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Abstract: Objective: The combination of docetaxel (DTX) with Laser-Activated NanoTherapy (LANT),
as a treatment for head and neck cancer (HNC), may enhance the therapeutic efficacy of lower doses of
DTX, thereby minimizing the effective dosage, side effects and treatment times. Material and methods:
Three HNSCC cell lines, Detroit 562, FaDu, and CAL 27, were treated with four combinations of DTX
+ LANT to evaluate DTX dose reduction and cell viability. Results: The 1 nM DTX + 5 nM LANT
combination was the most effective treatment, increasing cell death over its corresponding DTX
monotreatment with approximately 86.6%, 80.7%, and 92.1% cell death for Detroit 562, FaDu, and
CAL 27, respectively. In Detroit 562, the 1 nM DTX + 5 nM LANT combination treatment resulted in
the highest percentage of DTX dose reduction at 84.6%; in FaDu and CAL 27, the 0.5 nM DTX + 5 nM
LANT combination treatment resulted in the highest percentage of DTX dose reduction at 78.2% and
82.4%, respectively. Conclusion: LANT may increase the therapeutic efficacy of DTX at significantly
lower doses, which could improve patient outcomes.

Keywords: docetaxel; combination therapy; nanoparticles; head and neck squamous cell carcinoma;
oncology; therapies

1. Introduction

Head and neck cancers (HNC) have a poor prognosis with a worldwide 5-year sur-
vival rate of less than 50% [1–3], and head and neck squamous cell carcinomas (HNSCC)
constitute 90% of these cases [4]. Many HNC patients present with locally advanced,
difficult-to-treat, inoperable, recurrent, or drug-resistant tumors [1–7]. Docetaxel (DTX) is
an anticancer drug that disrupts normal microtubule functioning during the cell cycle. It
inhibits interphase and mitosis by promoting and stabilizing the microtubule assembly
that prevents microtubule depolymerization, making the G2/M transition impossible [8,9].
This mechanism limits cell growth in the locoregional area of the tumor. However, DTX
is associated with adverse effects that may be severe or dose-limiting, including febrile
neutropenia, neuropathy, and alopecia [10–17]. Better patient outcomes may be achieved
with lower DTX doses that would result in fewer severe side effects.
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The scientific community is beginning to explore strategies to shift the therapeutic
window and reduce the effective dose of DTX. These strategies may limit complications
by combining DTX with other treatment modalities and manipulating the dosing sched-
ule [5,7]. For locally advanced HNSCC, DTX is paired concurrently with other chemothera-
peutic drugs. The established dose for this cancer type is 75 mg/m2 when administered
with cisplatin and fluorouracil at varying dosages and schedules, depending on the sub-
sequent treatments such as radiation or chemotherapy [18–21]. Studies combining DTX
with other chemotherapeutic drugs and varying the DTX dosage and delivery have shown
great potential in decreasing side effects [19,22,23].

Nanoparticles and nanomaterials have shown to be promising anticancer therapeutics
alone and in combination with chemotherapeutic agents. These nanomedicines have dra-
matically improved tumor targeting and therapeutic efficacy when used in drug delivery
systems, radiotherapy, and photothermal or photodynamic therapy [24–30]. Many nano-
based approaches have been combined with DTX to enhance targeted drug delivery and
tumor specificity, consequently minimizing side effects [23,31–37]. Photothermal therapies
utilizing nanoparticles and laser light have shown success in tumor treatment in vitro and
in vivo as a site-specific ablative approach rather than theranostic drug delivery [37,38].
Our work focuses on a particular class of laser-activated nanoparticles, specifically, a ther-
mal ablation platform treatment using near-infrared excitation of gold nanorods (AuNRs),
known as Laser-Activated NanoTherapy (LANT) (Figure 1). This LANT platform is not
designed to enhance targeting but specifically to induce locoregional cell death at the site
of laser activation for the sole purpose of its thermal ablation and therapeutic effect. Our
prior work with LANT as a single modality has demonstrated ~100% cell death in vitro
(p < 0.0001) and ~100% tumor regression in vivo (p < 0.0001) with no observable side
effects [39,40]. However, to our knowledge, no such platform has been approved by the
United States Food and Drug Administration (FDA) for use in humans. LANT presents an
opportunity to override some of the physiologic obstacles encountered within the tumor
microenvironment and with DTX specificity that lead to severe side effects when using the
current DTX dosing schedule. The present study investigates how LANT may enhance the
therapeutic efficacy of lower doses of DTX for treating three head and neck squamous cell
carcinoma (HNSCC) cell lines.
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Figure 1. (A) PEGylated AuNRs solution utilized in Laser-Activated Nanotherapy (LANT); (B) UV-VIS-NIR spectrum
of AuNRs showing an 808 nm absorption peak and (C) scanning transmission electron microscope (STEM) image of
AuNRs having 40 nm in length, 10 nm in width, and aspect ratio (R = 4), with up to six-month stability; and (D) schematic
illustration of DTX and LANT combination treatment in vitro. The illustration demonstrates one well of a 96-well plate.



