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Abstract: Winter conditions create hazardous roads that municipalities work hard to maintain to
ensure the safety of the travelling public. Targeting their efforts with effective network screening
will help transportation managers address these problems. In our recent efforts, regression kriging
was found to be a viable and effective network screening methodology. However, the study was
constrained by its limited spatial extent making the reported results less conclusive and transferrable.
In addition, our previous work implemented what has long been adopted in most of conventional
studies—the Euclidean distance; however, use of the road network distance would, intuitively,
result in further improving kriging estimates, especially when dealing with transportation problems.
Therefore, this study improves upon our previous efforts by developing a more advanced kriging
model; namely, network regression kriging using the entire state of Iowa with the significantly
expanded road network. The transferability of the developed models is also explored to investigate its
generalization potential. The findings based on various statistical measures suggest that the enhanced
kriging model vastly improved the estimation performance at the cost of greater computational
complexity and run times. The study also suggests that regional semivariograms better represent the
true nature of the local variances, though an overall model may still function adequately if higher
fidelity is not required.

Keywords: regression kriging (RK); road network distances; network screening; geostatistics; second
order stationarity assumption

1. Introduction and Background

Winter conditions (WC) create hazardous winter road conditions (WRC) that munic-
ipalities must contend with to ensure the safety of their road users. Snow and ice can
buildup upon the road surface causing slippery conditions increasing the risk of collisions
to the travelling public. In the United States, around 16% of traffic fatalities occur from
collisions that were weather induced [1] while, in Canada, the Royal Canadian Mounted
Police (RCMP) found that, in 2017, over 14,000 collisions occurred in December alone [2].
Norrman et al. (2000) was one of the first to quantify the relationship between road sur-
face conditions and traffic safety, ultimately finding that between 50% and 70% of winter
collisions are attributed to slippery road conditions [3].

Heqimi (2016) found, in their thesis, that, as snowfall totals increase, so do the frequen-
cies of crashes on freeways [4]. Asano and Hirasawa (2003) determined that the majority of
crashes in their region of Japan occurred between −5 and −3 ◦C, temperatures that favor
freeze-thaw cycles that can form slippery conditions and even black ice [5]. Andersson
(2010) found similar results noting that these temperatures are conducive to freezing rain
events [6].

Municipalities have a duty of care to their citizens; thus, to make the roads safer,
they undertake winter road maintenance (WRM) activities, such as plowing, salting, and
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abrasive dispersions. This process is time consuming, arduous, and expensive, and delays
in response could result in unnecessary collisions. They strive to make efficient use
of their resources, usually using subjective historical experiences of the planners and
operators. Alternatively, targeting their efforts with effective network screening can help
transportation managers address these problems objectively. Network screening is the first
and most important step within the safety management cycle and is used to identify sites
that should be the focus for potential assessment or treatments [7].

There are many established methods for network screening, such as the empirical
Bayes method and the use of safety performance functions (SPF), but they become cumber-
some to implement over a large spatial scale. These methods also suffer from site selection
and categorization biases that can potentially influence the estimates [8]. As such, there
has been a growing interest into Geostatistics as a possible replacement for these methods,
especially for applications over a large spatial area. Of the various methods available,
kriging has been found to be an extremely power predictor for transportation problems.

Thakali et al. (2015) showed how well ordinary kriging (OK) performed over the
kernel density estimation (KDE) method [9]. Universal kriging (UK) was introduced as
a method for estimating the annual average daily traffic in Texas [10] and to estimate
the ridership on select New York subway lines [11]. Gu et al. (2018) demonstrated the
effectiveness of regression kriging (RK) to estimate the winter road surface temperatures
(RST) on Highway 16, in Alberta Canada [12]. The limitations of these studies lies in
the road network expanse and time scale. These studies mainly focused their efforts on
a single stretch of road or were limited to a single year’s worth of data. This limits the
conclusiveness of the results as there are inherent biases and missed trends that come with
using a single year or a single stretch of highway.

In the quickly expanding field of machine learning (ML) and artificial intelligence
(AI), it has been explored as a method that can make predictions and estimations with-
out the need for assumptions and predefined relationships that are required in statistical
methods. Various neural networks were implemented to model crash frequencies and
severities [13–15]. Other methods used to model crash severities include the implemen-
tation of decision trees by Abellán et al. (2013) [16] and genetic algorithms by Das &
Abdel-Aty (2010) [17].

However, all these methods are computationally laborious and intensive as they are
often self-recursive in nature requiring many iterations before terminating. Another limit-
ing characteristic of ML and AI is their black-box nature whereby the complete analytical
process is not fully open to scrutiny or examination, and replication is often imprecise. As
with the more established methods, these previous studies were also limited in spatial
and temporal scales, and, specifically, these studies did not focus on determining winter
collision behaviours.

