severity and shoulder width, and barrier types the next few paragraphs would
discuss some of the related studies.

A study conducted to evaluate the severity of median barrier crash severity [3].
A nested logit model, which considers unobserved impacts among the severity levels was
employed. The results indicated that a collision with cable median barriers decrease the
probability of sever crashes.

The effects of various geometric characteristics of median barriers were evaluated
using the random-parameter model [4]. The results indicated that concrete barriers are
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more prone to the severity of barriers’ crashes. On the other hand, the impacts of shoulder
width on traffic safety have been evaluated extensively in the literature review. Shoulders
are set with objectives of providing recovery areas, or emergency stop. Wider shoulder
width could encourage drivers to have a higher operating speed, which might result in a
higher crash severity [5].

However, none of the past studies took into considering the point that various barrier’s
types are likely to be installed based on policy makers’ discretion on assigning a specific
barrier to a specific location. For instance, concrete barriers are more likely to be installed
by policy makers at locations with higher traffic, and with no sharp curve. On the other
hand, cable barriers, due to not having enough stiffness in crashes, might be installed at
locations with less possibility of traffic and crashes. In addition, despite the contribution
of the past studies to the safety of traffic barriers, none of them considered the possible
endogeneity of the shoulder width on the severity of traffic barriers crashes.

1.2. Bivariate Copula Method

Copula based method could be implemented in the statistical analyses to account for
the possible endogeneity. The few next paragraphs would highlight few studies, which
employed copula-based method in traffic safety studies.

A joint estimation of injury severity, crash type, vehicle damage and driver error were
simultaneously evaluated for intersection crash data [6]. It was found that those factors are
highly correlated, and a joint analysis of the variables are needed. In another study, the
interaction terms of predictors and various years were considered for temporal instability
evaluation. A binary logit copula-based method was used to model the severity of two
vehicle crashes by considering endogeneity [7]. In that study, the collision type predictor
was considered as endogenous to crash severity outcomes. The significance of copula
dependence highlighted the importance of considering the endogeneity of collision type
and injury severity.

A bivariate copula-based method in another study was implemented to identify the
contributory factors to at-fault and not-at-fault drivers in head-on collisions [8]. A pos-
itive dependence was detected between the injury outcome of at-fault and not at fault
drivers’ models.

The choice of policy makers in setting up warning signs at a more hazardous locations
was evaluated by the past study [9]. The results highlighted an important and significant
correlation due to the choice of policy makers.

Even though no study, to the best of the knowledge of the authors of this study, has
used trivariate copula on transportation problem, a study which implemented with the
help of that method on other fields would be outlined in the next few paragraphs.

1.3. Trivariate Copula

A trivariate copulas method was implemented to model sample selection and treat-
ment effects on family health care demand [10]. Three equations were considered in that
study: a dichotomous choice equation for insurance status selection, and an equation
for the health care use by each spouse. Significant dependences were observed across
regressors and the outcome model.

1.4. Why Copula Is Needed for This Case Study

Despite much effort in application of copula-based method in traffic safety studies,
a comprehensive application of copula method in a traffic barrier study is missing. This
is especially important as many characteristics of barriers such as choice of selection of
a specific type of barrier for a specific location might be decided by policy makers based
on various criteria such as crash proneness of a road locations, or amount of traffic. For
instance, concrete barriers have been installed at the locations with higher likelihood of
crashes and traffic such as median barrier’s locations. That is due to rigidity of concrete
barriers in receiving numerous crashes.
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The designs of various aspects of roadway characteristics such as shoulder width is
expected to vary based on the associated conditions of the road segments. Those variables
are also typically correlated with crashes necessitating the use of copulas for modeling their
dependence structures. For instance, shoulder width decision criteria might be impacted
by truck traffic for accommodating their needs, or due to a possible reason of a higher
traffic so drivers have more time to return to the driveway in case of running off the road.