Onco 2021, 1 85

2. Results
2.1. Cell Death Effects of LANT Monotreatment

The in vitro effects of LANT as a monotreatment (percentage of cell death, dose-
response curves, and half-maximal effective concentrations (EC50) of 8.1, 11.0, and 6.7 nM)
were previously established for Detroit 562, FaDu, and CAL 27, respectively [41,42]. In
summary, 4 min NIR laser excitation of AuNRs at six concentrations (0, 5, 10, 15, 20, and
25 nM) demonstrates AuNR concentration-dependent cell death (Figure 2). LANT induced
significant cell death in all three HNSCC cell lines with increasing AuNR concentration,
directly increasing the percentage of cell death. Consistent with our previous findings [39],
LANT doses of 25 nM induced approximately 100% cell death (p < 0.0001) in all three
HNSCC cell lines.
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AuNRs per well, with and without 808 nm NIR activation for 4 min at 1.875 W/cm2. Dots show the mean values of n = 6.

2.2. Cell Death Effects of DTX Monotreatment

To establish dose–response curves and EC50 for DTX monotreatment, the percentage
of cell death induced was determined after incubating the cells for 48-h with DTX con-
centrations ranging between 0.0025–20 nM, resulting in a dose-dependent increase in cell
death (Figure 3). Detroit 562 and FaDu were more sensitive to DTX at lower doses (1 nM
and lower), whereas CAL 27 was most responsive to DTX at higher doses (2.5 nM and
higher). The EC50 values of DTX for Detroit 562, FaDu, and CAL 27 were 1.09, 0.90, and
1.24 nM, respectively (Table 1). In the present study, 20 nM of DTX resulted in approxi-
mately 94% cell death in Detroit 562 and FaDu and greater than 99% cell death in CAL 27
48 h after treatment.
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Table 1. EC50 values for LANT and DTX monotreatments. The EC50 values informed the AuNRs
concentrations and DTX doses used in the combination treatment.

EC50
Cell Lines

Detroit 562 FaDu CAL 27

LANT (nM) 8.08 11.03 6.68
DTX (nM) 1.09 0.90 1.24

2.3. Combination of DTX and LANT Treatments, Synergy, and Dose Reduction

The monotreatment EC50 values that induced 50% cell death (Table 1) informed the
dose selection for the combination experiments to narrow the focus to low doses of DTX and
LANT. To delineate the efficacy of the DTX + LANT combination treatment, 0.5 and 1 nM of
DTX were selected for the combination treatment as these concentrations induced less than
50% cell death for all cell lines. Likewise, 2.5 and 5 nM of AuNRs for LANT were selected
as these concentrations induced less than 50% cell death for all cell lines. The percentage
of DTX dose reduction was determined using the 4PL model equations according to our
previously described methods [43,44]. In short, using the 4PL model equations of DTX
monotreatment for each cell line (Equations (1)–(3)) and the cell death percentage induced
by the DTX and LANT combination, we calculated the corresponding DTX monotreatment
dose necessary to achieve the same cell death and finally, the percentages of DTX dose
reduction shown in Table 2.

