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Abstract: Background: Antibiotics can play a pivotal role in the treatment of colorectal cancer (CRC)
at various stages of the disease, both directly and indirectly. Identifying novel patterns of antibiotic
effects or responses in CRC within extensive medical data poses a significant challenge that can
be addressed through algorithmic approaches. Machine Learning (ML) emerges as a promising
solution for predicting clinical outcomes using clinical and heterogeneous cancer data. In the pursuit
of our objective, we employed ML techniques for predicting CRC mortality and antibiotic influence.
Methods: We utilized a dataset to examine the accuracy of death prediction in metastatic colorec-
tal cancer. In addition, we analyzed the association between antibiotic exposure and mortality in
metastatic colorectal cancer. The dataset comprised 147 patients, nineteen independent variables,
and one dependent variable. Our analysis involved testing different classification-supervised ML,
including an oversampling pool for classification models, Logistic Regression, Decision Trees, Naive
Bayes, Support Vector Machine, Random Forest, XGBboost Classifier, a consensus of all models, and a
consensus of top models (meta models). Results: The consensus of the top models’ classifier exhibited
the highest accuracy among the algorithms tested (93%). This model met the standards for good
accuracy, surpassing the 90% threshold considered useful in ML applications. Consistent with the
accuracy results, other metrics are also good, including precision (0.96), recall (0.93), F-Beta (0.94), and
AUC (0.93). Hazard ratio analysis suggests that there is no discernible difference between patients
who received antibiotics and those who did not. Conclusions: Our modelling approach provides
an alternative for analyzing and predicting the relationship between antibiotics and mortality in
metastatic colorectal cancer patients treated with bevacizumab, complementing classic statistical
methods. This methodology lays the groundwork for future use of datasets in cancer treatment
research and highlights the advantages of meta models.
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1. Introduction

Colorectal cancer (CRC) ranks as the third most prevalent cancer globally [1]. The de-
velopment of CRC is associated with various risk factors [2,3]. Despite advancements in
screening techniques and adjuvant therapy, metastasis remains the leading cause of death
in CRC patients [4]. Approximately 50 percent of individuals diagnosed with colorectal
cancer will eventually experience metastasis. Therapeutic interventions, such as chemother-
apy, not only contribute to increased survival rates but also help alleviate symptoms in
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metastatic CRC (mCRC) patients [5]. In recent years, multiple studies have suggested a
significant link between an imbalanced intestinal microbiome and the development of
CRC. Microbial dysbiosis in the gut contributes to both the initiation and progression of
CRC. Certain microbiota can promote carcinogenesis by producing carcinogenic toxins that
manipulate inflammatory and tolerogenic pathways. The use of antibiotics has the potential
to disrupt the normal microbiome, leading to an event known as dysbiosis. Indeed, various
antibiotics have been shown to exert diverse effects on the density and diversity of the gut
microbiota [6,7]. However, the gut microbiota can play dual roles, ranging from promoting
tumorigenicity to exhibiting antitumorigenic effects. Manipulating the gut microbiota
with antibiotics has shown promise in reducing tumour mass in mouse models of colon
cancer. Moreover, previous studies have demonstrated that early exposure to antibiotics
has significantly prevented tumorigenesis in a mouse model of inflammatory CRC. This
approach holds practical therapeutic potential in managing CRC [8]. In a retrospective
study involving 120 CRC patients, antibiotic treatment two weeks before commencing
oxaliplatin-based therapy resulted in a significantly improved objective response rate (ORR)
and disease control rate for progressive CRC. Additionally, in CRC patients, overall survival
(OS) and progression-free survival (PFS) were notably higher in the group that received
antibiotics [9,10].

