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Abstract

:

Background: This research goes into in deep learning technologies within the realm of medical imaging, with a specific focus on the detection of anomalies in medical pathology, emphasizing breast cancer. It underscores the critical importance of segmentation techniques in identifying diseases and addresses the challenges of scarce labelled data in Whole Slide Images. Additionally, the paper provides a review, cataloguing 61 deep learning architectures identified during the study. Objectives: The aim of this study is to present and assess a novel quantitative approach utilizing specific deep learning architectures, namely the Feature Pyramid Net-work and the Linknet model, both of which integrate a ResNet34 layer encoder to enhance performance. The paper also seeks to examine the efficiency of a semi-supervised training regimen using a dual model architecture, consisting of ‘Teacher’ and ‘Student’ models, in addressing the issue of limited labelled datasets. Methods: Employing a semi-supervised training methodology, this research enables the ‘Student’ model to learn from the ‘Teacher’ model’s outputs. The study methodically evaluates the models’ stability, accuracy, and segmentation capabilities, employing metrics such as the Dice Coefficient and the Jaccard Index for comprehensive assessment. Results: The investigation reveals that the Linknet model exhibits good performance, achieving an accuracy rate of 94% in the detection of breast cancer tissues utilizing a 21-seed parameter for the initialization of model weights. It further excels in generating annotations for the ‘Student’ model, which then achieves a 91% accuracy with minimal computational demands. Conversely, the Feature Pyramid Network model demonstrates a slightly lower accuracy of 93% in the Teacher model but exhibits improved and more consistent results in the ‘Student’ model, reaching 95% accuracy with a 42-seed parameter. Conclusions: This study underscores the efficacy and potential of the Feature Pyra-mid Network and Linknet models in the domain of medical image analysis, particularly in the detection of breast cancer, and suggests their broader applicability in various medical segmentation tasks related to other pathology disorders. Furthermore, the research enhances the understanding of the pivotal role that deep learning technologies play in advancing diagnostic methods within the field of medical imaging.
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1. Introduction


As technology increases, humans are becoming more capable of finding and diagnosing anomalies found in the body and the material world of things, particularly in cancerous tissues like breast cancer. These progressions in technology have brought forth mathematical equations like the perception introduced by Frank Rosenblatt et al., 1958 [1]. Although this formula shows simplicity, it is the foundation for more complex deep learning models such as Multilayer Perceptrons (MLPs) models as well as Convolutional Neural Networks (CNNs) which can further be seen in the well-known paper ImageNet classification with deep CNNs [2], which will be discussed further in this paper. These models have been the starting block to the deep learning world of artificial intelligence, and have allowed for the intelligence on medical images containing pathology anomalies through CNN architectures and segmentation.



Humanity faces many medical problems, one of which is that very prominent ‘breast cancer’ is detected through various imaging techniques, whether it be from Magnetic Resonance Imaging (MRI), computed tomography (CT) scans, or others. Humans have reached a point where they can detect medical disorders more effectively than before. The main part of this research will introduce breast cancer as one of the diseases that can be detected via segmentation and deep learning models. However, to do this, an understanding of cancer as well as training models are needed, to use the intelligence to further improve disease detection in the medical field.



To distinguish between healthy bodily tissues and those prone to disease or other abnormalities, segmentation can be used. Segmentation involves taking tiles of images from high-definition scans, as well as using masks or, rather, labeled data that identify regions of disease, to train the model to recognize what constitutes a disease or irregular tissue. This training is conducted via a deep learning model that performs millions of calculations to classify data points within a complex network of neurons.




2. Literature Review


In this section, the focus is on deep learning models and their understanding, specifically CNN and its influence on artificial intelligence. The methods these neural networks use to learn, including backpropagation and gradient descent, are explored. Additionally, the applications of CNNs in imaging, such as analyzing Whole Slide Images and segmenting images, are discussed. Lastly, the complexities involved in interpreting data using these models are addressed. However, as this paper is on breast cancer, some information should be more explored on this issue.



2.1. Global Disparities in Breast Cancer


Breast cancer poses a significant threat to women’s health globally. In 2020, it afflicted approximately 2.3 million women worldwide and claimed 685,000 lives. Incidence rates are highest in developed regions such as Australia/New Zealand, Western Europe, and North America (>80 per 100,000 females), while the lowest rates are seen in parts of Africa, Asia, and Central America (<40 per 100,000). Sadly, some of the highest mortality rates (>20 per 100,000) occur in Melanesia, Western Africa, and Micronesia/Polynesia. These stark disparities highlight the urgent need for continued research into breast cancer [3]. Early detection offers the best chance of survival, and this is where tools like ultrasound (US) imaging come into play. Ultrasound is a painless and widely used technique that plays a crucial role in the early identification of breast cancer [4]. Please refer to Table 1 for the impact of breast cancer on a global scale.



These statistics underscore the critical importance of breast cancer and the necessity of adopting any possible measures to combat this disease. Early detection can significantly improve survival rates, highlighting the potential of deep learning models as a vital solution in this fight.




2.2. Deep Learning Models: Convolutional Neurol Network (CNN)


Deep learning models have made strides in the field of intelligence. They are a type of machine learning model that focuses on representation learning and uses neural networks. Unlike classical/traditional machine learning techniques, deep learning models excel at detecting and understanding patterns within large datasets by leveraging multiple layers of nonlinear processing. This ability has revolutionized how computers analyze and process data leading to possibilities in AI research and applications, and from the medical field to 3D objects in the metaverse [5,6,7].



One key aspect of learning models is their architecture, which consists of layers such as input, hidden, and output layers. Each layer performs operations on the input data, gradually transforming it. The ‘deep’ part refers to the presence of layers that enable the model to learn increasingly intricate features at each stage. The depth and breadth of these layers greatly impact the model’s capacity to learn and adapt [8].



To enhance understanding of deep learning models and their various architectures, this research examined 61 deep learning models briefly, and they have been listed to help with the research in cancer and other pathologies (Table A1). Among them, two models emerged, LinkNet as well as FPN. To further comprehend the workings of these deep learning models, an exploration of backpropagation and gradient descent is essential.




2.3. Deep Learning Models, Backpropagation, and Gradient Descent


The learning process in deep learning models hinges on backpropagation and gradient descent. Backpropagation adjusts network weights based on output errors by applying the chain rule to compute the gradient of the loss function with respect to each weight, effectively propagating errors backward through the network [9]. Gradient descent, an iterative optimization algorithm, then minimizes the loss function by adjusting these weights based on the computed gradients [10]. Together, these mechanisms enable continuous improvement of the model’s predictions by minimizing the error between the predicted and actual outcomes.