Despite the importance of implementation of the copula method for safety, especially
evaluation of various aspects of roadside designs, not many studies conducted to investi-
gate those factors while accounting for endogeneity. Thus, this study was conducted to
study factors to barriers’ crash severity after accounting for correlation between error terms
of decisions impacting setting up specific barriers’ types, or shoulder width at specific
locations, and error term of crash severity model itself. Furthermore, by considering the
shoulder width and barriers type as independent variables in the main model of the crash
severity. The three considered barriers are shown in Figure 1 for reader that are not familiar
by included types of barriers.
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Finally, it should be noted that simulations have been employed for analyzing the
road safety barriers which the paragraph would outlines few of them. The paper addressed
numerical simulation of a concrete barriers [11]. The study identified the locations in con-
crete barriers segments. Safety performance of a precast concrete barriers with numerical
method was employed [12]. To gain a precise representation of the state of the damage
the stochastic damage-plasticity was adopted. The impact locations, load and boundary
constraints were highlighted.

The remainder of this manuscript is organized as follows: the method section compre-
hensively details proposed methodology implemented in this study. The results section
illustrates an implemented approach on real dataset, whereas the discussion section dis-
cusses the findings and potential direction for the future studies.

2. Method

The method section would be presented in 4 subsections. First, the general back-
ground briefly presents the general framework of copula. The second subsection, Gaussian
copula mixture model, would be presented for general, and three univariate variables.
The Multivariate model copula talks about how the copula method would be implemented
on multivariate model and would briefly outline the process of estimating the results
parameters. As endogeneity is a core of copula method, the last section would discuss
that concept.

2.1. General Background

The term Copula was derived from a Latin word of copula meaning to connect or
join [13]. The concept of this method lies in the question that by knowing an observation
X1, how much information would be gained to predict an observation X2. This is expected
due to interrelation or dependence of these two random variables. Copula method helps in
the above marginal distributions and interrelationship.
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The first step in achieving the above prediction process is to transform the random
variables Xi into uniformly distributed random variables Ui. It should be noted that the
original values of Xi could also be achieved by using inverse of cumulative density function
(cdf) of F, or F−1, X = F−1(U), where F−1 is called quantile transformation.

Based on Sklar theorem, for a d-dimensional cdf of F with margins of F1, . . . , Fd, there
would be a copula as:

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (1)

From above, It should be noted that while xi can have a range of [−∞,∞], the range of
Fi is [0, 1] due to the concept of cdf making it as a probability.

One of the importance features of copula-based model is the dependence consideration.
Consider a bivariate copula C(u1, u2), and a bivariate cdf of H(x,y), where H(x,y) = C(F(x),
G(y)), we would have:

P(U2 < u2|U1 = u1) =
P(U2<u2,U1=u1)

P(U1=u1)
=

∂
∂u1

C(F(x),G(y))·g(y)
g(y) = ∂

∂u1
C(F(x), G(y)) (2)

where U1 and U2 are two uniform random variables, U1 is known, and the objective is to
find a conditional distribution of the unknown or U2.

2.2. Gaussian Copula Mixture Model

It has been argued that Archimedean copulas, such as Frank or Gumble lack the
flexibility to accurately model the dependence across large number of variables [14]. In
addition, there are associated limitations for extending Archimedean copulas to trivariate
or higher orders. One of the main difficulties is related to the fact that the lower-level
dependence cannot be preserved due to a reason that the copula cannot provide a unique
distribution when the sequence of variables are altered [15].

However, multivariate Gaussian distribution could be implemented without suffering
from the aforementioned limitations [16]. That is why we only considered Gaussian copula
due to a possible limitation of other copulas in accommodating the trivariate types of
copulas.

Every copula could be written based on its variance-covariance matrix. For instance,
consider a two-dimensional Gaussian Copula with interrelationship of ρ and correlation
matrix ∇:

CGauss
ρ (u1, u2) = Φ∇

(
Φ−1(u1), Φ−1(u2)

)
, (3)

where Φ−1 is the inverse cumulative distribution function, and Φ∇ is the multivariate stan-
dard normal distribution function. The marginal distributions of u1 and u2 are restricted to
be Gaussian.