Additionally, incidences or events that occur on the road network would have the
distance between them measured not by the Euclidean distance, but by the distance
via the road network. Previous studies have looked into using network distances for
transportation problems, such as Selby and Kockelman’s (2013) study where they estimated
AADT on major highways throughout Texas using Universal Kriging (UK) [10]. Then, in
the study by Zhang and Wang (2014), they also considered the use of network distance with
kriging when studying ridership on New York’s subway lines [11]. Both studies provided
persuasive, but not conclusive, results that showed network distances can improve model
performances. Further limitations of the two studies stem from using only one year’s
worth of data, and being limited to very select networks.

Our previous study sought to address the aforementioned limitations of previous
studies by applying regression kriging to a larger scale, that being a quadrant of Iowa, and
using five years’ worth of data. Ultimately, it was shown that Regression Kriging (RK) is a
viable and effective network screening methodology, though it was still limited in scope
by only focusing the method to that one quadrant of Iowa [18]. However, by increasing
the spatial scope, the spatial transferability of the variance, known as the second order
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stationarity assumption (SOSA), must be checked, which was omitted. The premise for
checking the SOSA is to see if the underlying spatial structure can be represented by a
single semivariogram model, or if regional semivariograms are more appropriate [19]. It is
unfortunate that, outside of textbooks, this assumption is rarely checked.

Another limitation of the initial study and existing literature on this very topic was
bound by how geostatistics typically defines separation distances between points. Within
kriging, the development of the semivariogram models uses the Euclidean distances to
model how the semivariance changes as separation distances increase. However, for
transportation problems, the true distance between points is bound by the road network,
which is not always a straight line. Figure 1 best illustrates this concept with two points
within a residential block in the City of Des Moines.
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Figure 1. Euclidean distances versus road network distances.

With considerations into the limitations of the previous studies and our past efforts,
the primary purpose of this paper is to enhance and expand the use of Regression Kriging
by incorporating network distances and to examine the underlying spatial structure to
conduct a SOSA analysis to check if a single spatial model can sufficiently represent the
whole region, or if individual models are more appropriate. This study will also be using
a much larger and comprehensive data set that spans multiple years to provide more
conclusive results.

The hypothesis being tested is whether or not network distance improves the outcome
of regression kriging estimate values. The evaluation criteria are based on five (5) statistical
measures namely the mean squared error, mean standard error, average standard error,
root mean squared error, and the root mean squared standardized error. The paper is
structured as follows: Section 2 explains the fundamentals of regression kriging; Section 3
describes the study area, the data, and subsequent pre-processing required; Section 4
outlines the methodology undertaken in great detail; Section 5 reports and discusses the
results and findings; and Section 6 summarizes the findings, conclusions that can be drawn,
shortcomings, and potential future research directions.

2. Regression Kriging Fundamentals

Regression kriging (RK) has gained notoriety for being a good estimator within geo-
statistics. Geostatistics is a broad term that incorporates many different numerical methods
that are used to characterize spatial attributes [19] to analyze spatially or temporally au-
tocorrelated data [20]. Autocorrelation is defined as data that is correlated with itself,
usually based on physical or temporal separation measures (i.e., distance or time). As one
of the renowned variants of kriging, RK has the ability to incorporate external covariates
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into the kriging analysis. It incorporates regression modelling to construct a regression
function that models the local mean as a fitted regression model. This, in turn, improves
the estimation variance results providing a higher level of confidence in the interpolated
estimates. Figure 2 provides a visual example of how regression kriging functions.
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Figure 2. Graphical example of regression kriging.

At its core, the spatial structure of the data will dictate the outcome of the interpolation
process. This structure is defined by the semivariogram plot whereby the known data
points are plotted, analyzed, and used to find an optimal semivariogram function. The
semivariogram is a plot that shows how the level of dissimilarity between pairs of points
change as the separation distance between them increases. This change over space provides
three important values, namely the nugget, sill, and range that are used to calculate the
kriging weights for making an estimate at an unmeasured location. Figure 3 illustrates a
typical semivariogram and its various components.
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The nugget represents the localized measurement error and should be theoretically
zero. However, no measurement is ever perfect due to human error, equipment accuracy,
and imperfect recordings and is exhibited by the y-intercept in the plot. The sill is the
maximal value of dissimilarity at which point the semivariance between pairs of points is
no longer considered significant, and the range is the distance value at which this point
is reached. The semivariogram can also be used to check the second order stationarity
assumption (SOSA). If the variance or spatial structure is truly uniform, or at least very
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similar, throughout, then the semivariogram from region to region should be similar to
each other. Thus, through visual and numerical comparisons, the SOSA can be checked.