2.4. Algorithm and Equations


(I) Initialization: Start by selecting values, for the weights typically chosen randomly. (II) Compute Gradient: Employ backpropagation to calculate the gradient of the loss function concerning each weight. (III) Update Weights: Adjust the weights in the opposite direction to the gradient:


Weightnew = Weightold − η × Gradient



(1)




where η is referenced to the learning rate, as well as a small positive scalar determining the step size. (IV) Iterate: Repeat steps (II) and (III) until the loss function reaches its point indicating convergence [11].




2.5. Combining Backpropagation and Gradient Descent


In the context of neural networks, backpropagation and gradient descent (Figure 1C) work together. Backpropagation and gradient descent are two components in the field of neural networks. They collaborate to allow the model to learn from its mistakes effectively. Backpropagation calculates the gradients, providing the direction in which the weights need to be modified to minimize the loss. Subsequently, gradient descent utilizes these gradients to update the weights throughout iterations or epochs until the desired level of accuracy is reached [10].




2.6. Whole Slide Images (WSIs)


A lot of medical research is conducted using Visual Computing, and other similar types of research use WSIs. WSIs are high-resolution images that have been extracted from glass slides. WSIs become essential in the research used in pathology. WSIs are used in medical research, disease diagnosis, and education. One of the reasons for this is that WSIs allow for the entire tissue samples, which give pathologists the capability to examine and cross-reference the whole tissue, much like an improved version of microscopy [12,13].



WSIs are extensively used in CNN deep learning models. In this context, WSI has been used a lot in segmentation, classification, and detection. The reason for this is due to the size to which WSIs can extend, that being over gigabytes per image with a high level of specific details found in the image. This can bring challenges in computation and dealing with this large-size data effectively. Additionally, annotations of the data are time-consuming due to their size and variability due to differences in staining slide preparation and the scanning across different labs [14,15,16].



An illustration of the WSI images is formed in a medical context. The image outlines the steps, from preparing the tissue sample to scanning and the creation of the digital image.




2.7. Segmentation


By definition, segmentation is defined as “the act of dividing something into different parts” [17]. Image segmentation, by definition, involves dividing images into segments or ‘tiles’ that are considered to be similarly related. Although the segmentation process depends on a low-level representation of data, which could relate to lighting, layer weight, and texture, segmentation cannot explicitly identify regions that may or may not belong to certain categories [18].



Semantic segmentation is distinct in that it classifies each pixel within an image, which is relevant because it allows for a more precise understanding of individual objects rather than just regions or segments. This method enables objects to be distinguished based on consistent patterns associated with them [18]. Semantic segmentation offers superior analysis compared to traditional segmentation methods. The patterns discerned in the images can provide insights into various problems encountered in the physical world.




2.8. Common Deep Learning Models Used for Cancer Detection


In the realm of breast cancer detection and diagnosis, the advent of deep learning models has marked a significant shift, particularly transforming medical imaging technologies. Notably, models such as U-Net, Mask R-CNN, and Generative Adversarial Networks (GANs) have emerged as landmarks, establishing new standards in the field. U-Net is celebrated for its precision in tumor detection and segmentation, demonstrating notable success in segmenting lung cancer lesions in PET/CT scans. Its convolutional encoding–decoding framework is particularly effective for intricate segmentation and improved classification accuracy, benefiting greatly from approaches like few-shot learning. This model’s utility is not just confined to lung cancer but extends to breast cancer and various other diagnostic realms [19,20,21].



Following U-Net, Mask R-CNN has made substantial contributions by enhancing image analysis capabilities, especially in isolating and segmenting specific regions within medical imagery. This model’s ability to perform pixel-perfect segmentation is particularly crucial for the complex visuals associated with breast cancer diagnostics, offering insights far beyond conventional methods. The precise demarcation of anatomical structures that Mask R-CNN facilitates is invaluable in the medical imaging sphere [22,23,24].



Generative Adversarial Networks (GANs) introduce a unique benefit by producing synthetic images to enlarge datasets, thereby addressing the dual challenges of data scarcity and privacy. This enhancement in data availability improves the training and performance of models without risking sensitive information. Additionally, GANs boost the robustness and precision of medical imaging models, significantly aiding the creation of more effective diagnostic tools [24,25].



This study further introduces the Feature Pyramid Network (FPN) and LinkNet models, selected for their specialized abilities to navigate the intricacies of different cancers detection. By examining these models in conjunction with the foundational progress made by U-Net, Mask R-CNN, and GANs, we undertake an analysis, shedding light on FPN and LinkNet.



Addressing the ongoing challenges, this research advocates for the integration of LinkNet and the Feature Pyramid Network (FPN). These models are distinguished by their effectiveness in managing the complex demands of medical image segmentation in different cancers detection. LinkNet, with its efficient segmentation process and lightweight architecture, promises to enhance the speed of tissue identification in high-resolution images without sacrificing accuracy, an attribute particularly beneficial for typical imaging datasets [26]. Conversely, FPN is recognized for its layered approach, significantly boosting the model’s capacity to detect breast cancer at various sizes, a feature crucial for identifying smaller, previously overlooked lesions, thereby advancing early detection efforts [27].



The selection of the LinkNet and Feature Pyramid Network (FPN) models designs is based on their ability to go beyond the limitations of current approaches. This allows for efficiency and flexibility. These models excel in handling variations in lesion sizes, which helps in creating thorough methods for detecting breast cancer. Moreover, this research aims to utilize a teaching strategy known as teacher–student learning to enhance the training process of these models.



In this teaching framework, a sophisticated ‘teacher’ model imparts knowledge to a simpler ‘Student’ model as discussed in this paper. The Student model then learns to imitate the performance of the Teacher model improving its capabilities with computational requirements. This method is especially useful when using complex models that are not feasible due to resource limitations. Through this approach, the Student model can efficiently and accurately detect breast cancer while maintaining effectiveness.



This study focuses on assessing how well the LinkNet and FPN models perform in terms of efficiency when using the teacher–student approach compared to established models. By exploring this teaching technique, we hope to discover strategies for enhancing detection methods and advancing breast cancer imaging further.



The combination of LinkNet and FPN, along with the teaching method using a teacher–student, approach shows potential for bringing insights and significant benefits which could accelerate advancements in identifying and treating breast cancer.