The correlation matrix of ∇ is a resultant of a covariance matrix as:

∇̃ =

(
s2

1 ρs1s2
ρs1s2 s2

2

)
(4)

Based on the above formula the representation of Gaussian copula could be written as:

F(u1, u2|ρ) =
∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1
2π
√

1− ρ2
exp(−

s2
1 − 2ρs1s2 + s2

2
2(1− ρ2)

)ds1ds2 (5)

For ρ = 0, ρ = 1, and ρ = −1 the copula would be converted into (a) independent,
(b) comonotonicity, and (c) countermonotonicity copulas, respectively [17]. In summary, it
can be said that the above equation is equal to multivariate standard normal distribution
with a correlation matrix of ρ.

It is worth discussion of the simulation process of Gauss copula, where all margins
are univariate Gaussian, which could be summarized as follows:
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• Cholesky decomposition of the covariance matrix, and set A for the lower triangu-
lar Metrix

• Consider the iteration for the following steps

◦ Generate a vector of z from a random normal distribution where z = z1, . . . , zd
◦ Now set x = A*z
◦ Return U as (Φ(x1), . . . , Φ(x1))

Now consider three-dimensional joint of F ∼ (X1, X2, X3), we know:

f (x1, x2, x3) = f1(x1) f (x2|x1) f (x3|x1, x2) (6)

where fn is the probability density function (pdf).
From the above equation, f (x2|x1) and f (x3|x1, x2) are parameters that need to be

estimated. Based on Sklar’s theorem, f (x3|x1, x2) could be written as:

f (x3|x1, x2) =
f (x2,x3|x1)

f (x2|x1)
=

c2,3|1(F(x2|x1),F(x3|x1) f ((x2|x1) f (x3|x1)

f (x2|x1)
= c2,3|1(F(x2|x1), F(x3|x1))c1,3(F1(x1)|F3(x3)) f3(x3) (7)

On the other hand, from a binary dimension, f (x2|x1) could be written as:

f (x2|x1) =
c(x1, x2)

f1(x1)
= c1,2(F1(x1), F2(x2)) f2(x2) (8)

Now based on Equations (6)–(8) we would have:

f (x1, x2, x3) = f1(x1)c1,2(F1(x1), F2(x2)) f2(x2)c2,3|1(F(x2|x1), F(x3|x1))c1,3(F1(x1)|F3(x3)) f3(x3) (9)

It should be noted that f1(x1), f2(x2), and f3(x3) are univariate pdf’s.
Now the C1,2, C2,3|1, C1,3 could be written as the pair copulas of c1,2, c2,3|1, c1,3 [14,18].

In addition, thetas, dependence, are incorporated in various copulas. For instance, θ12
would be incorporated in c12.

2.3. Multivariate Model Copula

For a three multivariate model, the copula would be implemented on error terms
instead of the univariate variable itself. It should be noted that the Gaussian copula resulted
from multivariate normal distribution. For instance, consider a trivariate model as follows:

y∗1 = γz + ε1
y∗2 = βx + ε2

y∗3 = ϕg + αy2 + ε3

(10)

where y∗1 and y∗2 , and y∗3 are three latent equations γ, β, and ϕ are coefficients related to
three modeling components. From the above equations, the resultant distributions would
be fully known if the joint distribution of ε1 and ε2, and ε3 are known [19]. For trivariate
model, the joint distribution of the three models could be written as:

F(ε1, ε2, ε3) = Φ(ε1, ε2, ε3, θ12, θ23, θ13) = Φ
[
Φ−1(Φ(ε1)), Φ−1(Φ(ε2)), Φ−1(Φ(ε3))

]
(11)

The current study considered trivariate copulas for three considered equations. In this
study, the logit link function was implemented for the marginal distribution of the three
models. Here, the difference between simple logistic regression model and copula based
logistic model is that copula model accounts for dependence between the residuals of the
marginal models while simple logistic regression does not. In other words, the multivariate
models’ copula could be seen as a joint distribution of residuals, while the errors follow
parameter θi [20]. The correlations across the error terms might capture the presence of
unobservable factors impacting various decision-makers’ processes.
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Parameter estimates of logistic regression could be computed as follows. First, we
know the likelihood function of logistic regression, which could be written for binomial
mass function as:

l(β|Y) =
n

∏
I=1

(
ni
yi

)
π

yi
i

1− πi
ni

1− πi
yi

(12)

For ni trials, there are
(

ni
yi

)
ways to arrange yi successes of those ni trials [21].