Cancer analysis relies heavily on managing vast and variable datasets. However,
there are many challenges that arise due to this data deluge, including noise, hetero-
geneity, sparseness, incomplete data fields, random errors, systematic biases, and the
difficulty of extracting relevant clinical phenotypes. These challenges are partly generated
by pharmaceutical and healthcare processes [11,12]. These complex data types come from
diverse sources, including patient populations, environmental factors, medical procedures,
and treatment protocols across different medical centers. The pathogenesis of CRC involves
multiple factors, such as histopathology, genetics, and environmental factors. The intricate
nature of this disease highlights the need for advanced and intelligent models, methodolo-
gies, and technologies to assist healthcare professionals in effectively combating it. Indeed,
in order to navigate the complexities, uncertainties, and heterogeneity of today’s cancer
landscape, it is crucial to employ agile, efficient, and intelligent solutions [13]. The applica-
tion of Artificial Intelligence (AI) has the potential to enhance our understanding of various
complex disease processes, enable personalized treatments, and optimize resources for
individual patients.

Machine Learning (ML) models have demonstrated their effectiveness in predicting
various clinical outcomes, such as acute renal damage, cardiovascular risk, and fracture
risk, yielding promising results [14–16]. ML techniques have the potential to overcome
the limitations associated with traditional statistical methods in risk prediction. These
techniques can capture complex multidimensional relationships between features and
clinical outcomes by leveraging algorithms to analyze extensive and diverse datasets [17].
ML approaches for cancer treatment are typically grounded in classification methods [18].
Many examples highlight the potential of ML in healthcare. For instance, classification
methods have achieved a high accuracy in cancerous blood cell diagnostics for normal
cells without the operator’s intervention in cell feature determination [19] or in dramatic
situations like COVID-19 where deep learning methods, such as cutting-edge methods,
have a significant tangible capacity for providing an accurate and efficient intelligent
system for detecting and estimating the severity of COVID-19 [20]. And it can even be used
for image analysis when analyzing brain Magnetic Resonance Imaging (MRI) data as a
valuable, easier, and faster method for supporting healthcare professionals in examining
MR images of newborn brains [21].

Classification methods are ML processes that group a set of input data into categories
based on one or more variables. To achieve this, the model is trained with the training data
and then tested with the test data before being deployed to make predictions on new data.
Recent advancements in this field have introduced successful techniques like meta models.
Meta models use the meta-learning methodology to learn the most appropriate algorithms
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and parameters for a particular ML task. These models aim to minimize the number
of false positives and false negatives without compromising accuracy. The consensus
learning approach is a variation of the ensemble methods that can be used to create
multiple models and combine them to produce the best possible results. This technique
is useful in improving predictability and reducing the variance within stochastic learning
algorithms [22]. Ensemble methods differ from bagging (which combines many unstable
predictors to create a stable ensemble predictor) and boosting (which combines many
weak but stable predictors to create a strong ensemble predictor). It focuses on the use of a
heterogeneous set of algorithms to capture even remote or weak similarities between the
predicted sample and the training data [23].

The main objectives of this research are as follows: (i) develop predictive models that
can forecast mortality in mCRC by using diverse data, including clinical and demographic
information; (ii) create predictive meta-classification models that outperform supervised
classification methods; (iii) construct predictive models utilizing clinical and demographic
data to predict the connection between antibiotic medication and clinical outcomes in
mCRC patients undergoing bevacizumab therapy, using the dataset from [24]; (iv) use
ML methods to investigate potential correlations between the therapeutic outcomes of
bevacizumab and various factors, including antibiotics, within the context of colorectal
cancer and mortality; and (v) evaluate the potential of ML methods as an alternative for
predicting the association between antibiotic medication and clinical outcomes in mCRC
patients undergoing bevacizumab therapy in comparison to traditional statistical methods.

The rest of this paper is divided into different sections. In Section 2, the materials
and methods used for the research are outlined. Section 3 describes the results obtained,
followed by a comprehensive discussion in Section 4. Finally, Section 5 presents the research
conclusions and discusses potential directions of future studies.