3. Methodology


In this section, the focus is on a training approach for segmentation models that handle data annotations. A dual-model architecture is employed, consisting of a ‘Teacher’ model (TM) and a ‘Student’ model (SM). The TM undergoes training on annotated WSIs using binary cross entropy and dice loss metrics to optimize performance. This model then generates soft pseudo annotations for WSIs to enhance the dataset. Subsequently, the SM is trained using both authentic and pseudo annotations, with a process that continues until maximum stability or convergence is achieved. Furthermore, the importance of evaluating the accuracy and overlap between the model’s predictions and actual data is highlighted, using metrics such as the Dice Coefficient and Jaccard Index. These metrics are crucial in ensuring precision in medical imaging segmentation by aiming for similarity and complete overlap between predicted results and ground truth data.



3.1. Segmentation Model Training Strategy


Segmentation performed in machine learning, or without the means of segmentation, the semi-supervised training scheme offers an efficient strategy for images that have incomplete annotated data. The model used has a dual-model architect (Figure 2) which is the ‘Teacher’ model (TM) and a ‘Student’ model (SM). This process of training begins with the TM, where all the whole slide images (WSIs) in the dataset have annotated data or the equivalent masked data. This is then used to optimize the Binary Cross Entropy (BCE) as well as the Dice loss (DICE) as performance metrics [28].



The best performing model in validation is then selected as the best Teacher model (Figure 2). This model will then generate ‘soft’ pseudo annotations for the unlabeled WSI image data. It should be noted that although this method is not as trustworthy as true annotations, it enriches the dataset by a huge means [30].



The next step in this process is building on this expanded dataset. SM is then trained adding both authentic and pseudo annotations into its learning paths. The validation set again serves as the benchmark for selecting the better Student model, which, upon surpassing its teacher counterpart in performance, assumes the role of the teacher in subsequent iterations [31]. This iterative cycle is then cycled until the model’s accuracy finds its highest stability, also known as a state of convergence. This iterative refinement takes advantage of the predictive accuracy of the TM to improve the SM, which overcomes the problem of the lack of labeled data and increasingly improves the model’s performance with each iteration [32].



In this approach, the validation procedure plays a crucial role in ensuring the efficiency and dependability of segmentation models. After the training phase, each model—both TM and SM—undergoes a validation stage using a set of images not utilized during training. Throughout this stage, the models’ performance is assessed on their capability to accurately segment images, which is vital for evaluating their ability to generalize. Performance is measured using the Dice Coefficient and Jaccard Index, which gauge the overlap between the models’ predictions and the actual annotations. These validation metrics are essential as they offer an assessment of how the models’ predicted segmentation aligns with ground truth data. A higher score signifies a close match between the models’ output and the real data, which is critical in medical imaging where precision is key. The validation stage aids not only in choosing the best-performing models, but also in adjusting their parameters for optimal performance. By tracking these metrics, we can identify when a Student model has outperformed its teacher in terms of accuracy and generalization, guiding the training process towards generating more refined and accurate segmentation models. This methodical validation process guarantees that the ultimate model put into use is robust, trustworthy, and suitable for real-world use in diagnosis and treatment planning.



3.1.1. Dice Coefficient (Sørensen–Dice Index)


The Dice coefficient, which is also known as the Sørensen Dice index or Dice Similarity Coefficient (DSC), is a tool used in statistics. It is used to measure the commonness between two sets of data. In this research, this DSC is used to find the commonness of WSI segmentation. This is performed by DSC comparing the pixel-wise agreement between the ground truth segmentation and the segmentation shown by the deep learning model [33,34].



This is the formula used to prudence the dice coefficient:


DSC = ∣X∣ + ∣Y∣2 × ∣X∩Y∣



(2)







X is the predicted group of pixels that belong to the class of cancer; for example, Y, being the ground truth [34]. To iterate, an increased number in the DSC indicated an increased similarity between the prediction and ground truth. In this research, measurement is in the range of 0 to 1 [34].




3.1.2. Jaccard Index (Intersection over Union)


The Jaccard index, which is also known as the Intersection over Union (IoU), is, like the above, another tool used to measure the commonness in evaluating the performance of the segmentation models. The formula is fairly simple, and is put together as the size of the intersection divided by the size of the union of the given sets:


JI = ∣X∪Y∣∣X∩Y∣



(3)







In this research, the Jaccard index has been used to quantify the percent overlap between WSIs given mask and the prediction output of these models. The range that is given in this research is again from 0 to 1, with 0 presenting no overlap and 1 presenting complete overlap. Complete overlap is the goal [35,36].





3.2. About the Dataset


The data used in this study, which is explained by the Kexin et al. [37] publication, consists of a collection of breast ultrasound images, formatted in .png (Figure 3) and the masked images in .mat format (Figure 4). These images are focused on breast cancer only and the images were approved by the institutional review board of Changhua Christian Hospital, in Taiwan. This retrospective and cross-sectional study includes 20,000 image tiles and 1,448,522 annotated nuclei. The total storage space required for this dataset is 6.8 GB. It is licensed under the CC BY license.



The imaging process involved uses a GE Voluson 700 machine (manufactured by GE Healthcare based in Zipf, Austria). This machine ensured high-resolution captures with dimensions of 960 × 720 pixels in RGB mode (Figure 3). Each participant included in the study was between the ages of 35 and 75 and had been diagnosed with a malignant tumor through biopsy techniques. Each participant contributed two images taken from different scan plane angles [37].



In addition to the images themselves, this dataset also contains information about treatments including therapy methods using histology reports and radiography results. Furthermore, corresponding masks (Figure 4) are provided in. mat format.



To facilitate ease of access, for research purposes, and to enable studying breast tumor characteristics through imaging techniques effectively, all images and masks have been organized into a single folder. Furthermore, to enable this research to be more affective with the algorithms and code used in the research, the .mat files have been converted into .png files and reduced in size.




3.3. Deep Learning Models Being Compared


In this section, we will compare both deep learning models. To begin with, the layers of both models have been positioned side by side for an overall view. The model on the left is LinkNet (Figure 5A), and the model on right is FPN (Figure 5B).



3.3.1. LinkNet


The introduction of the model known as LinkNet (Figure 5A) represents a significant advancement in the field of deep learning, specifically in efficiently segmenting images based on their semantic content. LinkNet is highly regarded for its ability to strike a balance between accuracy and computational requirements, making it an excellent choice for tasks that demand real-time performance. This efficiency can be attributed to its architecture, which utilizes trained encoders for extracting features and a decoder module for classification [26].



A noteworthy aspect of LinkNet is its design, which maintains a connection between the encoder and decoder modules. This connection plays a crucial role in mitigating the loss of resolution during down-sampling, enabling LinkNet to preserve information across the network with fewer parameters, leading to faster training without compromising performance [39].



