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Abstract: Traffic forecasting remains an active area of research in the transport and data science
fields. Decision-makers rely on traffic forecasting models for both policy-making and operational
management of transport facilities. The wealth of spatial and temporal real-time data increasingly
available from traffic sensors on roads provides a valuable source of information for policymakers.
This paper adopts the Long Short-Term Memory (LSTM) recurrent neural network to predict speed
by considering both the spatial and temporal characteristics of real-time sensor data. A total of
288,653 real-life traffic measurements were collected from detector stations on the Eastern Freeway
in Melbourne/Australia. A comparative performance analysis among different models such as the
Recurrent Neural Network (RNN) that has an internal memory that is able to remember its inputs and
Deep Learning Backpropagation (DLBP) neural network approaches are also reported. The LSTM
results showed average accuracies in the outbound direction ranging between 88 and 99 percent over
prediction horizons between 5 and 60 min, and average accuracies between 96 and 98 percent in
the inbound direction. The models also showed resilience in accuracies as the prediction horizons
increased spatially for distances up to 15 km, providing a remarkable performance compared to other
models tested. These results demonstrate the superior performance of LSTM models in capturing the
spatial and temporal traffic dynamics, providing decision-makers with robust models to plan and
manage transport facilities more effectively.

Keywords: machine learning; short-term prediction; spatial and temporal analysis; speed forecasting

1. Introduction

The new technologies and advances in data analytics are providing innovative ways to
sense and manage transport networks. The fast pace of breakthroughs in these technologies,
including artificial intelligence and machine learning, is relentless and continues to unfold
on many fronts. By determining when and how to take advantage of these technologies,
policymakers and decision-makers have unique opportunities to enhance people’s access
to services and facilities, improve travel time reliability for road users, and enhance the
economic and infrastructure productivity of vital infrastructure assets [1]. Short-term traffic
forecasting has been an active area of research for more than three decades and has been
discussed widely in the literature using a variety of theoretical models based on either
simulated or field data [2]. Field data can be most useful for model development [1,3] but
can be difficult to collect such that the spatial and temporal characteristics are captured. In
the absence of reliable field data, many studies reported in the literature have instead used
simulated data generated from well-calibrated and validated traffic simulation models [4].
Although a large number of studies have used advanced computational models to develop
accurate forecasting methods that deal with the complexity of massive amounts of data,
the literature on comparative evaluations of different models based on the same set of data
is scarce. The ability to undertake such comparative evaluations based on the same set of
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field data to be used for short-term traffic forecasting will help identify models, which in
turn can improve road user experience and enhance operational capabilities.

This paper demonstrates the feasibility of using advanced AI techniques for short-
term traffic forecasting, taking into consideration the spatial and temporal characteristic
of the data using the Long Short-Term Memory (LSTM) prediction network. This model
is developed using historical data extracted from 8 upstream and downstream detector
stations in Eastern Freeway, Melbourne, Australia.

Contribution

The objective of this paper is to develop and evaluate robust models that can be
used by policy and decision-makers to plan and manage transport facilities in an effective
manner. While the topic of traffic forecasting has received considerable attention in the
past, the literature that examines the spatial and temporal interactions of traffic phenomena
remains scarce. Hence, this paper considers the locations between each detector station and
evaluates the effectiveness of the proposed model considering the influence of locations
as well as the temporal evolution of traffic. Another key contribution, which has not been
investigated before, is the feasibility of replicating models that have been developed for a
particular location to other locations. This type of analysis is important when the input
data of one location is missing. From a practical perspective, the ability to forecast and
predict traffic conditions helps decision-makers plan ahead rather than rely on existing
reactive systems that do not have any predictive capability. Another contribution of this
paper is the development and evaluation of spatial-temporal traffic forecasting models
using large field data sets (288,653 observations) that have been validated from multiple
locations on the road network in Melbourne.

This paper is organised as follows: Section 2 provides a scan of the literature on the
topic. Section 3 discusses the model formulation and modelling architectures used in the
study. Section 4 describes a case study that includes data collection and pre-processing, and
model evaluation, including results and findings. Finally, Section 5 presents conclusions
and future research directions.