Furthermore, the probability of yi success is πi
yi , and the probability of ni − yi failure is

1− πi
ni−yi .

It should be noted that Y is a linear combination of various coefficients. Now max-
imum likelihood could be implemented to find βs which maximize the above equation.
The values could be identified when the first derivative of above is set to be zero, and the
second derivative of above is less than zero. Now based on log odds formula we have:

πi
1− πi

= e∑K
k=0 xik βk (13)

In addition, for πi we have:

πi =
e∑K

k=0 xik βk

1 + e∑K
k=0 xik βk

(14)

Now substituting Equation (14) in Equation (12) we would have:

∏N
i=1 e∑K

k=0 xik βk
yi
(1− e∑K

k=0 xik βk
yi

1 + e∑K
k=0 xik βk

yi
)ni (15)

After some algebra, the above equation would turn into the Kernel of likelihood
function to be maximized. After taking the log of the kernel equation we would have:

l(β) =
N

∑
i=1

yi(
K

∑
k=0

xikβk)− ni· log(1 + e∑K
k=0 xik βk) (16)

Now equating the derivative of above to zero for βk, and solving based on Newton-
Raphson method would solve for betas values without a need for second derivative of the
log likelihood function.

In summary, Maximum likelihood is implemented to make the observed data most
probable, where θ is a density function which would be maximized:

L(θ|x) = f (x|θ) (17)

θ̂ =
argmax
θ L(x|θ) (18)

The variance-covariance matrix would be estimated by the Hessian matrix as follows:

var− covar(β) = (−E[H(β)]−1) = −E[
∂2L(β)

∂β2 ] (19)

The above likelihood estimates with some minor modifications. using penalized
additive method, could be implemented for copula method as follows [22,23]:

l(δ) =
n

∑
i=1

log{c(F1(y1i|µ1i, s1i), F2(y2i|µ2i, s2i), F3(y3i|µ3i, s3i); θi)}+
n

∑
i=1

∑
m=1

log{ fm(ymi|µ3i, s3i)} (20)

where µ and s are the location and scale parameter of logistic models, m are marginal
distribution parameters, θ is dependence coefficient, ζ is degree of freedom. The marginal
distributions of Ys could be specified by cdf’s and densities as F and f, respectively. In



Future Transp. 2021, 1 607

addition, δ consists of coefficient vectors of βs. Furthermore, the copula density c could be
written as:

c =
∂2C(F1(y1i)), F2(y2i)

∂F1(y1i)∂F2(y2i)
(21)

Now consider a conditional distribution of (Y1, Y2) based on our case of the bi-
nary logistic regression for marginal distribution for two scenarios would be based on
Table 1 [24] as:

Table 1. Conditional distributions of binary and trivariate copulas.

Y2 = 0 Y2 = 1 Y2 = 0, Y3 = 0

Y1 = 0 C(π1, π2) π1 − C(π1, π2) —-

Y1 = 1 —- —- C(π1, π2, π3)

2.4. Endogeneity

The role of copulas is to account for dependence across residuals of the marginal
models [24]. The endogeneity resulted from correlation across error terms reflected from
unobserved factors impacting two endogenous models, which could not be measured, and
thus would be set as error terms.

In this study, the endogeneity was considered as we are interested in estimating the
impacts of various predictors on the severity of traffic barrier crashes in the presence
of unobserved confounders. This problems in economics studies arise when important
covariates have been omitted, and as a result become part of error terms [20]. After setting
the treatment by considering the endogeneity in the model, if the correlation across the
treatment and the outcome error terms were found to be not important, the treatment
would be turned to be exogenous in the main model, or crash severity. Various techniques
could be implemented to account for endogeneity effect. For instance, latent instrumental
variable (LIV) could be implemented by utilizing a discrete latent variable to account for
dependencies between regressors and error terms.