The experimental semivariogram is calculated from the measured data and then a
mathematical model is iteratively used to determine the curve of best fit. There have been
many models that have been found for this process such as the cubic, power, sine hole, and
pentaspherical; however, in practice, the most commonly used ones are the exponential,
Gaussian, and spherical models as shown in Equations (1)–(3), respectively [19,21]. The
semivariogram function selected is used within the weighting calculations that follows.

Exp(h) = C
(

1− e−
3h
a

)
(1)

Gau(h) = C
(

1− e−3( h
a )

2
)

(2)

Sph(h) =

 C
(

3h
2a −

1
2 ·
(

h
a

)3
)

0 ≤ |h| ≤ |a|

C |a| ≤ |h|

 (3)

Regression kriging follows the core tenants of kriging by using utilizing a deterministic
component to reduce the uncertainty of the stochastic estimation. Mathematically, it takes
the core form of Equation (4) with the estimator taking the form of Equation (5).

Z(x) = m(x) + ε(x) (4)

Ẑ(x0) =
n

∑
i=1

λi Z(xi) + [1−
n

∑
i=1

λi]µ (5)

where Ẑ(x0) is the estimator at the unmeasured location x0, xi are values at measured
locations, and λi are the weights for the kriging estimator that minimizes the variance
of the estimator (estimation variance) and the mean squared error (MSqE). Within RK,
the deterministic component is modified by the regression analysis. Therefore, when
combining the MLR function generated via the regression analysis, it can be expanded into
Equation (6).

ẑ(x0) =
n

∑
i=0

β̂i·qi(x0) +
n

∑
i=0

λi(x0)·r(xi) (6)

where β̂i are the model coefficients, qi(x0) are the auxiliary variables, λi(x0) are the covari-
ance weights, and r(xi) are the regression residuals. As noted, the goal is to minimize the
estimation variance, which is represented by Equation (7).

σ2(x0) = 2
n

∑
i=1

λi γ(xi, x0)−
n

∑
i=1

n

∑
j=1

λiλjγ
(
xi, xj

)
(7)

where γ(xi, x0) is the semivariogram function selected from the semivariogram analysis
that was conducted earlier. From looking at Equations (5)–(7), it becomes clear that the
weighting values play a pivotal role in the process. The weights are found by solving
an optimization problem with an objective function that is represented by a Lagrangian
function as exemplified in Equation (8) [19].

L(λ1, λ2, . . . , λn; µ) = σ2(x0) + 2µ

(
n

∑
i=1

λi − 1

)
(8)
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With the Lagrangian function defined, then the weights will be the solution to the
system of covariance equations as shown in Equation (9).

n
∑

i=1
λiCov(xi, x1) + µ = Cov(x1, x0)

n
∑

i=1
λiCov(xi, x2) + µ = Cov(x2, x0)

. . .
n
∑

i=1
λiCov(xi, xn) + µ = Cov(xn, x0)


(9)

Subject to
n

∑
i=1

λi = 1

Within Equation (9) is where the separation distance between points is used and,
depending on the value, it can change the weightings significantly. This is also reflected in
the semivariogram plot where the covariance is plotted against the separation distances
between each pair. It is here where the use of network distances will affect how the semivar-
iogram plot will change and, in turn, affect the values of the weights. Furthermore, network
distances will affect the interpolation of estimates as this will also be reflected in the dis-
tances between the known and unknown locations. Altogether, with a more representative
separation distance, the estimates should more accurate, the inherent measurement error
(or nugget) should be reduced, and the estimation variances should improve.

3. Study Area and Data

The state of Iowa was chosen for its openly accessible and non-proprietary format
datasets, relatively flat and consistent topography, distinct winter weather conditions,
and their weather station network. Road, traffic, and collision data was sourced from the
Iowa Department of Transportation’s (DOT) Open Database that is made freely available
online [22]. The environmental, road surface, and weather data was obtained through the
Iowa Mesonet database as maintained by the Iowa State University [23] and is also freely
available online.

The study area is the state of Iowa and its divided sub regions as shown in Figure 4
totaling six (6) zones. All of the zones will be used in this study to show the performance
of regression kriging (RK) while simultaneously providing the necessary analyses for
conducting the second order stationarity assumption (SOSA) or model transferability
analysis. Using ArcMAP by ESRI, the working coordinate system used was NAD83 UTM
15N that projected the GIS data into metric values for measurements and calculations.