2. Literature Review

The reform of urban mobility still presents major challenges to policymakers around
the world. Despite years of investment in road infrastructure, the traditional approach of
focusing on building out of congestion through additional road capacity did not meet with
much success. In recent times, more focus has been given to managing the demand for
travel. Among the many demand management solutions, pro-active or predictive traffic
forecasting has been identified as an essential component of improving traffic conditions [5].
In short-term traffic forecasting, estimating traffic conditions usually focuses on speed
and flow predictions. Speed prediction, in particular, is directly related to proactive traffic
control system development [6,7]. However, estimating vehicle speed is problematic
because it is affected by driver behaviour, road environment and the spatial and temporal
complexities of traffic conditions. Solving this complex and uncertain speed prediction
problem has been the focus of many studies in the literature [8,9]. Methodologies used
for speed prediction can be classified into two categories or approaches: parametric and
non-parametric [10]. These are discussed next.

2.1. Parametric Approaches

The parametric approaches, also known as model-based methods, are based on certain
theoretical assumptions of the predetermined model structure. The model parameters can
be computed using empirical data [11,12]. Most commonly used parametric time-series
analysis approaches include linear models such as the Autoregressive Integrated Moving
Average model (ARIMA) [13], seasonal ARIMA, that is, the SARIMA model [14], the
exponential smoothing model [15,16] and ARIMA with a Kalman filter (KF) [17,18]. In
an early reference [19], the authors found the ARIMA model was capable of representing
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freeway time-series data accurately. Numerous extended models of ARIMA have emerged
due to its superiority in forecasting traffic dynamics [20,21]. These parametric approaches
require high-quality data where the sequence needed to be stable and accurate. As most
real-life traffic data are unstable and stochastic, this has limited their use and applicability
in complex traffic prediction applications [22].

2.2. Non-Parametric Approaches

Non-parametric approaches distinctly predict traffic conditions as these models do not
consist of fixed model structures and parameters [23]. Specifically, non-parametric methods
contain relaxed assumptions for inputs and are hence are more capable of processing
missing data, noisy data and outliers [24]. With the recent advancements in machine
learning, many models have shown great potential in solving non-linear problems even
when using complex and multi-source field data. Such models include Support Vector
Regression (SVR) [25–27] and Artificial Neural Networks (ANNs) [28,29].

For example, Ref. [30] compared four parametric approaches (Constant Speed (CS),
Constant Acceleration (CA), SUMO simulator model SUMO, and Intelligent Driver Model
(IDM)) and two non-parametric approaches (Gaussian Mixture Regression (GMR) and
the Artificial Neural Network (ANN) technique) to forecast speeds on highways. The
results showed non-parametric models consistently outperformed other models for both
short and long term predictions. Compared to parametric approaches, non-parametric
approaches can result in higher accuracies [31], particularly, neural networks that showed
the best prediction results [32]. In another comparative study [33], Back-Propagation
Neural Networks (BPNNs) and traditional approaches were compared, and the results
showed the BPNN to be superior and more responsive to dynamic conditions. Therefore,
for complex, non-linear problems like traffic prediction, ANN models are more accurate
with stronger capabilities for learning the association of multi-variant inputs and output
patterns [34]. In another study [30] that compared different neural network architectures,
the authors’ General Regression Neural Network (GRNN) was shown to be simple, stable,
and descriptive of dynamic system characteristics [35].

Recently, novel architectures of neural networks such as the Long Short-Term Mem-
ory (LSTM) and Recurrent Neural Networks (RNNs) have attracted research interest as
effective tools for traffic prediction [11,36,37]. For example, an RNN combined with LSTM
traffic prediction [11] was found to provide higher performance compared to classical
methods. Focusing on speed of individual vehicles, Ref. [36] used an RNN with LSTM and
developed a car-following model to predict acceleration on roads. Other researchers have
also developed LSTM-based RNN approaches for speed prediction models under various
urban driving conditions with credible and accurate results [38].