The trivariate copula-based model in this study controls for unobserved confounders
by three equations: the main equation describing the binary outcome in terms of the two
treatments, where the other two treatments model the contributory factors to the treatments.
On the other hand, the error terms describe the omitted coefficients being not considered
in the model.

On the other hand, endogeneity resulted from incorporating the dependent predictor
as an independent predictor in the main equation. In this study, we considered barrier types
and shoulder width, which were dependent variables in other models, as independent
variables in the crash severity model. To have a vision regarding the process Figure 2 is
provided, which highlight while the standard copula account for correlation across the
error terms, we further extend the models to account for endogeneity by considering the
barrier types and should width as explanatory variables in the main model of crash severity.
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3. Study Continuations

Finally, the study contribution could be summarized as follows:

1. It is expected that the choice of various traffic safety barriers to be confounded
by various policy-making decisions, so here to account for that unseen factor, we
accounted for the correlation across the error terms by copula method.

2. It is also important to account for the endogeneity of various models. For instance,
while copula model could account for the error terms correlations across the models,
considering barrier types and should width, those factors are also expected to be
important predictors for the severity of barriers crashes. So, we accounted for the
endogeneity by incorporating those factors as explanatory variables in the main
model of barriers crash severity.

3. Accounting for the aforementioned points is especially important while studying
traffic barriers crashes due to their confounding effects of policy makers in assigning
various barriers types to specific locations.

4. This one of the earliest study implemeneted the copula technique to account for policy
makers subjectivity in making an especific policy.

4. Data

The dataset used in this study was obtained from Wyoming department of transporta-
tion (WYDOT) through the critical analysis reporting environment (CARE). The data was
filtered to include only crashes occurred due to hitting barriers as their first harmful events.
Due to variation of factors to crashes in multivehicle crashes, also only single vehicle hitting
a barrier considered in this study. Due to low number of cable barriers and significant
variation in the designs of temporary barriers, those barriers were excluded from this study.
The data was also filtered to include only observation in the state’s interstate system.

The traffic barrier geometric characteristics were collected from 4176 miles of roadway
in Wyoming, including various characteristics such as barrier heights, shoulder width, type
of barriers, and offset. Offset is defined as the outer edge of shoulder width to the side of a
barrier. The Wyoming roads map is presented in Figure 3 to provide the summary of the
road sketch in the state.
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Figure 3. Wyoming road maps.

Originally, there were 3 datasets including: crash, traffic, and barriers geometric
characteristic. The crash dataset was filtered to include only those crashes occurred between
2007 and 2016. More recent data was not incorporated due to lack of availability at the
time of analysis. The traffic, and crash dataset were aggregated to the barriers’ geometric
characteristics. The aggregation was implemented by matching highway system, milepost,
and direction of travel. The averages of various explanatory variables were used for
aggregating the crash to the barrier dataset while the total of various crash severity was
considered for aggregation. For instance, the average of having no improper action in the
crashes is 0.131 (see Table 2), that means that the majority of the drivers hitting barriers had
some form of improper driving as this binary predictor is closer to the reference category
of improper driving as zero.
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Table 2. Summary statistics of important trivariate copula-based model.

Attributes Average Variance Min Max

Crash severity injury (vs. PDO *) 0.26 0.194 0 1

Shoulder width, ≤12 * (vs others) 0.02 0.022 0 1

Barrier types, box/W beam * (vs concrete barriers) 0.05 0.046 0 1

Posted speed limit, continuous 71.89 50.921 15 75

AADT, continuous 797 165,023 128 2227

Barrier length, continuous, ft 678 1,393,700 19.7 10,280

Barrier height, continuous, inches 30 8.466 1.200 56.39

Barrier offset, continuous, inches 5.72 10.649 0 28

Negotiating a curve * (vs. others) 0.08 0.072 0 1

Normal driver emotional condition * (vs. others) 0.25 0.124 0 1

Improper drivers’ actions * (vs others) 0.13
0.131 0.078 0 1

Wyoming residence * (vs. others) 0.87 0.168 0 1

Alcohol was involved (vs. others) * 0.04 0.025 0 1

* reference category.

Due to similarities of box beam and W-beam, compared to concrete barriers, those
two types were combined and set as reference as 0. The average of this predictor highlight
that the majority of barriers were non-concrete barriers, mean = 0.048.