LinkNet finds applications in various fields, such as medical imaging, where it aids in segmenting organs or lesions in radiographic images. It also excels at identifying road networks in aerial images. However, despite its versatility, LinkNet does have limitations. For instance, it may not perform as well as more complex models in handling fine details—especially critical in medical image segmentation where precision is paramount. Moreover, the effectiveness of LinkNet heavily relies on the quality and diversity of the training dataset, which is a common limitation in machine learning models. Another challenge arises from the transferability of pre-trained models to medical images from non-medical domains, due to significant variations in image characteristics. Furthermore, although LinkNet is designed for real-time segmentation, it might encounter challenges when processing high-resolution imaging, which is typically found in this field [39].




3.3.2. Feature Pyramid Network


The Feature Pyramid Network (FPN) (Figure 5B) has emerged as a game-changing model in the field of image processing and analysis. Designed with sophistication, the FPN constructs a scale feature pyramid from a single input image. This complex design facilitates a top-down approach, where lateral connections enable the model to detect objects at various levels of the pyramid. This multifaceted detection process, as described by Lin [38], greatly enhances the model’s ability to accurately segment and diagnose medical images.



FPNs have shown significant advancements in applications, particularly in object detection and segmentation. The pyramid structure of the network plays a crucial role in operating across scales, enabling the precise detection of fine details in medical images, as well as the identification of larger patterns. This capability was further explored in He’s [22] study on Mask R-CNN, which utilized FPN for instance segmentation.



In terms of efficiency, FPNs offer an advantage over traditional methods used for multi-scale detection, as they process images much faster. The speed of real-time medical image analysis is pivotal, as discussed by Huang [40], who explore the trade-offs between speed and accuracy in convolutional object detectors. FPNs are incredibly valuable in time-sensitive settings due to their ability to quickly analyze complex images.



However, the FPN architecture does have its limitations. The added complexity and computational demands can be challenging in resource-constrained environments. Creating feature hierarchies, an aspect of FPN’s design as explained by Kirillov [41], introduces inherent complexity. Furthermore, training an FPN can be difficult because it requires optimizing features across scales, a concept further explored by Guo [42] in their study on the SSD model, which serves as an alternative to FPN.



Another critical factor that impacts the effectiveness of FPNs is the quality of annotations used during training. The accuracy and reliability of medical image segmentation heavily rely on these annotations and are crucial for model deployment.



In summary, while FPNs bring groundbreaking advancements to object detection and segmentation in medical imaging, their complexity and dependence on high-quality annotations present challenges. It is crucial to grasp these subtleties to fully utilize the capabilities of FPNs in various applications. The studies mentioned above provide an understanding of FPNs’ capabilities and the obstacles they face, offering valuable insights into the continuously advancing field of image processing technologies.




3.3.3. ResNet34 Layer Encoder Used in Both Models


The ResNet34 architecture is a variant of the Residual Network (ResNet) models, which are designed to enable the training of very deep neural networks. The ‘34’ in ResNet34 denotes the use of 34 layers in the network, which includes convolutional layers, batch normalization layers, ReLU activations, and pooling layers. The encoder part of a ResNet34 model refers to the initial layers that are responsible for feature extraction from input images [43].



The ResNet34 encoder (Figure 6) has several limitations: (I) Computational Resources; the depth of the model necessitates computational resources, especially during training, which might not be feasible in all research or clinical environments. (II) Risk of overfitting; deeper models like ResNet34 can potentially overfit to the training data if proper regularization or data augmentation techniques are not implemented, particularly when dealing with less diverse datasets. (III) Challenges in optimization; while skip connections help address the vanishing gradient problem, optimizing deep networks still poses difficulties. (IV) Adaptation to new tasks; although pre-trained ResNet34 encoders are readily available, customizing them for novel or highly specialized medical imaging tasks often requires fine-tuning efforts [19,40,43].





3.4. Summary


In this section, the focus is on the research methodology that revolves around the training strategy for segmentation models, specifically handling images that have incomplete data. Our approach involves a semi-supervised training scheme using a dual-model architecture, consisting of a ‘Teacher’ model (TM) and a ‘Student’ model (SM). Initially, the TM is trained using WSIs that have annotated data, optimizing binary cross-entropy (BCE) and Dice loss (DICE) as performance metrics. The high-performing TM then generates soft pseudo annotations for the unlabeled WSI data, complementing the dataset even though these pseudo annotations are not as reliable as true annotations. Subsequently, the SM is trained using both authentic and pseudo annotations, with the validation set determining the better-performing Student model. This iterative process continues until our model reaches its highest stability or state of convergence, effectively addressing the challenge of limited labeled data while continuously enhancing our model’s performance.



Moreover, in the research, two evaluation metrics are employed to assess the performance of our segmentation models: the Dice coefficient and the Jaccard index. The Dice coefficient measures the similarity between the predicted segmentation and the ground truth on a scale from 0 to 1, with a higher value indicating greater similarity. Similarly, the Jaccard index quantifies the extent of overlap between the provided mask and the model’s output prediction. The goal is to achieve complete overlap for optimal performance. These statistical techniques are crucial in evaluating the precision and efficiency of the segmentation models when it comes to processing and analyzing WSIs.





4. Results Analysis


In this section, the focus is on meticulously comparing the performance of deep learning models such as the LinkNet and Feature Pyramid Network (FPN), all built on the ResNet34 framework. The analysis thoroughly assesses both Teacher and Student models under each architecture, evaluating their stability, accuracy, and image segmentation capabilities. This examination includes an exploration of seed values, training loss levels, validation Dice coefficients, and Jaccard indices. Through this evaluation, an understanding of the strengths and limitations of these architectures in the field of medical image analysis is gained.



It should be highlighted that out of the 20,000 images, 5%, which corresponds to 1000 images, has been exclusively allocated for validation. Consequently, these 1000 images are excluded from the training dataset of the model. Despite the possibility of increasing this number, it was considered superfluous. This applies to both the LinkNet and FPN deep learning models. Additionally, both models were trained and validated on the same data, to keep a fair comparison.



4.1. Experiment with Linknet Architecture and Resent34 Base


4.1.1. Teacher Model Findings


The Teacher model of the LinkNet architecture using the ResNet34 base displayed different levels of training loss (Table 2, Figure 7) as well as validation metrics across three different seed values, 21, 42, 84. The research shows that the training loss ranges from 0.0098 to 0.0114, with an average of 0.9437. This would suggest that, despite the different seeds, the model’s training was stable. Further looking into the validation Dice coefficient, the accuracy of the model in terms of perfectly overfitting the predicted image on the root image shows a 0.9425 and 0.9454 overlap rate, presenting strong accuracy.