Unlike previously mentioned studies which lacked the spatial consideration of the
traffic state correlations, and with the availability of enriched traffic data, this paper
extends more recent work that exploits the spatial and temporal traffic state features to
develop robust traffic forecasting models. Some of the previous notable research where
spatial-temporal characteristics were explored includes different approaches. For example,
Ref. [39] developed a model based on the LSTM-NN, using graph convolution to mine
spatial-temporal features. Also, Ref. [40] converted network traffic to images, where
they also used predictive models to estimate future scenarios. Furthermore, Ref. [41]
incorporated spatial and temporal patterns in short-term forecasting in traffic volume
based on Modular Neural Networks (MNNs). However, it is difficult to establish from
these studies, which were developed using different data sets, which models perform
better and under which set of conditions. This limitation is addressed in this paper by
considering six NN models that were trained, tested and validated based on a unique set
of field observations with varying spatial and temporal state features by considering the
locations between sensor stations and evaluating the effectiveness of the proposed models
for both time and space analysis.
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3. Model Development

The road facility is divided spatially into sections bounded by detector stations. The
data for each detector location is then categorized into different time horizons {5, 10, 15, 30,
45 and 60} minutes. The goal is to predict the spatial and temporal information of the next
time stamp (t + n) where n ranges from 5 to 60 min into the future with consideration to
the spatial location for each detector, as shown in Figure 1.
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Long Short-Term Memory (LSTM)

The RNN architecture described before provides good accuracy but does not perform
well for long-term memory, as the RNNs are unable to use information from a distant
past. To address this problem, Long Short-Term Memory (LSTM) models are considered
extensions of the RNN to overcome these issues. Also, LSTM models can learn patterns with
long dependencies when compared with traditional RNNs, that are not able to function for
long term patterns. Therefore, the LSTM has generally been found to outperform RNNs in
time series data forecasting [38].

LSTM models have a different structure from RNNs, as shown in the architecture
presented in Figure 2. The following formulae are used to calculate the predicted values:

Input gate (It) = σg(WiXt + Riht−1 + bi) (1)

Forget gate ( ft) = σg

(
W f Xt + R f ht−1 + b f

)
(2)

Cell Candidate (Ct) = σc(WcXt + Rcht−1 + bc) (3)

Output gate (ot) = σg(WoXt + Roht−1 + bo) (4)

where σg is the gate activation function, Wi, W f , Wc and Wo are input weight matrices,
Ri, R f , Rc and Ro are recurrent weight matrices, Xt is the input, ht−1 is the output at the
previous time (t − 1), and bi, b f , bc and bo are bias vectors. The forget gate determines
how much of the prior memory values should be removed from the cell state. Similarly,
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the input gate specifies new input to the cell state. Then, the cell state ct and the output ht
of the LSTM at time t is calculated as follows:

ct = ft�ct − 1 + it�gt (5)

ht = ot�σc(ct) (6)

where � denotes the Hadamard product (element-wise multiplication of vectors).
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For this work, the LSTM was implemented in Matlab [43]. First, the data for temporal
prediction were arranged for each detector as two-column values; the first column corre-
sponded to speed at time (t), and the second column corresponded to the expected output
(t + n) where n ranges from 5 to 60 min into the future. For spatial prediction, the data were
also arranged as two-column values. However, the first column represented the speed at
time (t) for the detector (r) and the second column represented the expected output of the
speed at the time (t) for the following detector (r + 1).

Then, the data were partitioned into the training and test data. The model was
trained on the first 60% of the sequence and tested on the last 40%. To prevent the
model from overfitting, the training/testing data were standardised to have zero mean
and unit variance. After that, the LSTM network is created using four layers: Sequence
Input Layer (number of features = 1), LSTM Layer (number of hidden units = 300), Fully
Connected Layer (number of responses = 1) and a Regression Layer. The model parameter
settings, as reported in Table 1. The tanh and sigmoid functions are used for state and gate
activation functions, respectively. The LSTM experiments are implemented with Matlab
R2019b with the Deep Learning Toolbox functions of trainNetwork, training options, and
predictAndUpdateState.
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Table 1. Model Parameters.

Parameters Settings

Gradient Decay Factor 0.9

Initial Learning Rate 0.005

Minimum Batch Size 128

Maximum Epochs 300

Training Optimizer adaptive moment estimation optimiser

Dropping Learning Rate During Training piecewise

Learning Rate Drop Period 125

Factor for Learning Rate Dropping 0.2

4. Case Study Using Field Data from the Eastern Freeway (Melbourne/Australia)

This section presents a case study that demonstrates the proposed model’s applicabil-
ity and its robustness and effectiveness using field data collected from the Eastern Freeway
in Melbourne/Australia. This section first describes the data collection and characteristics
of the field data and then presents a comparative evaluation of the model’s performance,
including a detailed analysis of prediction results.