The study period spans five winter seasons, including the months of October to March.
This longer time range is used to reduce the effects of outliers and the chance of biased data.
This also will reduce the effects of the phenomena known as regression to the mean (RTM)
whereby abnormally high or low values of random samples will trend to the mean over
time [24]. As defined by the National Oceanic and Atmospheric Administration (NOAA)
for the state of Iowa [25], the winter season are the months of December to February
and shoulder, or transitional months, are October, November, and March, which also
tend to experience winter events. The five most recent winter seasons from the data set
encompasses the 2013/14 to 2017/18 seasons.
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3.1. Meteorological and Road Conditions Data

The meteorological data used are measureable quantitative seasonal averages for the
study area. Values such as snow fall amounts, air temperatures, road surface temperatures
(RST), and road condition warnings provide a measure of winter variables that can be
attributed to WC ratio results. There are many ways to obtain these values, but one of
the more effective sources are from Road Weather Information Systems (RWIS) as they
provide a near-instantaneous and continuous record of weather and road conditions at
their location.

However, as point measurements they do not provide sufficient information to all
roads and areas natively; thus, these values need to be interpolated to ensure complete
statewide coverage. As found in previous transportation and environmental studies,
the use of kriging is an effective and efficient method for spatially interpolating road
surface and environmental data for widespread coverage [12,18,26,27]. Therefore, following
their methods, ordinary kriging was used to interpolate these values to ensure statewide
coverage for all road segments. Figure 5 shows the locations of the NWS COOP and RWIS
stations.

Following the original study, the covariates include the annual average daily traffic
volumes (AADT), road surface temperatures (RST), seasonal snowfall averages, daily
air temperatures (average, max, and min), and the road surface index surrogate of road
warning messages (red, orange, and yellow classifications) [18]. Furthermore, additional
road characteristics, such as the posted speed limits and the number of lanes, were also
incorporated into the regression analysis. Table 1 provides the summary statistics for the
covariates used.
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Table 1. Summary statistics for the environmental covariates.

Avg Mthly
Road Surf

Temp

Avg
Mthly

Air Temp

Avg Mthly
Red

Warnings

Avg Mthly
Orange

Warnings

Avg Mthly
Yellow

Warnings
Snowfall

Totals
Avg Daily

High Temp
Avg Daily
Low Temp

UNIT ◦C ◦C Count Count Count cm ◦C ◦C
MIN −7.9 −8.5 0 0 0 0 −10.2 −21.6

MEAN 2.7 1.0 100 875 30 5.1 5.4 −5.5
MAX 14.9 14.8 990 2481 213 34.7 21.5 10.7

STD DEV 6.1 6.2 133 632 33 5.6 7.5 6.8
STATION TYPE RWIS NWS COOP

No. OF
STATIONS 33 128

3.2. Road Network

The road network used in this study encompasses all major interstate highways,
principal arterial freeways and expressways, minor arterial, and major collector roads.
The quality of the road data is inconsistent, and the lengths of roads can vary greatly. To
smooth out the data distribution, it is important that the roads are segmented into lengths
that are no longer than 5.0 km. Road lengths may be shorter as intersections are natural
break points and within urban areas, the distance between intersections are often less than
5.0 km.

The complete network connectivity needs to be checked to ensure that there are no
gaps in the GIS road files that would inhibit a network trace when computing the network
distance between any two points, an extremely time consuming, but necessary process. In
total, over 46,000 km of road was used for this study. Figure 6 shows all the roads used
in this study. Both the red and blue roads were used to conduct the expanded RK study
and its SOSA analysis, while the road roads within the Northcentral region were used to
conduct the Network to Euclidean distance comparison. The red colored roads are roads
classified as federal functions 1 to 4, while the blue roads are classified as federal function 5.

For the portion of the study that seeks to enhance RK by utilizing network distances
over Euclidean distances, the study area will be limited to the Northcentral zone as shown
in Figure 4c. Additionally, the road used for this investigation was limited to the red
roads from Figure 6 within this area. This was done to accommodate the limitations in
computing power of the workstation. This is because network distance kriging requires the
shortest distance between every pairing of data points and running an origin-destination
(OD) algorithm for all points can become computationally intensive as the OD matrix of
distances will grow quadratically as more points are added. Therefore, to reduce the data
size for this process, the study area was reduced to this zone only.
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3.3. Collision Data

To properly relate winter collisions to the various environmental and road covariates,
the dependent variable that will be used is the Winter Collision (WC) ratio and is the ratio
of collisions that occurred under winter conditions to all collisions that have occurred
on the road segment. This relative collision valuation follows Khan et al. (2008) study
and allows for a relationship between weather/condition elements that may influence
collisions be developed [28]. As before, a winter collision is defined as a collision that had
a snowing/snowy, icy, or slushy road or environmental conditions reported at the time of
the collision. Collisions are also random events that are independent of each other; thus, it
is important to have a sufficiently large sample size to minimize biases and outlier events.