We define synergy as when the percentage of cell death induced by the combination
treatment of DTX + LANT is greater than the sum of the individual monotreatment-induced
percentages of cell death. The mean percentage of cell death generated by combining low
dose DTX and low dose LANT was greater than DTX monotreatment, and a synergis-
tic effect was observed in most instances (Figure 4). In particular, the percentage of
cell death due to the three DTX + LANT combination treatments, 0.5 nM DTX + 5 nM
LANT (Figure 4B), 1 nM DTX + 2.5 nM LANT (Figure 4C), and 1 nM DTX + 5 nM LANT
(Figure 4D) was significantly higher than the two DTX monotreatments (0.5 or 1 nM) or
two LANT monotreatments (2.5 or 5 nM) for all three HNSCC cell lines, Detroit 562, FaDu,
and CAL 27. For example, in the case of CAL 27 shown in Figure 4B, the percentage of cell
death by 0.5 nM DTX + 5 nM LANT combination treatment, 84.1% was much greater than
the summation of each percentage by 0.5 nM DTX and 5 nM LANT monotreatments, 63.9%
(34.9% + 29.0%). The therapeutic efficacy of low-dose DTX combined with LANT leads to a
DTX dose reduction (Table 2). For Detroit 562, the largest DTX dose reduction was achieved
by 1 nM DTX + 5 nM LANT combination treatment: 84.6%. The 0.5 nM DTX + 5 nM LANT
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combination treatment resulted in the highest percentage of DTX dose reduction for FaDu
and CAL 27: 78.2% and 82.4%, respectively. For example, 86.6% Detroit 562 cell death can
be induced by 6.5 nM of DTX monotreatment or 1 nM DTX when combined with 5 nM
LANT, demonstrating an 84.6% DTX dose reduction.

Table 2. DTX dose reduction percentage by DTX + LANT combination treatment.

Cell Line Outcome
Treatment Combination

0.5 nM DTX +
2.5 nM LANT

0.5 nM DTX +
5 nM LANT

1 nM DTX +
2.5 nM LANT

1 nM DTX +
5 nM LANT

Detroit 562

Cell death (%) in combo 48.4 57.5 81.3 86.6
Est. conc. (nM) of DTX mono to

obtain the same % cell death 0.9 1.3 4.4 6.5

DTX dose reduction (%) 43.0 61.7 77.2 84.6 a

FaDu Cell death (%) in combo 40.9 73.1 67.0 80.6
Est. conc. (nM) of DTX mono to

obtain the same % cell death 0.6 2.3 1.7 3.5

DTX dose reduction (%) 22.7 78.2 a 42.2 71.5
CAL 27 Cell death (%) in combo 49.0 84.1 80.9 92.1

Est. conc. (nM) of DTX mono to
obtain the same % cell death 1.2 2.8 2.6 4.2

DTX dose reduction (%) 57.0 82.4 a 60.8 76.0
a Indicates the combination treatment that resulted in the highest percentage of DTX dose reduction for each cell line.
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Figure 4. Box and Whisker plot to display the synergy of LANT and DTX combination treatment for HNSCC cell lines:
Detroit 562 (blue bar), FaDu (orange bar), and CAL 27 (gray bar). (A) 0.5 nM DTX + 2.5 nM LANT combination, (B) 0.5 nM
DTX + 5 nM LANT combination, (C) 1 nM DTX + 2.5 nM LANT combination, and (D) 1 nM DTX + 5 nM LANT combination.
Cells were subjected to a 48-h incubation with 0.5 or 1 nM DTX and 4-min exposure of 2.5 or 5 nM LANT as a monotreatment
or combination; NIR laser excitation for 4 min at 1.875 W/cm2. Dots show the mean values of n = 4 and * indicates
synergic effect.
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2.4. Summary Statistics and Linear Mixed Model (LMM) Regression Post Hoc Results

According to our previously established methods, the LMM regression post hoc test
compared the means of the six DTX and LANT monotreatments versus combination treat-
ment groups for all three HNSCC cell lines [42]. These post hoc analyses are summarized
in Table 3, showing statistically significant differences (p < 0.05) in the means for most
of the comparison groups. DTX and LANT treatment combinations were, in general,
significantly more effective than the corresponding DTX monotreatments. In this study,
the best-performing treatment regimen combined 1 nM DTX + 5 nM LANT, with approxi-
mately an 86.6%, 80.6%, and 92.1% increase in cell death versus 1 nM DTX alone for Detroit
562, FaDu, and CAL 27 cells, respectively. The other treatment combinations also induced
significantly more cell death than 0.5 or 1 nM DTX alone. There were two comparisons
(of 15 comparisons) for Detroit 562 and CAL 27 and 1 comparison for FaDu that did
not reach statistical significance (Table 3). The LANT monotreatment was omitted from
this comparison because we previously showed that the effective LANT monotreatment
dose significantly induced tumor regression by approximately 100% (p < 0.0001) with no
observed toxicity or side effects [39].