4.1. Data Collection

The real-life data used for the model development was collected from inductive loops
embedded along the Eastern Freeway in Melbourne/Australia (Figure 3). This road facility
is an 18-km freeway which is bounded by East Link at Nunawading (eastbound) and
Alexandra Parade (westbound). The data used in this study included speed observations
collected for 31 days from 1 July 2016 to 31 July 2016 for both eastbound (EB) and westbound
(WB) directions. The data was aggregated every 1-min interval across all lanes at each
site for each 24-h duration. Four different locations of detectors were chosen for each
direction (8 locations in total), distributed across the mainline carriageway covering the
entire freeway. It should be noted here that this is the most recent data available to the
research team. This is not because of a lack of field data but because of the time and effort
it takes to clean new field data and label it for such AI applications. The data described in
this paper has been extensively cleaned with considerable time spent on ensuring that only
quality data for the incident and non-incident conditions are used in model development
and evaluation. Locations of detectors are shown in Figure 3 and Table 2.
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Table 2. Description of detector locations on the Eastern Freeway.

No Detection Name X Y No. of Lanes Location

1 14010 EB 145.017 −37.791 5 Eastern Freeway West of Yarra River OB

2 14032 EB 145.083 −37.783 3 Eastern Freeway Thompsons Road East Outbound

3 14045 EB 145.122 −37.78 3 Eastern Freeway between Elgar and Tram Road

4 14061 EB 145.168 −37.803 3 Eastern Freeway OB between Springvale and Blackburn Roads

5 14003 WB 145.002 −37.795 5 Eastern Freeway Merri Creek East Inbound

6 14031 WB 145.08 −37.78 3 Eastern Freeway Bulleen Road East Inbound

7 14051 WB 145.139 −37.798 4 Eastern Freeway west of Middleborough Road IB

8 14063 WB 145.174 −37.804 3 Eastern Freeway west of Springvale Road

Data for Model Development

The speed data used in the model development was gathered from four detection
stations (14010 EB, 14028 EB, 14045 EB and 14061 EB). These locations were separated by
distances of 5.0, 5.4 and 4.0 km intervals consecutively as shown in Figure 4. Also, four
detection stations in the westbound direction (14061 WB, 14051 WB, 14031 WB and 14003
WB) were also approximately 5.4, 6.1 and 7.1 km apart as shown in Figure 4.
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The data was aggregated at 1-min intervals across all lanes at each site. Considerable
effort was given to pre-processing the data, including the removal of missing or corrupted
data. For example, if the data was continuously missing for more than 10 min, the traffic
values were removed. However, if the missing data was only for a short duration, for
example, between (12 July 2016 17:48 and 12 July 2016 17:50), then the value at 12 July 2016
17:49 was estimated as:

Speed (t) = (Speed (t − 1) + Speed (t + 1))/2 (7)

The reason for choosing these four detectors for each direction is that they had the
most reliable data with few missing observations for the 31-day duration. They were also
chosen to capture variable spatial locations and traffic characteristics along the freeway
for this research; the total number of valid observation for the eight detectors was 288,653
observations. For each detector, the data was divided into three data sets: Training (60%)
and testing and validation (40%). The number of speed data tested for each detector (after
pre-processing) is presented in Table 3. The training set was used to “calibrate” the neural
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network model in order to learn the traffic patterns. Using this data, the model learned
from the relationships between the different variables in the input values. The testing data
(which was not used for model training and calibration) was used to validate the results
and ensure that the neural network was not memorising the patterns and the outputs from
the training data set.

Figures 5 and 6 provide samples of speed data patterns for the eastbound and west-
bound locations.

Table 3. Speed datasets used for each detector in two travel directions.

