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Abstract: Tumor cells regulate their progression not only by the factors within their cell bodies
but also by the secretome they produce and secrete. While their secretome significantly alters the
fate of tumor cells themselves, they also regulate the growth of surrounding cells including both
companion cancer and non-cancer cells. Tumor cell secretome consists of varying molecules that have
been reported mostly tumor-promotive. Furthermore, their pro-tumor capability is enhanced by the
application of chemotherapeutic agents. However, multiple lines of emerging evidence suggest that
the tumor cell secretome can be tumor-suppressive in response to paracrine and endocrine signaling.
This review introduces both tumor-promotive and tumor-suppressive secretomes, focusing on multi-
tasking proteins in the intracellular and extracellular domains. We describe tumorigenic signaling
that governs the nature of the tumor cell secretome and discuss the possibility of inducing tumor-
suppressive proteomes as a novel option for cancer treatment. We evaluated the counterintuitive
procedure to generate tumor-suppressive proteomes from a unique type of tumor-modifying cells,
which are named “induced tumor-suppressing cells” (iTSCs).
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1. Introduction

Biological organs, tissues, and cells regulate their behaviors by a positive controller
and a negative controller. Bone formation is regulated by bone-forming osteoblasts as an ac-
tivator and bone-resorbing osteoclasts as an inhibitor [1]. The level of calcium in the blood
is mainly elevated by parathyroid hormone and reduced by calcitonin [2]. Tumor cells are
also regulated by tumor-promoting and suppressing regulators [3]. To eliminate cancer
cells, chemotherapy is one of the most popularly utilized therapies in which chemother-
apeutic drugs are targeted to DNA replication, cell cycling, and metabolic activities [4].
While these drugs can be applied alone or in combination, they carry a significant risk
of side effects because of their inhibitory role in the cellular activities of both tumor and
non-tumor cells [5]. An intriguing question is whether cancer cells can be killed not by the
inhibition of cellular activities but by their activation. From the viewpoint of regulatory
systems, both inhibitory and stimulatory drugs can be applied for blocking tumor progres-
sion. However, it is not a common practice to apply a drug that enhances the activities of
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tumor suppressors. Although many tumorigenic pathways have been identified, drugs
are generally inhibitors of those signalings such as Wnt, PI3K, PKA, etc. A provocative
question is whether it is possible to activate oncogenic signalings and kill cancer cells. This
review provides a positive answer to a paradoxical strategy of overexpressing oncogenes,
focusing on the secretomes of tumor and non-tumor cells in the tumor microenvironment.

2. Tumor Cell Secretome and Chemotherapy

Most cells use their secretome to regulate the local and global environment, generally
for the benefit of their growth and behaviors [6–8]. Tumor cells are not an exception
and they secrete varying molecules to modify ECM for their adhesion and migration,
stimulate angiogenesis for enhancing nutrient acquisition, remove neighboring cells for
their room to expand, etc. [9–11]. Many lines of evidence also indicate that the tumor
cell secretome is in general composed of varying tumor-promotive factors, including
exosomes, metabolites, growth factors, lipids, and nucleic acids [12–15]. Ironically, it is
also known that the administration of chemotherapeutic drugs such as vemurafenib [16],
erlotinib [17], crizotinib [18], and BEZ235 [19] strengthens the tumorigenic capability of
the tumor cell secretome. These drugs may initially remove tumor cells as well as non-
tumor cells as a side effect, but tumor cells tend to develop drug resistance and the drugs
eventually become ineffective [20–22]. It is also reported that the tumor-cell secretome
includes IL-6, VEGF, TGFβ, IGF1, and EGF, which contribute to developing drug resistance
in tumor cells [10,23,24]. Namely, their administration may assist the development of
drug-resistant cells and the enhancement of the secretion of varying tumor-promoting
factors [7,25]. Although chemotherapeutic agents constitute a primary set of cancer-fighting
weaponry [26–28], the intent of suppressing tumor progression with inhibitory agents in
chemotherapy may conversely end up strengthening the survival fitness of tumor cells.