Table 3. Therapeutic efficacy comparison of 15 treatment groups.

Treatment Group Comparison a

(First Column vs. Second Column)

Detroit 562 FaDu CAL 27

Mean
Diff. b

Unadj.
p-Value c

Adj.
p-Value d

Mean
Diff. b

Unadj.
p-Value c

Adj.
p-Value d

Mean
Diff. b

Unadj.
p-Value c

Adj.
p-Value d

0.5 nM DTX + 2.5 nM LANT 0.5 nM DTX 23.0 <0.0001 * <0.0001 * 19.3 <0.0001 * <0.0001 * 14.2 <0.0001 * <0.0001 *
0.5 nM DTX + 5 nM LANT 0.5 nM DTX 32.1 <0.0001 * <0.0001 * 51.5 <0.0001 * <0.0001 * 49.2 <0.0001 * <0.0001 *
1 nM DTX + 2.5 nM LANT 0.5 nM DTX 55.2 <0.0001 * <0.0001 * 45.3 <0.0001 * <0.0001 * 46.1 <0.0001 * <0.0001 *
1 nM DTX + 5 nM LANT 0.5 nM DTX 61.1 <0.0001 * <0.0001 * 59.0 <0.0001 * <0.0001 * 57.3 <0.0001 * <0.0001 *

0.5 nM DTX + 2.5 nM LANT 1 nM DTX 5.3 0.0219 0.3285 8.8 0.0002 § 0.0036 § 4.9 0.0306 0.4595
0.5 nM DTX + 5 nM LANT 1 nM DTX 14.4 <0.0001 * <0.0001 * 41.0 <0.0001 * <0.0001 * 40.0 <0.0001 * <0.0001 *
1 nM DTX + 2.5 nM LANT 1 nM DTX 37.5 <0.0001 * <0.0001 * 34.8 <0.0001 * <0.0001 * 36.9 <0.0001 * <0.0001 *
1 nM DTX + 5 nM LANT 1 nM DTX 43.4 <0.0001 * <0.0001 * 48.5 <0.0001 * <0.0001 * 48.1 <0.0001 * <0.0001 *

1 nM DTX 0.5 nM DTX 17.7 <0.0001 * <0.0001 * 10.5 <0.0001 * 0.0003 9.2 0.0001 § 0.0019 §

0.5 nM DTX + 5 nM LANT 0.5 nM DTX + 2.5 nM LANT 9.1 0.0001 § 0.0021 § 32.2 <0.0001 * <0.0001 * 35.0 <0.0001 * <0.0001 *
1 nM DTX + 2.5 nM LANT 0.5 nM DTX + 2.5 nM LANT 32.2 <0.0001 * <0.0001 * 26.0 <0.0001 * <0.0001 * 31.9 <0.0001* <0.0001 *
1 nM DTX + 5 nM LANT 0.5 nM DTX + 2.5 nM LANT 38.2 <0.0001 * <0.0001 * 39.7 <0.0001 * <0.0001 * 43.1 <0.0001 * <0.0001 *

1 nM DTX + 2.5 nM LANT 0.5 nM DTX + 5 nM LANT 23.1 <0.0001 * <0.0001 * −6.2 0.0077 0.1157 −3.1 0.1658 0.999
1 nM DTX + 5 nM LANT 0.5 nM DTX + 5 nM LANT 29.0 <0.0001 * <0.0001 * 7.5 0.0014 † 0.0204 † 8.1 0.0006 † 0.0097 †

1 nM DTX + 5 nM LANT 1 nM DTX + 2.5 nM LANT 5.9 0.0101 0.1522 13.7 <0.0001 * <0.0001 * 11.2 <0.0001 * <0.0001 *

a Comparing the therapeutic efficacy of each DTX monotreatment and combination treatment groups by the Linear Mixed Model (LMM)
regression post hoc tests with Bonferroni correction for three HNSCC cell lines. For treatment group comparison, the first column was more
effective than the second column by the mean difference amount. b Mean Diff., Mean Difference = first column–second column c Unadj.
p-value, unadjusted p-value; * p < 0.0001; § p < 0.005; and † p < 0.05 d Adj. p-value, adjusted p-value; * p < 0.0001; § p < 0.005; and † p < 0.05.