The dataset obtained from the Iowa DOT source mentioned above included all colli-
sions that occurred from January 2008 to June 2018. This was then truncated so that only
collisions that occurred within the timeframes and on the selected roads were included.
Figure 7 shows all the collisions used in this study totalled 111,699 reported collision events.
Table 2 provides a summary of the collisions used in the study as provided by the Iowa
DOT open database.
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Table 2. Seasonal collision statistics.

Seasonal
Collision
Statistics

2013–2014
Season

2014–2015
Season

2015–2016
Season

2016–2017
Season

2017–2018
Season

5-Year
Seasonal

Totals

5-Year
Seasonal
Average

Seasonal
Std. Dev

Total Collisions 22,178 21,529 22,821 22,264 22,907 111,699 22,340 557.4
Total Winter

Collisions 7452 4911 4440 3912 5052 25,767 5153 1360.4

Winter Collision
Proportion 33.6% 22.8% 19.5% 17.6% 22.1% 23.1% 23.1% 6.2%

Total Fatal
Collisions 95 106 101 127 93 522 104 13.6

Total Major
Injury Collisions 422 401 390 415 357 1985 397 25.6

Total Minor
Injury Collisions 1744 1541 1700 1694 1673 8352 1670 76.8

Total Possible
Injury and PDO

Collisions
19,917 19,481 20,630 20,028 20,784 100,840 20,168 535.6

Intuitively, the majority of collisions shown in Figure 7 are mostly centered on major
urban centers and major roads. This trend on location suggests that these locations may
benefit the most from WRM activities. However, given the size of the network that needs to
be serviced, any improvement in the planning stages will result in a higher level of service
to their citizens.

It is important to discuss the significant drops in WC ratios for the 2015–2016 and
2016–2017 winter seasons. NOAA records for Iowa show that these particular winter
seasons experienced temperatures that were close to 4.0 ◦C (6.0 ◦F) above normal overall,
which also resulted in the snowfall totals being below normal by up to 35.5 cm (14 inches)
in 2015–2016 and 20 cm (8 inches) in 2016–2017 [29,30]. Given the propensity of winter
collisions being heavily influenced by winter conditions, the milder winters naturally
resulted in an overall lower Winter Collision Ratio.

4. Methodology

This section outlines the methodology employed for this study. With the vast amount
of data used, it was necessary to utilize software, such as ESRI’s ArcGIS as our Graphical
Information Systems (GIS) platform [31] and Microsoft Excel for tables and descriptive
statistics [32]. For the calculations undertaken, R and its gstat package [33,34], and Python
were primarily used [35]. The overall workflow for this study is outlined in Figure 8.

In general, the statewide data processing and regression analysis is first done to obtain
the residuals. Then, the regression kriging estimates are calculated and evaluated. If the
results are accurate and reliable, and then a second order stationarity assumption check is
conducted to check model transferability. Finally, the enhancement of RK is explored using
network distances.

4.1. Data Requirements

To ensure accuracy and to reduce biases, the quality of the datasets first needs to be
ensured. As such, erroneous or missing data points were scrutinized for completeness
and outlier frequency. For example, within the Iowa collision records dataset, reported
collisions with no known coordinates were given a default location outside of the state to
the southwest as a placeholder and were subsequently removed as they were not on a road
or within the state. Meteorological and environmental data relies heavily on the collection
station to be functioning properly and continuously.

As such, stations that were not operational or had missing data that exceeded 30% of
the dataset for that station were subsequently omitted from the analysis to maintain a high
level of data quality while also ensuring sufficient quantity for analysis and interpolation.
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4.2. Spatial Interpolation via Regression Kriging (RK)

The overall methodological RK workflow is summarized in Figure 9 below. Detailed
descriptions of each step will follow throughout this section.

The majority of the results are obtained following the RK process detailed in our
previous study [18] but now expanded to the state and regional study areas and with
higher data densities. All relevant collisions were categorized as a winter collision or
not and then mapped to the appropriate road segments. The environmental and road
surface conditions were spatially interpolated using ordinary kriging into a 500 m × 500 m
raster grid, which was then used to project their average values onto the overlapping road
segments. Since kriging works on point-based data points, all road segments were reduced
to their midpoints for regression analysis and kriging interpolation.