3. Induced Tumor-suppressing Cells (iTSCs)

As a counterintuitive approach, an intriguing question is whether a tumor-suppressive
secretome can be generated by administering an activator (and not an inhibitor in chemother-
apy) of pro-tumorigenic signaling to tumor cells. Figure 1 depicts the two conceptual cases
using the modulation of Wnt signaling as an example, the treatment with a chemotherapeu-
tic inhibitor and that with an activator of tumor progression. In generating the conditioned
medium that can be tumor-promotive or tumor-suppressive, tumor cells are typically
incubated with the agent for one day. The actual examples using osteosarcoma cells and
mammary tumor cells will be introduced later.

Onco 2021, 1, FOR PEER REVIEW  2 
 

 

the activities of tumor suppressors. Although many tumorigenic pathways have been 
identified, drugs are generally inhibitors of those signalings such as Wnt, PI3K, PKA, etc. 
A provocative question is whether it is possible to activate oncogenic signalings and kill 
cancer cells. This review provides a positive answer to a paradoxical strategy of overex-
pressing oncogenes, focusing on the secretomes of tumor and non-tumor cells in the tu-
mor microenvironment. 

2. Tumor Cell Secretome and Chemotherapy 
Most cells use their secretome to regulate the local and global environment, generally 

for the benefit of their growth and behaviors [6–8]. Tumor cells are not an exception and 
they secrete varying molecules to modify ECM for their adhesion and migration, stimulate 
angiogenesis for enhancing nutrient acquisition, remove neighboring cells for their room 
to expand, etc. [9–11]. Many lines of evidence also indicate that the tumor cell secretome 
is in general composed of varying tumor-promotive factors, including exosomes, metab-
olites, growth factors, lipids, and nucleic acids [12–15]. Ironically, it is also known that the 
administration of chemotherapeutic drugs such as vemurafenib [16], erlotinib [17], crizo-
tinib [18], and BEZ235 [19] strengthens the tumorigenic capability of the tumor cell secre-
tome. These drugs may initially remove tumor cells as well as non-tumor cells as a side 
effect, but tumor cells tend to develop drug resistance and the drugs eventually become 
ineffective [20–22]. It is also reported that the tumor-cell secretome includes IL-6, VEGF, 
TGFβ, IGF1, and EGF, which contribute to developing drug resistance in tumor cells 
[10,23,24]. Namely, their administration may assist the development of drug-resistant 
cells and the enhancement of the secretion of varying tumor-promoting factors [7,25]. Alt-
hough chemotherapeutic agents constitute a primary set of cancer-fighting weaponry [26–
28], the intent of suppressing tumor progression with inhibitory agents in chemotherapy 
may conversely end up strengthening the survival fitness of tumor cells. 

3. Induced Tumor-suppressing Cells (iTSCs) 
As a counterintuitive approach, an intriguing question is whether a tumor-suppres-

sive secretome can be generated by administering an activator (and not an inhibitor in 
chemotherapy) of pro-tumorigenic signaling to tumor cells. Figure 1 depicts the two con-
ceptual cases using the modulation of Wnt signaling as an example, the treatment with a 
chemotherapeutic inhibitor and that with an activator of tumor progression. In generating 
the conditioned medium that can be tumor-promotive or tumor-suppressive, tumor cells 
are typically incubated with the agent for one day. The actual examples using osteosar-
coma cells and mammary tumor cells will be introduced later. 

 
Figure 1. Comparison of the tumor-promotive secretome with the tumor-suppressive secretome. (A) Tumor cells induce 
the tumor-promotive secretome in response to a chemotherapeutic inhibitor to tumorigenic signalings, such as Wnt sig-
naling, PI3K signaling, EMT induction, and PKA signaling [29,30]. Non-tumor cells (e.g., MSCs, lymphocytes, and osteo-
blasts, etc.) can also be used instead of tumor cells to produce a conditioned medium. (B) Tumor cells (and non-tumor 
cells, such as MSCs, lymphocytes, and osteoblasts, etc.) induce the tumor-suppressive secretome in response to an activa-
tor (e.g., the overexpression of β-catenin in Wnt signaling and the overexpression of Akt in PI3K signaling [29,30] to tu-
morigenic signaling). 