2. Materials and Methods
2.1. Sources of Data

A comprehensive search was conducted to find relevant research articles with clini-
cal data on colorectal patients and information on antibiotic exposure during treatment.
The search included databases like Scopus and MEDLINE, with a specific focus on open
and freely accessible articles. The hospital-based retrospective cohort study conducted
by [24] provided open-access data that were utilized. The dataset contains information from
147 mCRC patients, covering 18 independent variables and 1 dependent variable. These
variables include demographic details, medical history, drug prescriptions, and disease
outcomes. The specific variables used from this dataset are outlined in Table 1, and the work-
flow process used in the research is depicted in Figure 1. Although the type of antibiotic
administered may have an impact, the dataset from [24] does not specify the antibiotic used.
All pertinent data from the hospital-based retrospective cohort study conducted by [24]
have been uploaded to Dryad at the following DOI: https://doi.org/10.5061/dryad.ft5sk66
(accessed on 11 December 2019).

Figure 1. Work flow of multi−source−heterogeneous classification for ML analysis of mCRC dataset.

https://doi.org/10.5061/dryad.ft5sk66
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Table 1. Characteristics in metastatic colorectal cancer dataset.

Features Type of Feature Input Description

Sex Nominal Female/Male
Age Scale -

Weight Scale -
BMI Scale Body Mass Index

ECOG Nominal Eastern Cooperative Oncology Group
Site Nominal Left/Right

Surgery Nominal Non-Surgery, Radical and Palliative
Differentiation Nominal Differentiation is the grade of cancer (0–5)

Metastasis Organs Nominal Number of metastasis organs
BEV Treatment Nominal Monoclonal antibody and chemotherapy therapy

Bevacizumab (mg/kg) Scale Dose
OS Scale Overall Survival
PFS Nominal Progression-Free Survival

Antibiotic Nominal Yes or No
Antibiotic Days Scale Antibiotic Days therapy

Antibiotic Range Nominal Antibiotic range [0], [0–6] and [<7]
Hypertension Nominal Hypertension grade from 0 to 5

Side Effects Nominal Yes (Proteinuria, Thrombosis, Hematuresis or Epistaxis) or No

2.2. Data Processing

All predictors consist of baseline characteristic data. The primary predicted outcome
was mortality, while the remaining variables were considered secondary outcomes. For the
outcome variable, Class 0 denoted the non-occurrence of the event, while Class 1 indicated
the occurrence of a categorical effect. To address incomplete datasets, three options were
considered for proceeding with the analysis: (i) removing data (partial deletion), (ii) im-
putation (assigning missing values by inference), or (iii) retaining the missing values and
employing a model that incorporates them. It is noteworthy that no missing data were
observed. Thus, the dataset was separated into features and target variable (Death) and
then further split into test and train datasets. A kernel density estimate (KDE) analysis
was created to visualize the distribution of observations in both the train and test datasets.
KDE represents the data through a continuous probability density curve in one or more
dimensions. This method was employed to ensure comparability between the datasets [25].

2.3. Software

All analyses in this study were conducted using Python, a cross-platform, free,
and open-source programming environment. Python was utilized for data manipulation,
visualization, and ML model training. Python programming language version 3.10.12 [GCC
11.4.0] was used to perform the analysis, along with its comprehensive libraries for data
management, statistical computing, and graphical visualization. Default parameters were
employed for each programming function unless explicitly specified. Our analysis made
use of various Python libraries, including NumPy (Version 1.25.2) [26], pandas (version
1.5.3) [27], Statsmodels (version 0.14.1) [28], Matplotlib (version 3.7.1) [29], Seaborn (version
0.13.1) [30], and scikit-learn (version 1.2.2) [31].