Travel Direction Detector Total Speed Data Set Training Data Set Test and Validation Set

Eastbound

14010 EB 22,781 13,669 9112

14032 EB 38,808 23,285 15,523

14045 EB 40,403 24,242 16,161

14061 EB 41,135 24,681 16,454

Westbound

14063 WB 39,914 23,948 15,966

14051 WB 39,410 23,646 15,764

14031 WB 38,246 22,948 15,298

14003 WB 27,956 16,774 11,182

Total - 288,653 173,193 115,460
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Figure 5. Sample speed data pattern for eastbound detectors.
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Figure 6. Sample speed data pattern for westbound detectors.
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4.2. Model Evaluation

To evaluate Long Short-Term Memory (LSTM) prediction robustness, five machine
learning systems were evaluated using the same data set. These included: Recurrent Neu-
ral Networks (RNNs), General Regression Neural Networks (GRNNs), Modular Neural
Networks (MNNs), Deep Learning Backpropagation (DLBP) neural networks and Radial
Basis Function Networks (RBFNs). These models have been widely used for future traffic
forecasts, as shown in the example papers provided in the literature review section above.
The models reported in this paper were developed using NeuralWorks Professional, which
is an Artificial Neural Network commercial package and development system [45].

The Backpropagation Neural Network is the most popular learning algorithm used to
capture non-linear relationships and self-learning. The typical back-propagation network
always has an input layer, an output layer and more than one hidden layer, which is
referred to as “Deep Learning”. Each layer is fully connected to the succeeding layer. The
implementation of the algorithm simply includes an input training pattern (feedforward),
backpropagated error and weight adjustment. The parameters used for this experiment
included 3 hidden layers with 4, 6, and 2 neurons. The transfer function is Tanh with a
learning coefficient output (α = 0.15). The learning rule is Ext DBD with 100,000 iterations
and a momentum of 0.4.

The training for the Radial Basis Function Network (RBFN) network uses a radial
basis function instead of a linear function with more neurons needed in the hidden layer
compared to the multi-layer BP neural network. In general, an RBFN is any network
which has an internal representation of hidden neurons (pattern units) which are radially
symmetric. In order for a pattern unit to be radially symmetric, it should include the
following criteria: a center, a distance measure and a transfer function. A center is vector in
the input space and which is typically stored in the weight vector from the input layer to the
pattern unit. The distance measure determines how far an input vector is from the center,
such as the Euclidean distance measure. In terms of the transfer function, it determines
the output by mapping the output of the distance function, such as the Gaussian function.
The following parameters are used in this experiment: proto (50), summation function
(Euclidean), momentum (0.4), learn rule (Ext DBD) and transfer (Tanh).

Modular Neural Network (MNN) models include modules and a gating network. The
modules are referred to as “local experts” which approach the problem from various angles.
The gating network is an integrated unit that allocates different features of the input space
to the different local expert networks. The parameters chosen in this experiment were:
hidden layers (1) with (14) neurons, and the activation function (tanh). Momentum (0.4),
learn rule (ext DBD), learning rate hidden layer (0.3) and output layer (0.15), epoch (16),
input vector [−1, +1] and output vector [−0.8, +0.8].

The General Regression Neural Network (GRNN) is a general purpose network
paradigm based on linear regression theories but extends the regression to avoid assuming
a specific functional form (such as linear) for the relationship between the inputs and
outputs. The following parameters were used in this experiment: pattern neurons (50),
summation function (Euclidean), radius of influence (R 0.250), σ scale (1), σ exponent (0.5)
and Tau time constant (1000).

RNNs are feedforward neural networks that perform well with time series forecasting
data. The type of RNN used is a Werbos RNN, in which the weights are updated by using
the standard back-propagation algorithm. The parameters used for this experiment were:
hidden layers (1) with (5) neurons, activation function (tanh), learn rule (ext DBD) and
epoch (770). Finally, the reader is referred to a number of other references [46,47] that
provide further details about the use of the Neuralware platform for automated incident
detection and to a number of other studies that are relevant to the use of simulation
tools [48–54] and how they can be used for evaluation of different transport management
strategies to enhance efficiency and reduce emissions.

Also, it is essential to establish metrics that allow the comparison of the different
methods. In this paper, the Mean Absolute Percentage Error (MAPE) is used to calculate
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the accuracy of the model prediction for different time horizons in the future. MAPE
calculates the average absolute difference between the predicted output from the model
(Y1) and the expected true output (Y) [55].

MAPE =
1
n

n

∑
i=1

|Y−Y1|
Y

(8)

Accuracy (%) = (1 −MAPE) × 100 (9)

4.2.1. Westbound Direction—Temporal Prediction Accuracies

The experimental results for temporal variations in the westbound direction are
provided in Table 4 and Figure 7. The cells in the table that are highlighted in green show
the highest accuracies obtained, while the cells highlighted in orange show the lowest. The
results show that the LSTM generally has superior performance when compared to the
RNN, GRNN, MNN, RBF and the DLBP neural network.