The model consists of three equations: barrier crash severity’s equation for identifi-
cation of contributory factors to barriers severity, and two variables being endogenous to
the traffic barrier crash severity: shoulder width and barrier types. A barrier is considered
as hazardous if during the analysis period, it has experienced at least a fatal or severe
crash. Shoulder width is converted into two categories based on the cutting point of 12 feet;
the federal highway administration (FHWA) recommends a minimum shoulder width of
10 feet for the interstate system. However, a shoulder width of 12 feet is recommended
when truck traffic exceeds 250 design hourly volume (DHV) (the design hourly volume
for one direction) [25]. Barrier type is set to be binary, reference category as 0, when the
barriers were box beam or W-beam, and 1 when the barriers were concrete.

5. Results

The results of the trivariate copula would be presented in 4 subsections. The first
two subsections would present the results of two endogenous binary variables of shoulder
width and barrier types. Then it would detail the results of the main model of barrier
crash severity. At the end, it would go over the results of copula dependence of the three
considered models.

5.1. Endogenous Factor of Shoulder Width

The results of this part of the model highlight a policy makers’ decisions for set-
ting a wider shoulder width of 12 feet in the state. The results highlight that it is more
likely to have a wider shoulder width when truck traffic and barrier length increases,
β̂truch tra f f ic = 0.001, β̂barrier length = 0.0004. For locations with higher truck traffic, it is
intuitive to accommodate the truck drivers with wider shoulder width for various purpose
such as pulling over to the shoulder width for mechanical issues, recovery, or resting. The
impact of barrier length also could be dependent on other unseen factors that cause policy
makers to make a decision about shoulder width.
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5.2. Endogenous Factor of Barrier Types

For this model, a binary response was created by considering W-beam and box-beam
as reference category, compared to concrete barriers. The aggregation across two barriers
for a reference category was due to the similarity across those two barriers. As expected,
barrier heights, β̂ = 0.27 and offset, β̂ = −0.395 are two variables that varied across these
two predictors based on the policy design of these two barriers. The results are presented
in Table 3.

Table 3. Results of trivariate copula-based method.

Parameters Estimates Standard Error p-Value

1st copula: shoulder width, treatment

Intercept −2.88 1.479 0.051
Posted speed limit −0.03 0.019 0.090
Truck traffic 0.001 0.0005 0.043
Barrier length 0.0004 6.42 × 10−5 <0.005

2nd copula: Barrier types, treatment

Intercept −5.65 1.779 0.001
Barrier height 0.33 0.051 <0.005
Barrier offset −0.40 0.074 <0.005
Negotiating a curve 11.82 4.465 0.008
Posted speed limit −0.09 0.016 <0.005
Negotiating a curve × Posted speed limit −0.16 0.067 0.017

3rd copula: Crash severity, outcome

intercept 0.43 0.697 0.54
Posted speed limit −0.02 0.010 0.04
No improper action −0.72 0.312 0.02
Driver emotional condition 0.58 0.209 0.01
Residency −0.54 0.177 0.00
Alcohol involvement 1.14 0.434 0.01
Barrier types 1.45 0.520 0.01
Shoulder width 2.33 0.985 0.02

θ12 = 0.586(0.241, 0.783), θ13 = −0.844(−0.977,−0.233), θ23 = −0.403(−0.708,−0.0947)

For instance, concrete barriers have a higher height than other barriers, which could
be seen by direction of this coefficients, β̂ = 0.27. Or it is more likely to assign a higher
offset for w-beam compared with concrete barriers. The interaction terms across important
predictors were considered as well: when there is a possibility of negotiating a curve at a
location with a higher posted speed limit, it is less likely to have a concrete barrier. This is
likely due to the nature of concrete barrier that could not be installed at curves segments.