Figure 1. Comparison of the tumor-promotive secretome with the tumor-suppressive secretome. (A) Tumor cells induce the
tumor-promotive secretome in response to a chemotherapeutic inhibitor to tumorigenic signalings, such as Wnt signaling,
PI3K signaling, EMT induction, and PKA signaling [29,30]. Non-tumor cells (e.g., MSCs, lymphocytes, and osteoblasts,
etc.) can also be used instead of tumor cells to produce a conditioned medium. (B) Tumor cells (and non-tumor cells, such
as MSCs, lymphocytes, and osteoblasts, etc.) induce the tumor-suppressive secretome in response to an activator (e.g.,
the overexpression of β-catenin in Wnt signaling and the overexpression of Akt in PI3K signaling [29,30] to tumorigenic
signaling).
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To remove any remaining agents, the culture medium was exchanged by a fresh one
and cells were cultured for an additional day. Then, the conditioned medium, which
included tumor cell-secreted proteins, was characterized for its tumor-modifying features.
Focusing on Wnt signaling, which is one of the targets to be inhibited in chemother-
apy [31,32], a series of in vitro experiments were conducted to characterize tumor cell
secretomes by overexpressing β-catenin [33] in breast cancer cells, prostate cancer cells, and
pancreatic cancer cells. Remarkably, the result supported the tumor-suppressive capability
of β-catenin-overexpressing tumor cell-derived conditioned medium (β-catenin CM) [29].
Of note, tumor secretomes are reported to be enriched with tumor-promoting factors,
including proteins (e.g., VEGF) [34] and nucleic acids (e.g., PIK3CA and RASSF1A) [35].

Preclinical studies using a mouse model of mammary tumors and tumor-induced
bone osteolysis also supported the tumor-suppressive, bone-protective capability of β-
catenin CM. Those cells, which exhibited the tumor-suppressive capability by the activation
of pro-oncogenic genes, were named “induced tumor-suppressing cells” (iTSCs) [29].
Figure 2 illustrates the unconventional concept with iTSC CM. The inoculation of tumor
cells to a mouse induces a mammary tumor, and the injection of Wnt-activated tumor
cells by the overexpression of β-catenin generates a larger mammary tumor. However,
after the inoculation of tumor cells, the daily injection of β-catenin-overexpressing tumor
cell-derived CM via a tail vein significantly reduces the size of mammary tumors. The
administration of a control tumor cell-derived CM does not reduce the size of tumors. The
result, for the first time, indicated the possibility of developing a novel therapeutic option
that is based on a paradoxical concept of activating oncogenic signaling.
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Figure 2. Counterintuitive reduction in mammary tumors by the administration of a Wnt-activated tumor cell-derived
conditioned medium. (A) The inoculation of Wnt-activated tumor cells induces a larger mammary tumor than that of control
tumor cells. (B) The administration of a Wnt-activated tumor cell-derived conditioned medium suppresses the growth
of mammary tumors. In the study by Liu et al. [29], it is found that Lrp5-overexpressing osteocyte-derived conditioned
medium significantly reduced the progression of mammary tumors as well as the destruction of the tumor-invaded tibia
in a mouse model of breast cancer and bone metastasis. It is also reported by Sun et al. [30] that Akt-overexpressing
MSC-derived conditioned medium inhibited the growth of mammary tumors and bone loss in the tumor-colonized tibia in
a mouse model.