For detector 14003, the results show that LSTM provides a forecasting accuracy of
94.24% for a 5-min prediction horizon and 94.97% for a 60-min prediction horizon. For the
LSTM, the accuracy does not deteriorate substantially as the prediction horizon increases,
with the accuracy remaining high at 94.97% for the 60-min horizon. This shows the ability
of the system to capture the complexity of longer speed prediction horizons. On the other
hand, the MNN provided the least accurate predictions out of the six models tested. For
detector 14031, the same trend can be noticed with accuracies not deteriorating substantially
for the LSTM with longer prediction horizons. For the 10-min horizon, the accuracy is
97.55%, while it remained steady at 98.96% for the 60-min horizon. Also, it can be noted
that the LSTM provides better accuracy for 10 min and 60 min prediction horizons while
the GRNN, MNN and RBF outperformed the LSTM for the other prediction horizons. This
may be attributed to the data patterns for detector 14031, which showed more congestion
at certain times during the months of July compared with other detectors. For longer
prediction horizons (45 and 60 min), the DLBP neural network had the lowest performance
of 95.22% and 94.14%, respectively.

Table 4. Temporal prediction accuracies for westbound detectors.

Detector Prediction Horizon LSTM RNN GRNN MNN RBF DLBP

Detector 14003

5 min 94.24% 92.91% 93.01% 93.58% 93.85% 93.72%
10 min 94.04% 92.23% 92.23% 93.19% 93.04% 90.31%
15 min 99.02% 91.51% 91.03% 93.24% 91.97% 89.68%
30 min 96.86% 88.93% 87.80% 86.67% 89.53% 89.44%
45 min 95.05% 86.76% 87.88% 86.10% 86.57% 88.00%
60 min 94.97% 86.76% 86.25% 84.12% 85.39% 85.88%

Detector 14031

5 min 95.23% 96.54% 96.05% 96.78% 96.54% 96.41%
10 min 97.55% 96.50% 96.06% 96.14% 96.20% 96.62%
15 min 96.65% 96.28% 96.05% 96.58% 96.67% 96.36%
30 min 95.65% 96.17% 96.06% 96.51% 96.27% 93.89%
45 min 95.54% 95.60% 96.05% 95.65% 96.09% 96.32%
60 min 98.96% 95.51% 96.01% 96.26% 95.93% 95.22%

Detector 14051

5 min 98.47% 95.01% 95.51% 95.17% 94.71% 94.14%
10 min 95.61% 94.55% 95.03% 94.89% 94.83% 95.05%
15 min 96.31% 93.51% 94.31% 94.22% 93.99% 94.65%
30 min 97.41% 91.92% 92.68% 93.77% 92.75% 92.42%
45 min 99.94% 89.86% 92.38% 89.72% 91.50% 91.65%
60 min 99.43% 83.16% 92.37% 92.01% 91.57% 88.34%

Detector 14063

5 min 98.66% 94.10% 94.71% 92.89% 94.33% 90.23%
10 min 98.76% 94.06% 94.43% 94.12% 93.39% 93.62%
15 min 97.68% 93.81% 93.91% 93.81% 92.33% 92.00%
30 min 98.75% 93.52% 93.46% 93.65% 92.86% 82.29%
45 min 98.22% 93.39% 93.35% 93.00% 92.45% 92.24%
60 min 98.77% 93.38% 93.32% 92.71% 91.77% 91.83%
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Figure 7. Comparison of temporal results for westbound.

For detector 14051, the LSTM outperforms all other 6 models with an accuracy ranging
from 95.61% to 99.94%. The DLBP neural network and the MNN provided the least
accuracies for shorter prediction horizons up to 30 min, while the RBF had the lowest
accuracy of 89.72% compared to 99.94% of the LSTM for 45 min into the future. The RNN
provided the least accurate predictions for 60-min horizons with 83.16% accuracy compared
to 99.43% for the LSTM.

For detector 14063, the LSTM provided a good level of accuracy for all time horizons
ranging from 97.68% to 98.77%. The DLBP neural network achieved the lowest accuracy
for 15, 30 and 45 min predictions compared to the six models, whereas the RBF had the
lowest accuracy for 60-min horizons (91.77%) compared with the LSTM with the highest
accuracy of 98.77%.