A linear regression analysis is first done to determine which covariates are significant
for the region or not. Statistically relevant covariates are determined by their p-value at the
95% confidence interval (α = 0.05). In the regression process, it is important to ensure that
no multicollinearity is present between covariates; thus, a Variance Inflation Factor (VIF)
analysis is completed during the regression analysis.
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A covariate with a VIF value greater than 10 shows high collinearity with at least one
other covariate and, thus, is flagged for removal from the model [36]. With the regression
models generated, the residuals are calculated, and the semivariogram plot is constructed
and analyzed for each region and situations (e.g., network vs. Euclidean distances). The
semivariogram values are then used to iteratively solve the systems of covariance equations
providing the weighting values to make an estimate for each unmeasured location using
the surrounding measured locations. Once all the estimates have been calculated, the
model’s performance is evaluated using cross validation.

Cross validation is a typical method used to evaluate the accuracy of the method and
model being employed. For this study, a Leave-One-Out (LOO) cross validation method
way employed where iteratively, each known data point was estimated as an unknown
location by leaving it out of the dataset, generating the kriging model with the remaining
data, and then estimating the value at that location [37]. By this process, a complete list of
estimates was created, which will provide measures of estimation accuracy and reliability.
The comparison statistics used, their formulation, ideal values, and interpretations are
shown in Table 3 below.
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Table 3. Statistical measures for model performance.

Name Formulation Ideal Value

Mean Squared Error MSqE = 1
n

n
∑

i=1

[
Ẑ(xi)− Z(xi)

]2 Close to 0

Mean Standardized Error MStdE = 1
n

n
∑

i=1

[
Ẑ(xi)−Z(xi)

σ̂2(xi)

]
Close to 0

Root Mean Squared Error RMSE =

√
1
n

n
∑

i=1

[
Ẑ(xi)− Z(xi)

]2 The smaller the value,
the better the model

Average Standardized Error ASE =

√
1
n

n
∑

i=1
σ̂2(xi)

Close to RMSE

Root Mean Squared
Standardized Error RMSSE =

√
1
n

n
∑

i=1

[
Ẑ(xi)−Z(xi)

σ̂2(xi)

]2 Close to 1

The mean squared error (MSqE) and mean standard error (MStdE) are often used to
measure the quality of an estimator, and the closer it is to zero (0), the better the estimator
is. The root mean squared error (RMSE) is used to measure the accuracy of a model, and
the smaller the value, the better the model is. The average standard error (ASE) is the
average standard deviation and should be close to the RMSE value. The root mean squared
standardized error (RMSSE) is used to examine the variability of the estimations (under
or overestimations) and should ideally be close to 1. If the RMSSE is greater than 1, the
variability of the predictions are underestimated, and vice versa [31]. By these five metrics,
the various kriging models can be confidently compared against each other.

Typically, for smaller regions, this is where the process ends. However, when working
with such a large scale the SOSA, or transferability of the variance, needs to be examined
to ascertain if a single semivariogram model adequately applies to the whole region. Two
comparative methods will be used to check the SOSA. The simplest and most basic method
would be comparing the semivariogram results for each region. First, a visual inspection
of the semivariogram plot is conducted as intuitively, if the assumption holds and the
variance structure is consistent throughout, then the shape, scale, and behaviour should be
very similar from region to region.

Likewise, the three core values from each semivariogram, namely the nugget, sill,
and range, can also be used as a comparative metric. Furthermore, the five statistical
measures will also be used to compare model performance for both the SOSA check and
the enhancement of RK using network distances.

5. Results and Discussion
5.1. Development of A Statewide Regression Kriging Model

The regression analysis across the various regions resulted in some foreshadowing
for the remaining results. Table 4 shows the results from backward stepwise selection
regression and VIF analysis. The results are quite apparent that the relevant covariates are
not consistent throughout the state and sub regions.

The resulting low R2 values from the MLR analysis shows that these variables alone
cannot be used to estimate WC ratios. Instead the minor relationships that were found can
be used within kriging as a method for detrending. Though each model has a very weak R2

value, some information can still be obtained. Variables with a positive coefficients show a
positive effect on WC ratios, and vice versa. In this case, the speed limit, ln(AADT), and
orange stage warnings will increase the WC ratio, which follows the findings of previous
collision studies investigating traffic behaviour [6,38–40].

Likewise, an increase in the number of lanes will reduce the WC ratios as more space
tends to reduce collisions, reflected by the negative sign. The magnitudes of the coefficients
are small as they need to translate the values to be in-between 0 and 1, but the signs of them
are quite intuitive as discussed. With the regression models in hand, the semivariogram can
be generated to model the spatial trend resulting in Figure 10. With the semivariogram, a
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semivariogram function was then chosen, in this case, the spherical function, to determine
the weighting values by solving the system of covariance equations for each unmeasured
location point. This culminates in Figure 11, the final hotspot heat map generated via the
Regression Kriging process.

Table 4. Regression coefficients for each region.