3. Discussion

Adjuvant, neoadjuvant, and combination therapies are emerging and viable ap-
proaches to overcome the current challenges experienced by patients who cannot receive
or tolerate standard chemotherapeutic treatment regimens. This current in vitro study
presents the possibility of a patient-centered solution that may reduce the standard DTX
dosage and associated side effects for patients with locally advanced HNSCC. DTX has
shown promise to decrease toxicity at lower doses when combined with other therapeutic
interventions while maintaining or improving efficacy.

The most widely accepted DTX combination therapy for HNSCC patients is with
cisplatin and 5-fluorouracil (TPF) [20,21]. This combination was found to effectively
extend the survival rate in patients diagnosed with locally advanced HNSCC compared
to cisplatin or cisplatin/5-fluorouracil (PF) alone [20,22]. Albers et al. demonstrated an
effective and tolerable dosage of 75 mg/m2 DTX on a 21-day cycle when combined with
PF, a 25% decrease from the maximum tolerated dose of DTX as a single agent [45]. Other
studies reveal improved outcomes with DTX dosage reduction, including a phase II clinical
trial using DTX at 20 mg/m2 per week combined with bevacizumab and radiotherapy.
This combination showed promising survival outcomes despite a 40% decrease from the
maximum standard dose of DTX [46]. Combining DTX with immune checkpoint inhibitors
in HNSCC is also very promising [47].
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Emerging preclinical and clinical studies combining DTX with novel interventions,
such as nanomedicines and therapeutic nanotechnologies, offer a renewed potential for
DTX dose reduction and enhanced drug delivery [23,31–37,48,49]. A variety of nanomate-
rials have impacted DTX effectiveness by allowing for selective distribution to the cancer
cells, increased circulation times, and a more sustained drug release [32–34]. Furthermore,
surface-coated nanoparticles may significantly increase targeting, decrease immunogenicity,
and suppress nonspecific binding to charged molecules [35–37]. Similar to our approach,
Bannister et al. used PEGylated gold nanoparticles (GNPs) with DTX and radiotherapy
as a therapeutic strategy rather than a drug delivery system [23]. In their approach, DTX
redistributed GNPs closer to the nucleus of cancer cells, enhancing DTX double-stranded
breaks during radiation.

In this study, DTX dose reduction was assessed by combining low DTX doses with
LANT, and our results suggest that LANT improved the therapeutic efficacy of low DTX
doses in vitro. LANT dose reduction was omitted from this study because our previous
in vivo study showed that the effective LANT monotreatment dose significantly induced
tumor regression by approximately 100% (p < 0.0001) with no observed toxicity or side
effects [39]. The performance of LANT monotreatment inspired the exploration of combin-
ing LANT with DTX as a synergistic therapeutic approach to lower the effective DTX dose,
minimize the side effects of DTX, and improve patient outcomes. Combining DTX + LANT
increased the percentage of cell death by up to 3.4-fold and the efficacy of cell death up
to 51.5% more than DTX monotreatment. The most effective treatment combinations con-
sistently demonstrated a >80% dose reduction in DTX to achieve the same level of cell
death as DTX alone. Our current results suggest that combining LANT with DTX may
dramatically lower the dose necessary to achieve therapeutic efficacy. The scope of LANT
is currently limited to a single, local treatment, and therefore, additional experimentation is
needed to examine its potential application in recurrent and metastatic disease. Our future
studies will address these limitations, validate our findings in vivo, and provide greater
insight on the clinical implications of LANT and DTX combination treatment, including
dose, side effects and administration routes.