4.2.2. Westbound Direction—Spatial Prediction Accuracies

For the spatial analysis, the main observation is that the accuracy of prediction is not
affected as the distance between detector locations increases (Table 5 and Figure 8). The
LSTM provides the highest accuracy for all spatial ranges, with the accuracy ranging from
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96.03% for a 5.4 km separation to 98.24% accuracy for an 18.6 km separation of detector
locations. The DLBP neural network provided the lowest accuracies for short distances,
while the MNN and RBF performed worse when the spatial separation increased between
any two detector locations.

Table 5. Spatial prediction accuracies for westbound detectors.

Detectors Detector 63 to 51 Detector 51 to 31 Detector 31 to 03 Detector 63 to 31 Detector 63 to 03

Spatial Distance 5.4 km 6.1 km 7.1 km 11.5 km 18.6 km
LSTM 96.03% 97.59% 96.73% 99.63% 98.24%
RNN 91.61% 91.00% 95.74% 95.21% 85.00%

GRNN 91.54% 95.31% 84.85% 95.11% 85.04%
MNN 88.72% 95.52% 83.67% 95.60% 84.11%
RBF 89.46% 84.28% 95.28% 82.24% 89.46%

DLBP 88.34% 82.74% 95.55% 84.18% 88.34%
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4.2.3. Eastbound Direction—Temporal Prediction Accuracies

The experimental results for the temporal variations in the eastbound direction are
provided in Table 6 and Figure 9. The cells in the table that are highlighted in orange show
the highest accuracies obtained, while the cells highlighted in green show the lowest. The
results show that the LSTM generally has superior performance when compared to the
RNN, GRNN, MNN, RBF and DLBP neural network.

Detector 14010 shows that the LSTM provides higher prediction accuracies of 98.44%
for 5-min prediction horizons and 99.10% for 60-min horizons. For the LSTM, the accuracies
do not deteriorate as the prediction horizon increases. For example, the accuracy is 97.97%
for the 10-min horizon and remains steady at 99.10% for 60-min prediction horizons. This
shows the ability of the system to capture the complexity of a longer speed prediction
horizon. For the eastbound direction, the RBF had the least accurate predictions out of the
six models.

For detector 14032, the results for the LSTM were the lowest compared to all detectors
from WB and EB. This is maybe due to the data patterns for this detector which experienced
heavy congestion at certain times during the months of July compared to other detectors.
For 10-min horizons, the accuracy is 84.74% compared to 88.37% for the 60-min horizon.
Also, it can be noted that the RNN provides better accuracy for 10-min and 15-min pre-
diction horizons. However, the LSTM provides better accuracy overall for detector 14032.
For short prediction, the GRNN and the DLBP neural network provided the least accurate
predictions, while for longer prediction horizons (45 and 60 min), the RBF and MNN had
the lowest performance of 80.21% and 78.80%, respectively.

For detector 14045, the LSTM outperforms all other 6 models with an accuracy ranging
from 96.42% to 99.01%. The DLBP neural network, MNN and RBF provided the least
accuracies for shorter prediction horizons up to 30 min, while the RBF had the lowest
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accuracy of 93.02% compared to 96.42% for the LSTM for 45-min horizons. The GRNN
provided the least accurate predictions for 60-min horizons with 91.93% accuracy compared
to 98.77% and 96.05 for the LSTM and RNN, respectively.

For detector 14061, the LSTM provided good accuracy for all time horizons ranging
from 96.9% to 99.95%, except for the 60-min horizon where the RBF provided the highest
accuracy of 96% compared to 93% for the LSTM. For 15-min horizons, the RBF achieved
the lowest accuracy of 95.93% compared to the highest accuracy of 99.80% for the LSTM.

Table 6. Temporal prediction accuracies for eastbound detectors.