Coefficient Values Iowa State Northwest Northeast Southwest Southeast North Central

Number of Data Points 19,591 3257 6284 2565 7504 1090
Adjusted R2 0.0355 0.0190 0.0389 0.0390 0.0182 0.0403

Intercept 0.1182 −0.0839 −0.4897 −0.1691 0.0521 −0.5572
Number of Lanes −0.0254 na −0.0217 −0.0237 −0.0305 −0.0475

Speed Limit 0.0013 0.0015 0.0009 0.0020 0.0009 na
ln(AADT) 0.0165 na 0.0258 0.0220 0.0205 0.0470

RST −0.0418 na na na na na
Avg. Air Temp 0.0397 na na na −0.0300 na

Seasonal Snowfall Total na 0.0558 0.0226 na na na
No. of Red Warnings na −0.0004 0.0001 0.0014 na 0.0002

No. of Orange Warnings 0.00001 na 0.0002 0.0003 na 0.0005
No. of Yellow Warnings 0.0009 na 0.0040 −0.0074 0.0010 na
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The resulting semivariogram model, the heat map of the WC ratio distribution, and
the values of the statistical measures all coincide with our preceding smaller scaled study
that only focused on the Northeast quadrant of Iowa. In that previous study, RK was
shown to be an effective prediction tool over a larger spatial extent, thus, showing how
powerful a tool RK can be [18].

5.2. Validation of Model Transferability (Second Order Stationarity Assumption)

The results of the statewide estimates are strong; however, having a singular model
represent an entire state must be checked. A good first step to checking the SOSA would
be to visually compare the semivariograms between the regions. Following the same proce-
dure used to generate the overall statewide estimates, the semivariograms, estimates, and
statistical measures were iteratively generated. If the variance is transferrable throughout,
the semivariogram and its values should be similar to each other. Of the three common
functional semivariograms, the spherical model is used, as it was found in Wong (2021)
to be the overall better performing function of the three [41]. Figure 12 shows all the
semivariograms for each zone using the spherical model.
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From Figure 12, the shape of the semivariogram and the scales of the axis vary
considerably from region to region. This strongly implies that the second order stationarity
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assumption does not hold when applying a single model to the whole state providing an
indicator that further investigation is required. To do this, the semivariogram values and
results from the cross validation analysis were calculated to further show how each region
differs from the state significantly.

The numerical values shown within each plot in Figure 12 provides a clearer look into
the differences that range between the six regions. The differences are the greatest between
the northern and southern regions of the state but are smaller between each northern region
and southern regions. From the statistical measures, the models for the overall state and
the northern regions performs much better than in the southern regions suggesting that
a single regional model may not accurately represent all regions appropriately showing
that the second order stationarity assumption (SOSA) does not hold. However, given the
performance of the overall state model, it can still be used as a more generalized model
such as the Figure 11 estimation map.

The differences between regions could be a result of population density differences
between the north and south, where the north is mostly rural while the southern half
has major cities, such as Des Moines, Cedar Rapids, and Davenport. There could also be
influential localized factors or features that are either not captured or averaged out in the
statewide model, but become prominent on a smaller scale, be it for better or worse. With
that in mind, given the performance of the southern region models, the overall state model
would be a good substitute. These results also provide further support to the findings from
the previous study showing that regression kriging performs well as an estimator based on
the results of the statistical measures.

5.3. Network Regression Kriging Using Road Distances

Knowing that regional models perform well, an examination into the enhancement of
RK using network distances is focused on the northcentral region. Transportation events
occur on the road network and the distance between any two events are bound by the
network. Therefore, to improve upon the estimates, the distance values to be used in the
kriging process should intuitively be the network distance. Here, RK was completed using
both Euclidean and network distances and then compared.

For comparisons between using different distance measures, all three of the common
semivariogram models were used along with their semivariograms. Cross validation was
done for each model, and the five statistical measures were calculated. Figure 13a,b are
the hotspot plots for both Euclidean and Network distances, respectively, along with the
results of the cross validation and significant semivariogram values.

The resulting plots and values from Figure 13 show that network distances improve
the model performance, estimates, and more importantly the estimation variances. The
reduction in nugget values indicates that there is less inherent measurement error present
within the model, and the increased ranges means the spatial effectiveness of the model
is larger before it becomes no longer effective. The MSqE and RMSE have lower values
showing a reduction in the errors, and the RMSSE improved to near 1.0, suggesting that it
now accounts for more of the variability of the model estimates.

Finally, the ASE values are lower than, but much closer to, the RMSE values meaning
the model now overestimates the outcomes, but not to the extent that it underestimated
it. By all accounts, network distances improve the RK model performance at the cost of
computational complexity and run times as even this simplified analysis required 3 h of
run time.