4. Generation of iTSCs from Non-Tumor Cells

The generation of iTSCs from tumor cells raised another question as to whether
iTSCs can be created from non-tumor cells. The question was positively answered by
the overexpression of β-catenin and Lrp5, a Wnt coreceptor, in mesenchymal stem cells
(MSCs) [30]. The overexpression of β-catenin and Lrp5 generated MSC-derived iTSCs
whose CM was able to suppress the progression of mammary tumors and the degradation
of tumor-invaded bone in a mouse model. Besides the activation of Wnt signaling, the over-
expression of Akt in PI3K signaling [36,37] and Snail in the induction of EMT [38,39] was
able to generate MSC-derived iTSCs. Notably, osteocytes were also found to become iTSCs
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by the overexpression of β-catenin and Lrp5 [40]. Interestingly, iTSCs can be generated not
only by the overexpression of pro-tumorigenic genes but also by pharmacological agents
such as an activator of Wnt signaling (e.g., BML284 [41]) and PI3K signaling (YS49 [42]).
So far, no harmful iTSC cases have been reported in preclinical studies.

Figure 3 presents one example of inducing tumor-suppressive secretomes from T
lymphocytes. In this example, Jurkat T-lymphocytes [43] were treated with a protein kinase
A [44] (PKA) inhibitor, H-89 [45], as well as a PKA activator, CW008 [46]. One day after the
incubation, lymphocytes were rinsed and the culture medium was replaced with a fresh
one. The conditioned medium was collected after one-day incubation and they were given
to U2OS human osteosarcoma [47] and EO771 mammary tumor cells [48]. The MTT-based
metabolic activity, which indicates cell viability, was elevated by PKA inhibitor-treated CM
and reduced by PKA activator-treated CM. This example supports the counterintuitive
approach in which the tumor-suppressive secretomes were obtained by the activation of
PKA signaling.
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experiment, Jurkat T lymphocytes were treated with H-89 and CW008 at10 and 30 µM (Tocris, Minneapolis, MN, USA).
After 24 h, the medium was exchanged to remove H-89 or CW008. Cells were then incubated for 24 h for the collection
of CM. CM was centrifuged at 2000 rpm for 10 min. Cell-free supernatants were centrifuged at 4000 rpm for 10 min
and subjected to filtration with a 0.22-µm polyethersulfone membrane (Sigma; St. Louis, MO, USA). An MTT assay was
conducted using U2OS osteosarcoma cells [47] and EO771 mammary tumor cells [48]. Tumor cells were seeded in 96-well
plates (Corning; Glendale, Arizona, USA) and grown in CM for 2 days. Cells were dyed with 0.5 mg/mL thiazolyl blue
tetrazolium bromide (Sigma) on day 4 for 4 h, and optical density for assessing metabolic activities was determined at
570 nm using a multi-well spectrophotometer. (A) H-89 (PKA inhibitor)-treated lymphocytes produce the pro-tumor
conditioned medium that elevated MTT-based viability of U2OS osteosarcoma cells and EO771 mammary tumor cells.
(B) CW008 (PKA activator)-treated lymphocytes produce the anti-tumor conditioned medium that reduced MTT-based
viability of U2OS osteosarcoma cells and EO771 mammary tumor cells. ** p < 0.01.

5. Tumor Heterogeneity and Survival of the Fittest

A survival of the fittest is the dominating principle that is a basis for biodiversity at
multiple levels including the biosphere, ecosystem, communities, populations, organisms,
tissues, cells, and selfish DNA [49–52]. Cancer cell secretome can be viewed as a means for
cancer cells to elevate their survival of the fittest [10,53–55]. In response to chemotherapy,
tumor cells may synthesize tumor-promotive secretomes to elevate their survival in collab-
oration with neighboring tumor cells. In response to the activation of oncogenic signaling,
tumor cells may choose to strengthen their dominance over others by eliminating neighbor-
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ing tumor cells. It is reported that surgical removal of tumors occasionally resulted in the
acceleration of tumor progression [56]. It is postulated that post-surgical tumor progression
can be caused by surgery-linked injury and inflammatory responses, as well as the space
created by the removal of the tumor [57]. Alternatively, this paradoxical outcome may be
linked to tumor-driven anti-tumor capability, in which influential tumors may impede the
progression of less-contentious tumors and their surgical removal could adversely affect
the survival of patients. Interestingly, the inhibitory effect of iTSC CM is mostly selective
to tumor cells rather than non-tumor cells [29]. The mechanism of the observed tumor
selectivity should be further analyzed to lessen the current side effects of chemotherapeutic
drugs. Alternatively, the observed variations among cancer cell secretomes may indicate
the possibility of effective personalized cancer treatment [10].