2.4. Model Development

Different classification models and meta-classification models were analyzed. Clas-
sification models were based on a pool of models, such as GaussianNB [32], LogisticRe-
gression [33], RandomForestClassifier [34], DecisionTreeClassifier [35], XGBClassifier [36],
and SVC [37]. Afterwards, two meta models were developed based on all classifiers and top
models’ classifiers. Their development was based on stacking methods, which represent a
strong ensemble learning strategy in ML that combines the predictions of numerous base
models to obtain a final prediction with better performance. Meta models aim to minimize
the number of false negatives and false positives without compromising accuracy. It is
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a way to recognize and draw conclusions from connections among data and balance the
generality of the solution and the overall performance of the trained model. The selection
of these models was purposeful, aimed at harnessing their individual strengths and com-
plementarity. GaussianNB and Logistic Regression were chosen for their simplicity and
efficiency in handling linear relationships, while Random Forest Classifier and Decision
Tree Classifier were selected for their capacity to capture complex non-linear patterns in
the data. XGBoost Classifier and SVC were employed due to their robustness in managing
imbalanced datasets and high-dimensional feature spaces. Additionally, meta models
were integrated to aggregate predictions from multiple base models, thereby enhancing
overall performance and interoperability. Despite recognizing the limitations of our dataset,
including its relatively small size and lack of external validation, we remain vigilant about
the importance of employing a robust methodology to ensure the reliability of our findings.
Moreover, we have taken proactive measures to address potential biases in the analysis to
the best of our ability.

Categorical features were encoded as a one-hot numeric array using OneHotEn-
coder [38], oversampling and balancing to balance the dataset [39]. Then, it was ensured
through consistent encoding merging or concatenating multiple DataFrames in Python,
to make sure that the encoding (character encoding) of the resulting DataFrame was consis-
tent. As a consequence, this function increases the number of observations in a balanced
manner. The cohort was randomly split into the development cohort (70%) and the val-
idation cohort (30%), following the classical split-sample internal-validation approach.
The development cohort was used for training ML models and tuning their parameters,
while the validation cohort evaluated the developed models’ performance on unseen data.

ML models often involve essential parameters that cannot be directly estimated from
the data. To optimize performance, tuning parameters allow adjustments to be made to
settings within an algorithm. Tuning hyperparameters involved systematically testing
different model parameters to optimize the performance of the ML models based on Grid-
SearchCV and RandomizedSearchCV methods. GridSearchCV is a method provided by
Scikit-learn [40] that allows you to perform an exhaustive search over a specified parameter
grid for an estimator. It helps you find the best combination of hyperparameters for a
given model. This is especially useful when you want to tune the hyperparameters of
your models to achieve better performance. On the other hand, RandomizedSearchCV
is another hyperparameter optimization technique provided by Scikit-learn [40], similar
to GridSearchCV, but instead of trying all possible combinations of hyperparameters, it
samples a fixed number of hyperparameter combinations from specified probability distri-
butions. This can be more efficient when the search space is large. Finally, the following
models have been used: Oversampling pool for models (M1), Logistic Regression (M2),
Decision Trees (M3), Naive Bayes (M4), Support Vector Machine (M5), Random Forest (M6),
XGBboost Classifier (M7), Consensus all meta-model (M8), Consensus top meta-models
(M9). Throughout the training phase, the optimal ML model assesses each feature and
assigns it a weight, determining the strength of its contribution to predicting the target
variable. The objective is to clarify the prediction of a target variable, denoted as Y (Death),
by quantifying the contribution of each feature to that prediction [41].

2.5. Model Evaluation

The evaluation criteria for binary factors typically encompass accuracy, precision, recall,
F-beta, and the area under the curve (AUC) [42]. While achieving high accuracy might demand
99%, industry standards for satisfactory accuracy generally exceed 70% [43,44]. The same
range was considered for the other model evaluation metrics. Table A1 in Appendix A
presents the confusion matrix, delineating four distinct outcomes. A confusion matrix is a
table used to define a classification algorithm’s performance. It visualizes and summarizes
the performance of a classification algorithm. These include true positives (TP), where the
prediction accurately indicates death; false negatives (FN), where the prediction inaccurately
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suggests no death; true negatives (TN), where the prediction correctly indicates no death; and
false positives, where the prediction erroneously indicates death.