Detector Prediction Horizon LSTM RNN GRNN MNN RBF DLBP

Detector 14010

5 min 98.44% 97.16% 97.01% 97.11% 96.56% 96.74%
10 min 97.97% 97.28% 97.00% 97.21% 96.81% 96.90%
15 min 99.07% 97.28% 97.27% 97.14% 97.04% 97.13%
30 min 99.01% 97.24% 97.27% 97.06% 96.68% 95.99%
45 min 98.22% 97.25% 97.10% 95.71% 95.12% 95.90%
60 min 99.10% 97.24% 96.87% 97.20% 96.29% 96.80%

Detector 14032

5 min 91.50% 88.48% 84.72% 88.03% 89.14% 88.86%
10 min 84.74% 87.59% 84.66% 86.57% 83.97% 76.08%
15 min 87.50% 88.63% 84.94% 85.50% 82.91% 78.98%
30 min 91.48% 88.24% 82.80% 87.46% 87.46% 81.27%
45 min 87.72% 83.88% 81.42% 81.55% 80.21% 84.12%
60 min 88.37% 83.84% 80.31% 78.80% 79.07% 85.84%

Detector 14045

5 min 99.01% 96.69% 95.99% 95.18% 95.80% 92.79%
10 min 97.31% 96.44% 95.95% 96.18% 95.10% 92.56%
15 min 98.76% 96.30% 95.94% 96.37% 93.70% 92.52%
30 min 98.81% 96.26% 95.81% 94.19% 95.59% 96.32%
45 min 96.42% 96.15% 95.70% 94.29% 93.02% 95.98%
60 min 98.77% 96.05% 91.39% 93.64% 95.10% 95.60%

Detector 14061

5 min 99.95% 96.44% 96.02% 96.39% 96.17% 96.31%
10 min 99.96% 96.44% 96.02% 96.23% 96.34% 95.64%
15 min 99.80% 96.40% 96.01% 96.34% 95.93% 96.26%
30 min 96.90% 96.35% 95.99% 96.05% 95.81% 95.27%
45 min 97.04% 96.13% 95.99% 95.91% 96.25% 94.46%
60 min 93.00% 95.80% 95.97% 95.78% 96.14% 95.90%
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Figure 9. Comparison of temporal results for the eastbound direction.

4.2.4. Eastbound Direction—Spatial Prediction Accuracies

For the eastbound direction, the results are similar for westbound reported before, where
the accuracy of prediction is not affected as the distance changes. As can be seen in Table 7
and Figure 10, the LSTM provides the highest accuracy for most distance ranges, whereas the
RNN provides the least accuracy. Overall, the LSTM provides the highest accuracy ranges for
detectors that are furthest apart (15.45 km) with an accuracy result of 99.95%.

Table 7. Spatial prediction accuracies for eastbound detectors.

Detectors Detector 45 to 61 Detector 32 to 45 Detector 10 to 32 Detector 10 to 45 Detector 10 to 61

Location between
Detectors 4.1 km 5.4 km 5.95 km 11.35 km 15.45 km

LSTM 98.49% 99.15% 81.00% 96.95% 99.95%
RNN 96% 94.97% 81.00% 95.64% 94.04%

GRNN 95.83% 92.61% 83.04% 88.85% 95.63%
MNN 95.61% 93.68% 82.40% 92.64% 95.89%
RBF 95.66% 94.26% 81.64% 93.02% 94.33%
DL 95.48% 95.29% 82.73% 91.97% 95.47%
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5. Conclusions and Future Directions

This paper developed and evaluated robust models for spatial and temporal predic-
tions of traffic conditions at different locations on a real-world road facility in Melbourne,
Australia. These models were developed using the Long Short-Term Memory (LSTM)
network using a large data set of traffic observations, comprising 288,653 data points. The
findings showed that the LSTM architecture provided the highest predictive intelligence
accuracy for both temporal and spatial predictions. In particular, the models showed
resilience as the prediction horizons increased spatially for distances up to 15 km and
temporally up to 60 min providing a remarkable performance compared to the other
architectures tested. Another important contribution of this work is demonstrating the
feasibility of transferring a model which has been developed for one location for use at
other multiple locations across the same facility, which is important for decision making
when the input data of one location is missing or not available.

Future work will explore incorporating more inputs such as flow, occupancy as well
as other important external factors such as weather to further refine the prediction models.
In addition, more detector locations and spatial distributions along the entire road network
will be utilised for future prediction analysis, including generation of new data sets for edge
cases based on calibrated traffic simulation models and digital twins of the road facilities
under consideration. Finally, future studies should also include additional advanced
architectures and explore the influence of network parameters and sensitivity analyses
of results.
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