6. Dependence on Cancer Types

Despite the significant development of therapeutic options during the past decades,
chemotherapy remains the main method for cancer treatment. As the efficacy of chemother-
apeutic agents differs depending on cancer types [58,59], further investigation is necessary
to understand the therapeutic potential of iTSC-derived secretomes for varying types and
subtypes of cancers. There are five major types of cancers, including carcinomas, sarcomas,
melanomas, lymphomas, and leukemias [47]. The most frequently diagnosed cancers are
carcinomas in the breast, prostate, pancreas, and lungs [48]. Sarcomas, such as osteosar-
coma and chondrosarcoma, are cancers in the connective tissue, and melanomas arise from
the pigment in the skin [60,61]. Lymphomas are cancers of lymphocytes, while leukemias
are cancers of the blood [62,63]. The tumor microenvironment is largely different among
the five major types of cancers and there are also differences in therapeutic response, drug
resistance, and clinical outcome [64–66]. An important question is whether all types of
cancers are responsive to iTSC CM and whether there are any differences in efficacy. Fur-
thermore, another question is whether the progression of primary and secondary tumors
is equally suppressed. Existing in vitro and in vivo studies support the suppression of
cancer cell lines in the breast, prostate, pancreas, and bone [29,30]. No studies have been
conducted for melanomas, lymphomas, and leukemias. Most data so far have been col-
lected for breast cancer [29,30,40,67]. It has been found, using freshly isolated breast cancer
tissues, that both estrogen receptor-positive and negative cancer tissues are responsive to
iTSC-derived CM.

7. Source of iTSCs

The efficacy of iTSC CM also depends on the source of iTSCs. So far, iTSCs were
generated from MLO-A5 osteocytes [68] and mouse and human MSCs, as well as tumor
cells such as MDA-MB-231 breast cancer cells [69], EO771 mammary tumor cells [70],
4T1.2 mammary tumor cells [71], PC-3 prostate cancer cells [72], and PANC-1 pancreatic
cancer cells [73]. An intriguing question is whether iTSCs can be generated from any type
of cell that produces secretory proteins. From a translational viewpoint, it is desirable
to generate iTSCs from cells that are accessible from a patient. For instance, MSCs may
present considerable advantages over other cells for manufacturing, storage, handling, and
their potential as ready-to-go biologic products [74]. Also, it is reported that peripheral
blood mononuclear cells may present the benefit in regenerative medicine and tumor
treatment [75]. It is interesting to know whether iTSCs can be generated from the bone
marrow aspirates and peripheral blood. The existing data support that it is possible to
generate iTSCs from bone marrow-derived MSCs and T lymphocytes in the peripheral
blood.

8. Activation of Tumorigenic Signaling and Inhibition of Anti-tumorigenic Signaling

So far, iTSCs have been generated by the activation of tumorigenic signalings such as
Wnt signaling, PI3K signaling, and the induction of EMT. There are many other tumorigenic
pathways [76], including cell cycle [77], Hippo [78], Myc [79], Notch [80], NRF2 [81],
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Ras [82], and TGFβ [83]. An obvious question is whether the activation of these pathways
may generate iTSCs. The most effective way to induce iTSCs may depend on the oncogenic
pathway to be activated and this pathway may differ for each type of source cells.