However, further evaluating the Validation Jaccard index (Intersection over Union (IoU)), scores of 0.8926 to 0.8972 were produced. IoU presents an insight into the segmentation performance as well as indicating the accuracy of the predicted against the actual segmentations. Although the scores are high, 89% would not necessarily be firm enough for real-world scenarios.



Further, the findings showed that the optimum epoch for the Teacher model is as follows. For a seed of 21, the model optimum epoch on 100 epochs was 92, seed 42 at 98 and finally 85 peaked at epoch 84.




4.1.2. Student Model Findings


The Student model is also based on LinkNet architecture with ResNet34, trained with the same seeds as the Teacher model. The Student model showed markedly lower loss than the Teacher model at 0.0004 to 0.0066 (Table 3, Figure 8); this suggests that the learning process was much more efficient or that there is potentially overfitting involved.



The Validation Dice coefficient for the Student model shows a significant range from 0.8084 to 0.9529, with the highest score being achieved with seed 84. Similarly, the Validation Jaccard index varied from 0.6784 to 0.9100 with an average of 0.7988 as well as the highest score also associated with seed 84. This suggests that the initialization with seed 84 may have been particularly effective for the Student model. However, the Student model did not exhibit the same level of stability as the Teacher model, as evidenced by the fluctuation in the Validation Jaccard. This inconsistency could be attributed to initialization variance, wherein the initial weights may have converged to a less optimal region. This phenomenon is known to occur due to the initialization process or data shuffling, which are influenced by the random seed assigned. These factors affect the learning process of the model, including the random sampling of data points or mini-batches.



Further looking into the optimum epoch for the Student model, the finding showed that the model reached much earlier than the teacher model, at epoch 9 for all seeds. This could imply that the Student model learned the necessary patterns more quickly than that of the Teacher model or that it may have begun to overfit after this point.



In summary, both the Teacher and Student models demonstrated strong performance on the given tasks (Table 4), with the Teacher model showing consistency across metrics and the Student model exhibiting rapid learning but with more variability in performance, displaying a lack of consistency in the Jaccard index. However, the use of different seed values also provided insights into the stability of the model’s training process, with seed 84 yielding the best results for the Student model.



To better understand the results of the LinkNet architecture with ResNet34 encoder, Table 4 is presented comparing the Teacher and Student model results side by side. It is noticeable that the VD of the Teacher model is quite consistent, whereas the Student model shows some inconsistency, with seed 84 demonstrating the most promising accuracy.





4.2. Experiment with FPN Architecture and Resent34 Base


4.2.1. Teacher Model Findings


The Teacher model employing the Feature Pyramid Network (FPN) architecture with a ResNet34 base demonstrated varying training losses and validation metrics across three distinct seed values, 21, 42, and 84. The research indicated that the training loss fluctuated between 0.0173 and 0.0160 (Table 5, Figure 9), suggesting a relatively stable training process across different seeds. The validation Dice coefficient, which measures the accuracy of the model in terms of its overlap with the root image, ranged from 0.9326 to 0.9345. These rates indicate a strong accuracy in the model’s predictions.



Examining the Validation Jaccard index, which offers insights into the segmentation performance, scores ranged from 0.8760 to 0.8795. Although these scores are high, they might not be sufficient for certain real-world applications. Regarding the optimum epoch, for seed 21, the best performance was achieved at epoch 78, for seed 42 at epoch 100, and for seed 84 at epoch 94.




4.2.2. Student Model Findings


The Student model, also based on the FPN architecture with a ResNet34 encoder layer, trained with the same seed values as the Teacher model, showed varying degrees of training loss from 0.0183 to 0.0227 (Table 6, Figure 10). This indicates a variation in the learning efficiency, possibly hinting at overfitting in certain scenarios.



The Validation Dice coefficient varied significantly, ranging from 0.8956 to 0.9544, with the highest accuracy achieved with seed 42. Similarly, the Validation Jaccard index ranged from 0.8109 to 0.9128, again showing a notable range in segmentation performance. The most effective seed for the Student model appeared to be 42, based on these metrics.



In terms of optimum epoch, the Student model reached its peak performance much earlier than the Teacher model, at epoch 2 for seeds 21 and 84, and epoch 83 for seed 42. This suggests a quicker learning curve for the Student model, although it may also indicate a tendency to overfit beyond these points.



In summary, both the Teacher and Student models under the FPN architecture with a ResNet34 base encoder layer demonstrated robust performance, with the Teacher model showing more consistency across metrics and the Student model exhibiting rapid learning, albeit with greater variability in its performance. The different seed values provided valuable insights into the stability and efficiency of the model’s training process.



To better understand the results of the FPN architecture with ResNet34, Table 7 is presented, comparing the Teacher and Student model results side by side. It is noticeable that the VD of the Teacher model is consistent at 93%, whereas the Student model shows some inconsistency between 84 and 43 to 21, with seed 42 demonstrating the most promising accuracy.





4.3. Discussion


The primary objective of this study was to evaluate and compare the performance of two distinct deep learning architectures in analyzing Whole Slide Images (WSIs) with a focus on breast cancer segmentation. The results indicated that all models performed commendably overall. However, there were noticeable variations in terms of effectiveness and accuracy. Some models appeared to be overfitting the data, potentially limiting their generalizability. In contrast, Teacher models were generally more stable and accurate, while Student models learned quickly but exhibited more variation, resulting in a slightly lower quality compared to Teacher models.



The findings suggest that the LinkNet model shows strong performance in breast cancer detection, with its results being particularly notable with the seed 21 parameter. Although the FPN (Feature Pyramid Network) model did not match the performance of LinkNet, it still demonstrated sufficient utility in breast cancer detection as well as a more stable Jaccard index. This study highlights the potential of using different deep learning architectures for medical imaging tasks, with a focus on the effectiveness and efficiency of these models in detecting and analyzing breast cancer tissues.



It should be emphasized that these models have been developed using a teacher–student framework. In scenarios where ample data are available, the Teacher model suffices, eliminating the necessity for a Student model. However, in cases of data scarcity, employing a Student model is recommended. According to the findings of this research, the Student model based on FPN performed satisfactorily. However, despite the varying outcomes where seeds 21 and 84 were tested, seed 42 exhibited inferior results, as previously discussed. This indicates that a Student model utilizing FPN can be effectively paired with the LinkNet teacher model. Nonetheless, it is important to consider that testing additional seed parameters could potentially modify the average performance metrics for a LinkNet-based Student model.