4. Materials and Methods
4.1. Materials

Gold (III) chloride trihydrate (HAuCl4), cetyltrimethylammonium bromide (CTAB),
sodium borohydride (NaBH4), silver nitrate (AgNO3), L-ascorbic acid, potassium carbonate
(K2CO3), and dimethyl sulfoxide (DMSO) were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Thiol-terminated methoxy poly-(ethylene glycol) (mPEG-SH, MW 5000 K) and
DTX were purchased from Creative PEGWorks (Winston-Salem, NC) and Selleck Chemicals
(ImClone Systems, New York, NY, USA), respectively. UltraPure water (18 MΩ) was used
for gold nanorod preparation.

4.2. Preparation of AuNRs

AuNRs were prepared using seed-mediated growth, PEGylated, and characterized
according to the gold nanorods fabrication and characterization methods previously re-
ported [40]. Briefly, PEGylated AuNRs solution was centrifuged at 7600× g for 20 min at
25 ◦C and re-dispersed in deionized water to remove excess CTAB and non-specifically
bound mPEG-SH molecules. The maximum peak of plasmon resonance absorption for
different batches of AuNRs averaged at λ = 808 nm as measured by a UV/VIS spectropho-
tometer UV5 Nano (Mettler Toledo, LLC, Columbus, OH, USA). The shape and size of
AuNRs were confirmed by an aberration-corrected dedicated Scanning Transmission Elec-
tron Microscope HF2000 STEM (Hitachi High-Tech Corporation, Tokyo, Japan). The AuNRs
were approximately 40 by 10 nm, thus providing the aspect ratio, R = 4. The concentration
of AuNRs was calculated using Beer–Lambert Law based on the previously determined
molar absorptivity, ε = 5 × 109 L × mol−1 × cm−1 for 808 nm and aspect ratio, R = 4 [50].
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4.3. Cell Lines

Human HNSCC cell lines, Detroit 562 (pharynx), FaDu (hypopharynx), and CAL 27
(tongue), were purchased from the American Type Culture Collection (ATCC, Manassas,
VA, USA). All are tumorigenic and can translate to in vivo studies using xenografted
HNSCC mice models. Upon receiving the cell lines from ATCC, the passage number
was set at one, and passage 3–7 of each cell line was used. Cells tested negative for
mycoplasma. Cells were cultured in Dulbecco’s Modified Eagle Medium containing 10%
v/v heat-inactivated fetal bovine serum, supplemented with 4.5 g/L glucose, L-glutamine,
and penicillin-streptomycin, and incubated at 37 ◦C with 5% CO2.

4.4. Cell Death by LANT and DTX Monotreatments

For LANT monotreatment in vitro, a total of 6 × 104 cells/well were seeded in 96-well
culture plates and treated at approximately 100% confluence. The cell number per well was
6-times more than for DTX monotreatment to prepare a more than 99% confluent cell layer
after seeding because the LANT effect is more immediate than anticancer drug cytotoxicity.
AuNRs using a dose escalation of 0–25 nM in 25 µL were added to each well and immedi-
ately exposed to a diode near-infrared (NIR) laser (Information Unlimited, Amherst, NH,
USA) with 808 nm wavelength at 1.875 W/cm2 (spot size around 4 × 4 mm2) for 4 min at
room temperature. The 4-min duration of laser exposure in vitro was determined in our
prior work [40] and used to maintain methodological consistency. Within 5 min after laser
excitation of AuNRs, the percentage of cell death was determined by the PrestoBlue Assay
according to the manufacturer’s instructions. The percentage of cell death was calculated
by subtracting the percentage of cell viability from 100% (see formula below).

% of cell death = 100 − % cell viability
= 100 − (fluorescence of sample−fluorescence of blank)

( fluorescence of control−fluorescence of blank)
×100

For DTX monotreatment, cells were seeded in 96-wells plates at 1 × 104 cells/well
and allowed to adhere overnight. The culture medium was then replaced with a fresh
medium containing DTX at various concentrations, 0.0025–20 nM, and cells were incubated
at 37 ◦C for 48 h. A pilot study was used to determine the ideal exposure time to DTX.
The exposure for 24 h was insufficient to induce cell death, and 72 h exposure induced too
much cytotoxicity to distinguish the impact of LANT from the anticancer activity of the
respective DTX dose. Therefore, 48 h exposure was selected as the ideal DTX treatment
time for the combination with LANT. The percentage of cell death was determined by the
PrestoBlue Assay. The half-effective concentrations (EC50) of DTX and LANT for the 3
HNSCC cell lines were calculated with the IC50 calculator provided by AAT Bioquest®

and the Four-Parameter Logistic (4PL) model [43].