In generating iTSCs, two alternative procedures can be considered. One alternative
procedure is the inactivation of anti-tumorigenic signaling. This is a logical prediction since
the activation of tumorigenic signaling may result in a state that is equivalent to the inacti-
vation of anti-tumorigenic signaling. For instance, AMP-activated protein kinase (AMPK),
a serine/threonine protein kinase that regulates cellular energy homeostasis [84], is mainly
considered ani-tumorigenic. It plays a vital role in cell metabolism and cell proliferation [85].
An activator of AMPK is reported to reduce the incidence of cancer [86,87]. AMPK in-
hibits tumor growth by inhibiting the mammalian target of rapamycin (mTOR) [88] and
cyclooxygenase-2 (COX-2) [89], and by activating p53 [90]. AMPK is also reported to inhibit
the integrin-dependent pathway that is known to promote tumor growth [91], through
integrin β1 [92] and FAK and Src [93]. It is of interest to examine whether the inhibition
of AMPK may generate iTSCs and tumor-suppressive secretomes. In addition to AMPK,
there are anti-tumorigenic signaling proteins that may have a potential to generate iTSCs,
including p53 [94], pRb [95], p21 [96], PTEN [97], and p16 [98].

The other formal possibility is the overexpression of tumor-suppressing proteins, such
as p53 [99–101]. If p53-overexpressing cells can secrete p53 in the extracellular domain
and extracellular p53 may suppress neighboring tumor cells, p53-overexpressing cells
are considered iTSCs. Besides the overexpression of tumor-suppressing proteins, we
cannot remove the possibility in which the inhibition of oncogenic signaling may generate
iTSCs. For instance, the treatment of an inducer of tumor-suppressing proteins, which
is considered to be an inhibition of oncogenic signaling, may generate iTSCs. Tumor
suppressor genes regulate varying cellular processes, including cell cycling, DNA damage
repair, protein degradation, and angiogenesis [102]. Further analysis is recommended to
generate iTSCs without activating tumorigenic signaling.

9. Regulatory Mechanism and Moonlighting Proteins

The reported tumor-suppressing proteins, enriched in iTSC CM [29,30,67], include
polyubiquitin C [103], enolase 1 [104], Hsp90ab1 [105], moesin [106], Eef2 [107], histone
H4 [108], Vinculin [109], and isomerase B [110], and ubiquitin C [111]. Interestingly, many
of these have been considered tumor-promoting proteins. Thus, as moonlight proteins,
these proteins may function as a tumor suppressor in the extracellular domain in iTSC
CM while a tumor promoter in the intracellular domain [112,113]. We have published
mass spectrometry-based whole-genome proteomics data and presented atypical tumor-
suppressing proteins [29,30,67]. For instance, it is demonstrated that recombinant proteins
of enolase 1 and ubiquitin C inhibit the proliferation and migration of breast cancer cells,
whereas its overexpression in breast cancer cells promotes their tumorigenic behaviors.
Specifically, the interaction of enolase 1 with CD44 was involved in the downregulation
of MMP9 [114], Runx2 [115], and Snail [116] in tumor cells [29]. Also, the activation of
PI3K signaling in MSCs generated tumor-suppressive MSC CM that included the elevated
level of cyclophilin B [30]. While extracellular cyclophilin B was found to act as a tumor
suppressor in mammary tumors, its high expression in breast cancer is associated with
malignant progression [117]. These observations raise a critical view on the current practice
of inhibiting specific tumor-promoting proteins such as cyclophilin B, Eef2, enolase 1,
Hsp90ab1, and ubiquitin C since their inhibition may also block their tumor-suppressing
action. Further analysis is needed to clarify the regulatory mechanism underlying the
action of atypical tumor-suppressing proteins in iTSC CM.