As seen in the images (Figure 11 and Figure 12), the detection of breast cancer by each of the models was notably effective, demonstrating their capability to detect breast cancer in unseen data. This suggests that each model could be effectively utilized in detecting breast cancer and potentially in segmenting other pathological disorders in WSIs.



Finally, the use of Teacher and Student models demonstrated a strong approach to further train models on annotated data derived from the teacher model. This effectiveness was evident through the segmentation tools and the performance of the Jaccard and Dice evaluations.




4.4. Implications of the Study


In summary, this research emphasizes the significance of selecting and training models in deep learning tasks, setting important benchmarks for future advancements in image analysis technologies. Both individuals and organizations can greatly benefit from the increased accuracy and efficiency of these models, particularly in fields like medical imaging where precise image analysis is essential. These findings offer valuable guidance for organizations utilizing AI-based image analysis, aiding them in choosing and training models more effectively. On a broader scale, enhanced image analysis capabilities have significant implications for public safety, environmental monitoring, and policymaking, where accurate data interpretation is crucial. This study contributes to the existing body of literature on deep learning architectures in image segmentation by offering a perspective that can shape future research directions, particularly with a focus on optimizing model performance. Additionally, professionals working in AI and machine learning can utilize these insights to select and train models tailored to specific applications, thereby enhancing the practical usefulness of AI systems that rely on image analysis.





5. Conclusions


This research explores the performance of LinkNet and FPN architectures, all based on ResNet34, in image segmentation tasks for detecting breast cancer in Whole Slide Images (WSIs). The study provides critical insights into the stability of the training, accuracy levels, and segmentation capabilities of these models, making a significant contribution to the field of deep learning in medical image analysis.



The study highlights the Importance of selecting the appropriate model and seed value to optimize performance while addressing the challenges associated with overfitting, particularly in student models. These aspects are especially crucial in applications requiring precise image analysis, such as in the diagnosis of diseases like breast cancer or in environmental monitoring.



From a practical standpoint, these findings are invaluable in guiding model selection and refining training methodologies. Consequently, they have the potential to enhance the accuracy and efficiency of AI systems in healthcare, offering more effective tools for breast cancer detection and other medical imaging tasks.



Furthermore, this research demonstrates that deep learning architectures like LinkNet and FPN (Feature Pyramid Network) can accurately detect breast cancer in Whole Slide Imaging (WSI). Among these, LinkNet is highlighted as a recommended model due to its superior performance in this specific application. This investigation not only improves our understanding of deep learning models in image segmentation, but also underscores their potential to enhance diagnostic procedures in medical practice.



In summary, this study marks a significant advancement in the use of deep learning models for image analysis, particularly within the vital healthcare sector. It paves the way for more precise and reliable AI-powered diagnostic tools.
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Appendix A


This table presents a compilation of deep learning models reviewed during the course of this study. It is included to assist future researchers exploring deep learning models for image-based pathology detection.





 





Table A1. Table with 61 different deep learning model architectures.
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	No.
	Year
	Model

(Architecture)
	Description





	1
	2014
	CRF Deep Learning
	Combines a basic Convolutional Neural Network (CNN) with a Conditional Random Field (CRF) for improved image segmentation, enhancing boundary delineation by refining the CNN’s output with the CRF [44].



	2
	2014
	Fully Convolutional Networks (FCN)
	Pioneering architecture in semantic segmentation that uses convolutional layers to process images of any size and outputs segmentation maps [45].



	3
	2015
	U-Net
	A highly effective network for medical image segmentation, featuring a U-shaped architecture that excels in tasks where data are limited [19].



	4
	2015
	ReSeg
	A model based on Recurrent Neural Networks (RNNs) and FCN, designed for semantic image segmentation, leveraging the sequential nature of RNNs for improved segmentation [46].



	5
	2015
	Deconvolution Network
	Uses deconvolutional layers to perform up-sampling of feature maps, enabling precise localization in semantic segmentation tasks [47].



	6
	2015
	Dilated ConvNet
	Incorporates dilated convolutions to expand the receptive field without reducing resolution, enhancing performance in dense prediction tasks like semantic segmentation [48].



	7
	2015
	ParseNet
	Enhances FCNs by adding global context to improve segmentation accuracy, focusing on understanding the whole scene context [49].



	8
	2015
	SegNet
	SegNet was designed for road scene understanding in the context of autonomous driving [50].



	9
	2016
	DeepLab
	DeepLabv1 and its successive versions (v2, v3, v3+, and v4) made significant contributions in semantic segmentation, incorporating dilated convolutions, atrous spatial pyramid pooling, and encoder–decoder structures [51].



	10
	2016
	PSPNet
	Proposed Pyramid Scene Parsing Network for scene parsing tasks [52].



	11
	2016
	Instance-Aware Segmentaiton
	This approach to segmentation is designed to not only classify pixels but also differentiate between separate instances of the same class in the image. It is commonly used in scenarios where identifying individual objects (instances) is crucial, such as in instance segmentation tasks [53].



	12
	2016
	V-Net
	An adaptation of the U-Net model for volumetric (3D) medical image segmentation. It is particularly effective for tasks like organ segmentation in 3D medical scans, using a similar architecture to U-Net but extended to three dimensions [54].



	13
	2016
	ENet
	A lightweight and efficient network designed for real-time semantic segmentation, particularly in mobile or low-power devices. It achieves a good balance between accuracy and speed, making it suitable for applications where computational resources are limited [55].



	14
	2016
	RefineNet
	Utilizes a multi-path refinement network for high-resolution semantic segmentation [56].



	15
	2017
	Tiramisu
	This is also known as The One Hundred Layers Tiramisu; it utilizes DenseNets for semantic segmentation [57].



	16
	2017
	Mask R-CNN
	An extension of Faster R-CNN, Mask R-CNN is effective for instance segmentation tasks [22].



	17
	2017
	FC-DenseNet
	Combines the principles of DenseNets (densely connected convolutional networks) with FCNs, leading to efficient and accurate semantic segmentation, especially in medical imaging [57].



	18
	2017
	Global Convolutional Net
	Designed for semantic segmentation, this network uses large kernels and global convolutional layers to handle both classification and localization tasks effectively [58].



	19
	
	DeepLab V3
	An advanced version of DeepLab, it employs atrous convolutions and spatial pyramid pooling to effectively segment objects at multiple scales [59].



	20
	2017
	FPN—Feature Pyramid Network
	A versatile architecture used in both object detection and segmentation, it builds a multi-scale feature pyramid from a single input image for efficient and accurate detection at multiple scales [38].



	21
	2017
	LinkNet
	Utilizes an encoder–decoder architecture for fast and accurate semantic segmentation [26].