5.3. Injury Severity Model (Main Model)

In addition to incorporating important variables such as posted speed limit or im-
proper restrain, the two other variables discussed above were used as endogenous variables
in this model. The results indicated that an increase in posted speed limit, β̂ = −0.02,
results in a decrease in the severity of barriers’ crashes. Even though the impact seems to
be counterintuitive, the negative impact of posted speed limit on the severity of barrier
crashes might resulted from the fact that higher posted speed limit is at locations with
less critical geometric characteristics resulting in a reduction of the severity of barriers’
crash severity.

It was found that having no improper driving action, β̂ = −0.72, would result in a
reduction of the severity of barrier crashes compared with the time that drivers showed
some signs of improper driving action such as speeding or driving under influence (DUI).
Numerous studies have been conducted on various aspects of the impacts of speeding or
DUI on the severity of crashes.
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Moving to the variable of drivers’ emotional condition. For this variable, various
emotional drivers’ conditions such as being angry, sad, or irritable at the time of crash were
compared with the time when drivers were observed to be under normal condition. As
expected, being under non normal emotional condition, β̂ = 0.58, increases the likelihood
of severe barriers crashes. The impact highlights the importance of emotional condition on
the severity of crashes. This impact could be attributed to the fact that drivers under normal
conditions, in terms of emotional conditions, asses physical and emotional traffic hazards
accurately resulting in a decrease in crash risk [26]. The results of residency indicated that
residence drivers of Wyoming, β̂ = −0.54 are more prone to the severity of barriers crashes.
The impact might result from the confidence that resident drivers have while driving on
Wyoming roadways. This might be due to distinguished fear to possible hazard on the
roads for confident resident drivers, believing that they are not at risk [27].

Another factor found to be important is alcohol involvement, β̂ = 1.14. The impact is
intuitive, and many studies have been conducted on the importance of the effect of DUI on
the severity of crashes. There is worldwide evidence of higher risks of driver under the
influence in crashes and crash severities. Alcohol usage significantly impact the driving
skills [28].

Even though the impacts of the other two models were evaluated through the correla-
tion across the error terms, the factors of barrier types and shoulder width considered in
the third model as exogenous variables. Barrier type variable highlights the impact of the
concrete barriers β̂ = 1.45 increase the severity of crashes compared with other barriers.
The impacts of the barriers are intuitive and related to the capacity of energy absorption of
W-beam barriers compared with concrete barriers, lacking flexibility and being rigid.

Moving to the factor of shoulder width β̂ = 2.33. The results indicated that a wider
shoulder width of 12 feet increase the severity of barrier crashes. The impact was attributed
to the fact that vehicles going off the roadway need to be stopped by barriers as soon as
possible, and before going over a wider shoulder width [29].

5.4. Copula Dependence Parameters

The copula dependence parameters, θ, highlights the presence of unobservable factors.
If the unobservable factors impacting the outcomes were uncorrelated, having all the
models in the framework simultaneously would be unnecessary. The copula could account
for dependence between the two treatments and the outcomes. The large and significant de-
pendence parameters across the models highlight that there are strong negative association
between the unstructured terms of the model parameters (see the bottom of Table 3).

Ignoring the dependencies might result in erroneous parameters’ estimates. Account-
ing for the correlated models is important as it could be hypothesized that concrete barriers
are installed at the locations with higher crash frequency or higher crash severity such
as median barriers. On the other hand, wider shoulder width is installed at the locations
where wider shoulder width was necessitated by policy makers.

Even though all the studies in the literature, along with this study highlight the impact
of concrete barriers on the severity of crashes, it is worth investigating the relationship
between unseen factors across these two models. The results of copula dependency factor
indicated that unseen factors that install concrete barrier at specific locations, at the same
time they decrease the severity of barrier crashes. This result is contrary to the impact of
seen factors of barrier types on barrier crash severity. This could be related to the decision
being made by the WYDOT on installation of concrete barriers at right locations, which
consequently reduce the severity of barriers crashes.