10. Translational Possibility of iTSC Secretomes

As a translational possibility, a patient may receive iTSC secretomes as an intravenous
injection or iTSCs as autologous implantation. It has been found that iTSCs and their
CM can be obtained from bone marrow-derived MSCs as well as T lymphocytes in the
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peripheral blood. Since tumor-suppressive MSC CM was generated by the treatment of
MSCs with YS49, an activator of PI3K signaling [30], it is not necessary to overexpress any
genes. A pharmacological agent such as YS49 can easily be removed by filtration [118]. It
is reported that the removal of exosomes elevated the tumor-suppressive capability [119],
while our ongoing treatment with nucleases did not alter the anti-tumor action of iTSC
CM. The detailed procedure to generate iTSCs, such as the selection and concentration of a
pharmacological agent, the type and number of cells as a source of iTSCs, and culturing
conditions and time, etc., should be carefully determined, and it may be custom-tailored to
each patient.

iTSC CM can be administered as a complete or partially filtered form to a patient sys-
temically or locally. A specific tumor-suppressing protein or a group of tumor-suppressing
proteins might be given to a patient. This combinatorial administration can be custom-
tailored for individual patients based on their types and stages of cancers. It is reported
that matched therapy (precision medicine) is associated with superior outcomes, compared
to non-matched therapy across tumor types and in specific cancers [120]. The mass pro-
duction of secretomes from commercially available cell lines may present an alternative
approach for the generation of iTSC CM [121,122].

11. Engineering the Anti-Tumor Secretomes

The secretion of anti-tumor secretomes can be augmented by targeting cellular com-
ponents or controlling the extracellular microenvironment. The former includes genetically
engineering the cells (gene transfer or gene editing), modifying cell surface receptors, or
delivery of biologics intracellularly via engineered nanoparticles [123]. Many of these
approaches have been established in altering secretomes of MSCs [124]). While directly
altering intracellular signaling is a powerful approach to affect secretomes, accumulating
evidence suggests that controlling the extracellular microenvironment may also dictate cell
fate processes, which include changing the compositions of the secretomes [125]. In this
regard, engineered biomaterials can provide desired cell-matrix interactions to improve cell
survival and influence their secretory properties via mechanosensing or activating receptor-
mediated signaling pathways [126]. Furthermore, conventional two-dimensional (2D) cell
culture may not be adequate to maintain the desired anti-tumor secretomes and recent
efforts in the design and engineering of 3D hydrogels may improve the anti-tumor secretory
properties. It is reported that advanced hydrogel technology facilitates investigating the
biophysical and biochemical cues impacting tumor microenvironments [127]. Uniquely,
hydrogels can be engineered to support long-term cell culture in a physiologically relevant
microenvironment [128]. Hydrogels can also directly influence secretomes via changing
the biophysical and biochemical properties [129].

12. Sustained Delivery of Anti-Tumor Secretomes

Direct injection of anti-tumor CM is convenient but not practical from a translational
standpoint. To this end, injectable polymeric protein carriers are uniquely suited for
providing long-term delivery of anti-tumor secretomes [126]. Considering that many
tumor sites are acidic, it will be ideal to develop a pH-responsive polymer carrier to achieve
stimuli-responsive delivery of CM [130]. The application of carriers, which synergistically
respond to pH/temperature, can improve the bioavailability and stability of CM, and
extend the circulation time of CM. Ideally, the polymer carrier should be easily formulated
with a CM payload for injectable delivery to the tumor/metastasis space [131]. Furthermore,
the polymer carrier should protect the CM from proteolytic degradation and provide a
mechanism for adaptive CM dosing that maximizes the therapeutic efficacy. These systems
can be responsive polymers that are sensitive to heat, light, pH, redox, enzyme, magnetic
field, ultrasound, hypoxia, etc. [132]. Ultimately, the sustained and controlled delivery of
engineered cell-derived CM will pave the way for the development of personalized CM,
where patient-derived cells are used to suppress the progression of primary and metastatic
tumors.
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13. Conclusions

The iTSC tumor-suppressive secretome is a mirror image of a chemotherapy-driven
tumor-promotive secretome. While identifying a target to be inhibited and designing
inhibitory drugs in chemotherapy is a prime task in the current drug development, identi-
fying a target to be activated and designing stimulatory drugs to generate iTSCs could be
an alternative possibility in cancer treatment. The efficacy of iTSC CM in preclinical studies
is encouraging. It is worth planning a translational study from a bench side to bedside and
testing its efficacy in clinical trials.
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