	22
	2018
	ICNet
	Designed for real-time semantic segmentation tasks [60].



	23
	2018
	Attention U-Net
	Incorporates attention mechanisms into the U-Net architecture [61].



	24
	2018
	Nested U-Net
	A U-Net architecture with nested and dense skip pathways [60].



	25
	2018
	Panoptic Segmentation
	A unified model that simultaneously performs semantic segmentation [62].



	26
	2018
	Mask-Lab
	A deep learning model that combines semantic segmentation, direction prediction, and instance center prediction for instance segmentation tasks [63].



	27
	2018
	Path Aggregation Network
	Enhances feature hierarchy and representation capability for object detection by enabling efficient multi-scale feature aggregation [64].



	28
	2018
	Dense-ASSP
	A network that integrates dense connections and atrous spatial pyramid pooling for robust semantic image segmentation [65].



	29
	2018
	Excuse
	A model that fuses semantic and boundary information at multiple levels to enhance feature representation and segmentation accuracy [63].



	30
	2018
	Context Encoding Network
	Focuses on capturing global context information for semantic segmentation, often using a context encoding module to improve performance [66].



	31
	2019
	Panoptic FPN
	A framework that combines the Feature Pyramid Network (FPN) with panoptic segmentation, effectively handling both object detection and segmentation tasks [41].



	32
	2019
	Gated-SCNN
	A semantic segmentation network with a gated shape stream that focuses on capturing shape information alongside the usual texture features [67].



	33
	2019
	UPS-Net
	A unified panoptic segmentation network that effectively combines instance and semantic segmentation tasks into a single, coherent framework [68].



	34
	2019
	TensorMask
	A dense prediction model for instance segmentation that uses structured 4D tensors to represent masks, enabling precise spatial understanding [69].



	35
	2019
	HRNet
	Maintains high-resolution representations through the network, enhancing performance in tasks like semantic segmentation and object detection [70].



	36
	2019
	CC-Net: CrissCross Attention
	Employs criss-cross attention to capture long-range contextual information in a computationally efficient manner for semantic segmentation [71].



	37
	2017
	Dual Attention Network
	Integrates position and channel attention mechanisms to capture rich contextual dependencies for improved scene segmentation [72].



	38
	2019
	Fast-SCNN
	A fast and efficient network design for semantic segmentation on road scenes [73].



	39
	2020
	DPT
	Vision transformer-based architecture for segmentation tasks [74].



	40
	2020
	SETR
	Another Vision Transformer-based method for segmentation shows the effectiveness of transformers in dense prediction tasks [75].



	41
	2020
	PointRend
	Aims at rendering fine-grained detail in segmentation through iterative subdivision [74].



	42
	2020
	EfficientPS
	Combines semantic segmentation and object detection efficiently [76].



	43
	2019
	FasterSeg
	An architecture search-based approach for real-time semantic segmentation [77].



	44
	2018
	MAnet
	Utilizes multi-head attention mechanisms for semantic segmentation [60].



	45
	2020
	FasterSeg
	FasterSeg is an AI-designed segmentation network that outperforms traditional models in speed and accuracy by using advanced neural architecture search and collaborative frameworks [78].



	46
	2020
	PolarMask,
	A novel single-shot instance segmentation method that represents object masks in a polar co-ordinate system; simplifies the instance segmentation process [79].



	47
	2020
	CenterMask
	An efficient anchor-free instance segmentation model that extends the CenterNet object detector by adding a spatial attention-guided mask branch [80].



	48
	2020
	SC-NAS
	Stands for “Semantic-Context Neural Architecture Search”. It is a network architecture search method designed to optimize semantic segmentation networks by considering the semantic context of the task [81].



	49
	2020
	EffientNet + NAS-FPN
	This combines EfficientNet, a scalable and efficient network architecture, with NAS-FPN (Neural Architecture Search Feature Pyramid Network), a method for automatically designing feature pyramid architectures for object detection tasks. This combination aims to optimize both efficiency and accuracy in detection models [82].



	50
	2020
	Multi-scale Adaptive Feature Fusion Network
	Multi-scale Adaptive Feature Fusion Network for Semantic Segmentation in Remote Sensing Images [83].



	51
	2021
	TUNet
	TransUNet [84].



	52
	2021
	SUnet
	Swin-Unet, Swin-Transformer [85].



	53
	2021
	Segm
	Segmenter [86].



	54
	2021
	MedT
	Medical Transformer [87].



	55
	2021
	BEiT
	BERT Image Transformers [88].



	56
	2023
	CrossFormer
	A Hybrid Transformer Architecture for Semantic Segmentation [89]



	57
	2022
	MLP-Mixer
	Semantic Segmentation with Transformer and MLP-Mixer [90].



	58
	2022
	Transformer-Powered Semantic Segmentation
	Transformer-Powered Semantic Segmentation with Large-Scale Instance Discrimination [91].



	59
	2023
	Adaptive Context Fusion
	Semantic Segmentation with Adaptive Context Fusion [89].



	60
	2023
	Multi-Scale Vision Transformers
	Semantic Segmentation with Multi-Scale Vision Transformers [92]



	61
	2023
	Hiformer: Hierarchical multi-scale
	Semantic Segmentation with Hierarchical Vision Transformers [93]
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Figure 1. (A) Illustrates Rumelhart ‘backpropagation’ [9]. (B) Illustrates gradient descent example [10]. (C) Illustrates backpfropagation and gradient descent [11]. 
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Figure 2. An image on the deep learning framework, from Fathi [29]. 
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Figure 3. A view of the dataset is shown with cancerous tissue [37]. 
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Figure 4. A view of the dataset labels [37]. 
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Figure 5. (A) An illustration of the LinkNet architecture [26]. (B) An illustration of the FPN architecture [38]. 
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Figure 6. An illustration of the ResNet34 Layer Encoder [43]. 
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Figure 7. Results of the ‘Teacher’ model Linknet at seed 84. 
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Figure 8. Results of the ‘Student’ model Linknet at seed 84. 
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Figure 9. Results of the ‘Teacher’ model FPN at seed 42. 
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Figure 10. Results of the ‘Student’ model FPN at seed 42. 
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Figure 11. Image results detecting cancer with the Student model Linknet at seed 84. 
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Figure 12. Image results detecting cancer with the Student model FPN at seed 42. 
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Table 1. Breast cancer incidence (new cases) and mortality (deaths) in 2020 by world region and Human Development Index level [3].
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New Cases