4.5. Combination of DTX and LANT In Vitro

HNSCC cells were treated with the combination of DTX and LANT according to the
methods used in our previous study [42], adapted as follows: HNSCC cell lines were
seeded in 96-well plates at 1 × 104 cells/well and allowed to adhere overnight. The cell
number was the same as that for DTX monotreatment. The cells were incubated with fresh
medium containing DTX at two concentrations (0.5 or 1 nM) at 37 ◦C for 48 h. Immediately
after the 48-h incubation, the DTX-medium was removed, and the cells were washed with
PBS once. Then 25 µL of AuNRs in PBS at 2.5 or 5 nM were added onto the DTX-treated
cells and exposed to 4 min of 808 nm wavelength NIR irradiation at 1.875 W/cm2. As de-
scribed above, the final percentage of cell death induced by the DTX + LANT combination
treatment was evaluated using the PrestoBlue Assay immediately after LANT treatment.
Each treatment combination was performed in quadruplicate (n = 4), and the results are
expressed as the mean ± standard deviation.
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The dose reduction realized by combining DTX with LANT was estimated by com-
paring the combination treatment to the monotreatment using the 4PL model equation for
each cell line, as shown below.

For Detroit 562,

y = 5.955 +
(100.971 − 5.955)

1 +
( x

1.094
)−0.967 (1)

For FaDu,

y = 3.854 +
(95.612 − 3.854)

1 +
( x

0.895
)−1.197 (2)

For CAL 27,

y = 2.043 +
(101.778 − 2.043)

1 +
( x

1.238
)−1.842 (3)

To determine the percentage of cell death that is in common with both the DTX
monotreatment and DTX + LANT combination treatment, we substituted the cell death per-
centage in the combination treatment obtained from in vitro data for y in Equations (1)–(3) for
each cell line and then solved for x to calculate the corresponding DTX monotreatment dose.

4.6. Statistical Power and Analysis

The total sample size for the regression analyses was 72 (four observations per each of
the six treatments (n = 6) and three cell lines). We assumed (1) an Ordinary Least Square
multiple regression model with the treatment by cell lines as predictors, (2) an assumed
R2 value of 0.7 for the full model (proportion of variability in percent cell death explained
by the treatment by cell combinations), (3) a differential effect in R2 of 0.025 for each
treatment by cell line combination, and (4) overall 0.05 significance level. Consequently,
there is at least 90% power to detect a statistically significant difference between at least
eight comparisons of DTX and LANT versus DTX monotreatment. Cell death percentages
across the six treatment conditions, by cell line, were summarized by mean and standard
deviations, median (min and max). The Linear Mixed Model (LMM) regression modeling
approach with interaction (between treatment and cell lines) terms was used to compare
the percentage of cell death between treatment combinations by cell lines. Multiple com-
parisons were adjusted using the Bonferroni correction, with an overall nominal statistical
significance of α = 0.05. In other words, the synergy/interaction was evaluated using
procedure MIXED in SAS, and our model incorporated interactions between treatment
groups and cell lines. The algorithm underlying this model used additive effects, which
took into account the hierarchal order of the magnitude of these effects. All of the iterative
versions of the model applied the Bonferroni correction for multiple comparisons. No
sigmoid (non-linear) feature for data was detected since the percent data lies between 17
and 95. However, given the bounded nature of the percent data (between 0 and 100), LMM
results were also confirmed using a two-limit Tobit model [44]. The comparisons of interest
are those between DTX monotreatment (i.e., 0.5 nM DTX and 1 nM DTX) and DTX and
LANT combination treatment (i.e., 0.5 nM DTX + 2.5 nM LANT; 0.5 nM DTX + 5 nM LANT;
1 nM DTX + 2.5 nM LANT; and 1 nM DTX + 5 nM LANT). Summaries and differences
were plotted using Boxplots. All analyses used SAS 9.4 and R statistical software (R Core
Team, 2019).
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