These results fall in line with the studies done by Selby and Kockelman (2013) and
by Zhang and Wang (2014) when they applied network distances to their transportation
problems. As mentioned in the introduction, their studies were very limited in size, scope,
and timeline; thus, their results were suggestive but not conclusive. With this much larger
spatial and temporal scale, this result is now considered conclusive.
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For comparisons between using different distance measures, all three of the common 
semivariogram models were used along with their semivariograms. Cross validation was 
done for each model, and the five statistical measures were calculated. Figure 13a,b are 
the hotspot plots for both Euclidean and Network distances, respectively, along with the 
results of the cross validation and significant semivariogram values. 

  
(a) (b) 

Figure 13. Regression Kriging using (a) Euclidean Distances and (b) Network Distances. 

The resulting plots and values from Figure 13 show that network distances improve 
the model performance, estimates, and more importantly the estimation variances. The 
reduction in nugget values indicates that there is less inherent measurement error present 
within the model, and the increased ranges means the spatial effectiveness of the model 
is larger before it becomes no longer effective. The MSqE and RMSE have lower values 
showing a reduction in the errors, and the RMSSE improved to near 1.0, suggesting that 
it now accounts for more of the variability of the model estimates. 

Finally, the ASE values are lower than, but much closer to, the RMSE values meaning 
the model now overestimates the outcomes, but not to the extent that it underestimated 

Figure 13. Regression Kriging using (a) Euclidean Distances and (b) Network Distances.

6. Conclusions

The overall intent of this study was to examine the applicability of Regression Kriging
on a statewide level and the resulting model’s transferability and stability throughout
the region via the second order stationarity assumption check. Furthermore, the study
then looks into the possibility of improving RK estimates by intuitively using network
distances for this transportation engineering problem. The results of this research will give
regulating authorities and maintenance bodies an additional analytical and prediction tool
to assess the state of their winter infrastructure and to improve maintenance operations.
This research also provides a more conclusive result in support of the use of network
distances in kriging for transportation problems. A summary of the findings from this
study are as follows:

• The regression analysis conducted for the six regions of the study area showed that
not all covariates have the same effects within each region. Despite this, the results do
support previous findings of factors that are connected to higher collision rates such
as higher speed limits, less number of lanes, greater traffic volumes, and deteriorating
road conditions. This shows how covariate selection itself is an important step worthy
of its own project scope before applying it to regression kriging as it lays an important
foundation for RK to build upon to further increase the estimation accuracy.

• The performance of regression kriging at a much larger scale with increased data
quantity and density was found to be very robust based on the five statistical measures
used. However, we found that the second order stationarity assumption did not
hold, as the semivariogram and cross validation results for each of the six regions
differed substantially. This also showed how the urban/rural setting of the region can
greatly affect the model’s performance whereby rural road networks benefit from this
process the most. However, an overall model is still adequate should higher fidelity
not be required or if certain regions have insufficient data quality or quantity. This
demonstrates how powerful a tool that RK can be for winter collision modelling.
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• Finally, RK was enhanced by using road network distances over Euclidean distances.
By the semivariogram value results and the five statistical measures, it was clear
that RK with network distances outperformed its Euclidean distance counterpart.
Applied over a large spatial scale, over a much larger and more complex connected
road network, this study provides conclusive evidence that network distances can
improve kriging estimation performance.

This study does come with some limitations and assumptions that can be expanded
upon in future studies. Some limitations with suggestions for further research are as
follows:

• One major assumption made is that the placement of the RWIS stations is optimal and
substantially affects the outcome of weather induced collisions. The true effective-
ness of RWIS and its warning system may provide insight into their effectiveness in
reducing collisions, and its numerical valuation may be incorporated as a covariate.

• The study did not consider the effects of maintenance operations that could skew the
collision frequencies being recorded. Incorporating maintenance characteristics, such
as plowing schedules or chemical use, may further improve the regression portion of
the analysis.

• This study used Iowa for its relatively uniform terrain characteristics, which may
limit the results to more mountainous or hilly regions. Repeating this study, but
in a different state or country altogether with drastically different geography, will
further develop the process and also show if it can be applied universally or if regional
adjustments are required.

• The datasets used are subject to human error and biases, especially for data that
are recorded manually. Fortunately, environmental data is mostly automated now;
however, collision and near-miss reports are not. The development and utilization of
automated monitoring systems for collisions and near misses will reduce errors and
biases while also providing the added variable of near misses.

• Expanding the weather source dataset and its quantity and quality may improve upon
the environmental aspects of the modelling process. Additional covariates, such as
dew point temperatures, visibility, or solar factors, may be considered.
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