Moving to the relationship between error terms of shoulder width model and barriers’
crash severity, θ13 = −0.844. The results indicated that while the main effect of wider
shoulder width increase the likelihood of severe barriers’ crashes, there is a negative
correlation across wider shoulder width and barriers crash severity error terms. In other
words, the unseen factors might be related to policy makers that increase the width of
shoulder at the same time decrease the severity of barriers’ crashes.
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Moving to the last copula dependence between shoulder width and barrier types,
θ12 = 0.586. The results indicated that unseen factors that install concrete barrier, they
also increase the shoulder width to their maximum values. This highlights the designs of
concrete barriers associated with higher shoulder width. It should be emphasized that the
unseen factors should have been part of the models’ predictors but due that fact that they
have been omitted, they have become part of the model’s error terms

6. Conclusions

Hitting a fixed objects crashes have been considered as one of the leading causes of
roads’ fatalities around the world. Traffic barriers have been installed with an objective
of mitigating the severity of those crashes. However, traffic barriers still account for a
significant proportion of severe crashes. Extensive effort has been made in identification of
contributory factors to those types of crashes with the hope that the severity of barriers’
crashes would be reduced. However, despite many efforts being made regarding identifi-
cation, and studying the factors to barriers crashes, none of the past studies considered the
error terms’ correlations across endogenous variables and barrier crash severity.

Not addressing the methods’ shortcoming, has been justified by arguing that those
unseen factors cannot be measured, or as those unobserved factors would be stored in error
terms, no significant issues would be raised. However, there is a considerable chance that
the error terms of those endogenous variables, and outcome models are correlated. Not
accounting for those unseen factors through considering error terms’ correlations might
result in bias or erroneous modeling results.

That is especially important for traffic barrier analysis as it is expected that there are
unseen factors that impact the decision of various treatments, and thus those unseen factors
are expected to end up in error terms. It is expected that a significant portion of error term
resulted from the policy makers in the state in designing various aspects of roadway safety
features such as allocating specific barrier types or shoulder width are based on traffic or
other safety criteria.

Copulas are general tools for describing dependence structure by considering correla-
tions across separate incorporated equations. In this study, a unified likelihood function
framework was used to join different marginal models. The method accounts for pairwise
dependence across models’ residuals, given the explanatory variables. Three joint models
were considered and estimated using copula-based method.

Two treatment models along with an outcome model were considered in this study.
Here the selection of various barriers or various shoulder width settings, as treatments, are
biased toward the safety of roadways or various policy makers’ objectives. This selection
bias which has been often ignored, cannot be measured by traditional statistical method and
termed as endogenous selection bias. Ignoring the selection bias could result in erroneous
results, especially when high correlations exist.

While Archimedean copulas have been extensively employed on bivariate problems,
there are some limitations when it comes to their applications for higher dimensions
copulas, e.g., trivariate copula. Thus, in this study Gaussian copula were implemented to
accommodate trivariate copula methods.

The Gaussian copula was selected over Archimedean copulas due to the fact that the
Archimedean copulas suffer from inflexible structure in higher dimensions. The Gaussian
copula implemented in this study to conveniently express the endogeneity in the form of
correlation matrix of a multivariate Gaussian distribution [30].

While similar to the previous studies, the results highlight, for instance, concrete
barriers, or wider shoulder width increase the odds of severe barrier crashes, the results of
copula dependencies indicated that there are negative, large, and significant correlation
across the error terms of models. This justifies the policy makers’ decision in installation of
concrete barriers at specific locations or setting up a wider shoulder width in reduction of
the barriers’ crash severity.
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In other words, the WYDOT decisions on barrier type selection or decision on the
width of shoulder width are in line with the safety of Wyoming interstate system. Account-
ing for correlations of error terms is important in this study especially because there were
strong and significant correlations between regressors, and outcome models’ error terms.

More studies are needed to take into account endogeneity issue while analyzing the
safety aspects of various treatments. That is because it is expected those choices to be
influences by the safety of those specific locations or limitation of installation of different
types of safety measures for a unique location. Our results provide the WYDOT with the
assurance that despite the highlighted contributary factors of concrete barriers on higher
severity of barriers, their choice of installation of concrete barriers negatively correlate with
severity of barriers crashes. It would be interesting to have more available inputs regarding
the chooses for the selection of various barrier types or shoulder width. In that way, this
study would have been able to confirm the findings with the real justification for making a
decision to set up various barrier types or should width. Future studies are encouraged to
consider and evaluate those factors in their analyses.
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