	
Deaths




	
Country

	
N

	
ASR

	
Cum. Risk

	
N

	
ASR

	
Cum. Risk






	
Eastern Africa

	
45,709

	
33

	
3.6

	
24,047

	
17.9

	
2




	
Middle Africa

	
17,896

	
32.7

	
3.4

	
9500

	
18

	
1.9




	
Northern Africa

	
57,128

	
49.6

	
5.1

	
21,524

	
18.8

	
1.9




	
Southern Africa

	
16,526

	
50.4

	
5.4

	
5090

	
15.7

	
1.7




	
Western Africa

	
49,339

	
41.5

	
4.5

	
25,626

	
22.3

	
2.5




	
Caribbean

	
14,712

	
51

	
5.5

	
5874

	
18.9

	
2




	
Central America

	
38,916

	
39.5

	
4.2

	
10,429

	
10.4

	
1.2




	
South America

	
156,472

	
56.4

	
6.1

	
41,681

	
14

	
1.5




	
Northern America

	
281,591

	
89.4

	
9.7

	
48,407

	
12.5

	
1.4




	
Eastern Asia

	
551,636

	
43.3

	
4.6

	
141,421

	
9.8

	
1.1




	
All but China

	
135,265

	
66.9

	
7

	
24,247

	
9.4

	
1




	
China

	
416,371

	
39.1

	
4.2

	
117,174

	
10

	
1.2




	
South-Eastern Asia

	
158,939

	
41.2

	
4.5

	
58,670

	
15

	
1.7




	
South-Central Asia

	
254,881

	
26.2

	
2.9

	
124,975

	
13.1

	
1.5




	
All but India

	
76,520

	
27.5

	
3.1

	
34,567

	
12.9

	
1.5




	
India

	
178,361

	
25.8

	
2.8

	
90,408

	
13.2

	
1.5




	
Western Asia

	
60,715

	
46.6

	
5

	
20,943

	
16

	
1.7




	
Central-Eastern Europe

	
158,708

	
57.1

	
6.3

	
51,488

	
15.3

	
1.8




	
Northern Europe

	
83,177

	
86.4

	
9.4

	
17,964

	
13.7

	
1.5




	
Southern Europe

	
120,185

	
79.6

	
8.5

	
28,607

	
13.3

	
1.4




	
Western Europe

	
169,016

	
90.7

	
9.7

	
43,706

	
15.6

	
1.7




	
Australia/New Zealand

	
23,277

	
95.5

	
10.4

	
3792

	
12.1

	
1.3




	
Melanesia

	
2215

	
50.5

	
5.4

	
1121

	
27.5

	
2.9




	
Micronesia/Polynesia

	
381

	
58.2

	
6

	
131

	
19.6

	
2.1




	
Low HDI

	
109,572

	
36.1

	
3.9

	
58,586

	
20.1

	
2.2




	
Medium HDI

	
307,658

	
27.8

	
3

	
147,427

	
13.6

	
1.5




	
High HDI

	
825,438

	
42.7

	
4.6

	
247,486

	
12.1

	
1.4




	
Very high HDI

	

	
75.7

	
8.2

	
231,093

	
13.4

	
1.5




	
World

	

	
47.8

	
5.2

	
684,996

	
13.6

	
1.5








Female population; ASR = age-standardized rate per 100,000; Cum. Risk = cumulative risk, ages 0–74 years; HDI = Human Development Index.













 





Table 2. Linknet Architecture with ResNet34 Base: Teacher Findings.
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	Seed
	Training Loss
	Validation

Dice
	Validation Jaccard
	Optimum Epoch
	Figure

Illustration





	21
	0.0102
	0.9432
	0.8930
	92
	N/A



	42
	0.0098
	0.9425
	0.8926
	98
	N/A



	84
	0.0114
	0.9454
	0.8972
	85
	Figure 7










 





Table 3. Linknet Architecture with ResNet34 Base: Student Findings.
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	Seed
	Training Loss
	Validation

Dice
	Validation Jaccard
	Optimum Epoch
	Figure

Illustration





	21
	0.0061
	0.8938
	0.8081
	8
	N/A



	42
	0.0066
	0.8084
	0.6784
	9
	N/A



	84
	0.0043
	0.9529
	0.9100
	9
	Figure 8










 





Table 4. Linknet Architecture with ResNet34 Base Comparison.
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Teacher

	
Student




	
Seeds

	
TL

	
VD

	
VJ

	
TL

	
VD

	
VJ






	
21

	
0.0102

	
0.9430

	
0.893

	
0.0061

	
0.893

	
0.8081




	
42

	
0.0098

	
0.9425

	
0.8926

	
0.0066

	
0.8084

	
0.6784




	
84

	
0.0114

	
0.9450

	
0.8972

	
0.004

	
0.9529

	
0.9100




	
Average

	
0.0104

	
0.9435

	
0.8942

	
0.0055

	
0.8847

	
0.7988








Total Loss (TL), Validation Dice (VD), Validation Jaccard (VJ).













 





Table 5. FPN Architecture with ResNet34 Base: Teacher Findings.
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	Seed
	Training Loss
	Validation

Dice
	Validation

Jaccard
	Optimum Epoch
	Figure

Illustration





	21
	0.0173
	0.9331
	0.8760
	78
	N/A



	42
	0.0154
	0.9345
	0.8780
	100
	Figure 9



	84
	0.0160
	0.9326
	0.8795
	94
	N/A










 





Table 6. FPN Architecture with ResNet34 Base: Student Findings.
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	Seed
	Training

Loss
	Validation

Dice
	Validation

Jaccard
	Optimum Epoch
	Figure

Illustration





	21
	0.0183
	0.8956
	0.8109
	2
	N/A



	42
	0.0113
	0.9544
	0.9128
	83
	Figure 10



	84
	0.0227
	0.9378
	0.8830
	2
	N/A










 





Table 7. FPN Architecture with ResNet34 Base Comparison.






Table 7. FPN Architecture with ResNet34 Base Comparison.





	

	
Teacher

	
Student




	
Seeds

	
TL

	
VD

	
VJ

	
TL

	
VD

	
VJ






	
21

	
0.0173

	
0.9331

	
0.0173

	
0.0183

	
0.8956

	
0.8109




	
42

	
0.0154

	
0.9345

	
0.0154

	
0.0113

	
0.9544

	
0.9128




	
84

	
0.0160

	
0.9326

	
0.0160

	
0.0227

	
0.9378

	
0.8830




	
Average

	
0.0162

	
0.9334

	
0.0162

	
0.0174

	
0.9292

	
0.8689








Total Loss (TL), Validation Dice (VD), Validation Jaccard (VJ).
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