Accuracy, recall, precision, and F-beta are calculated as described in Equations (A1)–(A8)
in the Appendix A. Recall is a crucial evaluation metric utilized in classification and infor-
mation retrieval tasks. It quantifies the proportion of true positive cases correctly identified
by the model among all positive cases in the dataset. Conversely, accuracy, often referred
to as precision, serves as a metric for assessing the correctness of a classification model. It
measures the proportion of correct predictions, encompassing both true positives and true
negatives, among all predictions made by the model. Both accuracy and recall should be as
high as possible. However, these two factors are inversely related, necessitating a balance.
Consequently, the F-beta was employed to reflect the comprehensive performance of the
model. The recall is also called sensitivity or true positive rate (TPR). The classification report
visualizer displays the precision, recall, F1, and support scores for the model. In addition,
the metrics extracted from the confusion matrix, such as precision, recall, and beta-score for
each class and micro, macro, and weighted average of all classes, are used for measuring the
overall performance of a classifier. In addition, other metrics related to the confusion matrix
were defined to support the value number of occurrences of each particular class in the
true responses (test set). This was calculated by summing the rows of the confusion matrix.
Macro average is the mean of the recalls of classes, positive or negative. Also, the sum of the
scores of all classes after multiplying their respective class proportions is called weighted
average [45].

When both accuracy and recall are equally important (beta = 1, F-1 score), they are given
the same weight. However, in this study, type II errors, specifically situations where patients
with abnormal blood concentrations were not assessed, were of particular importance due to
their negative impact on treatment outcomes. Type II errors are generally measured by recall.
Therefore, this study assigned greater weight to recall (beta = 2, F-2 score). The F-beta score
ranged between 0 and 1, with a larger value indicating better model performance. Ultimately,
the model is deemed meaningful when the area under the curve (AUC) exceeds 0.5. AUC
can be calculated using the formula in Equation (A6), where true positive rate (TPR) and false
positive rate (FPR) are calculated using Equations (A7) and (A8) in Appendix A, respectively.

The model’s performance was assessed using the receiver operating characteristic
(ROC) curve with Sklearn.metrics and roc_curve roc_auc_score [46]. The ROC curve
is a valuable tool for visualizing and quantifying the discrimination ability of a binary
classification model, while the area under the ROC curve (AUC) provides a summary
measure of the model’s performance.

2.6. Feature Importance and Partial Dependence Plots

The importance of different features on the model outcome was calculated using the
SHAP package. SHAP values (SHapley Additive exPlanations) leverage cooperative game
theory to enhance the transparency and interpretability of machine learning models. This
method unveils the individual contribution of each feature, akin to a player in a game,
to the output of the model for each example or observation [47].

2.7. Risk Stratification Using ML

The death prediction task was approached as a binary classification problem, with ma-
chine learning models generating a probability of death risk ranging from 0 to 1. The risk
probabilities calculated by the best-performing machine learning model were utilized
to determine optimal cutoff values, effectively stratifying patients into two risk groups
(low and high). This stratification was achieved by maximizing the F1 score. Following
this, the survival probabilities of these risk groups were assessed using the Kaplan–Meier
method [48].
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3. Results

This section provides an overview of the results obtained, encompassing essential
patient characteristics, model performance, feature analysis, predictions, and the validation
and comparison of the developed models.

3.1. Descriptive Analysis

The association between antibiotic exposure and cancer mortality has been a long-
standing focus in cancer research [49–52]. However, drawing reliable conclusions for such
associations has faced many challenges. Adding to the complexity, clinical data for analysis
are often not openly accessible due to intricate privacy and ethical policies restricting
their usage. Moreover, these datasets are frequently both heterogeneous and extensive.
Despite these challenges, our analysis leveraged 147 observations, covering 19 variables,
to investigate mortality in CRC, as detailed in Table 2. Continuous variables are presented
as the mean ± standard deviation, along with corresponding p-values obtained from the
t-test. Categorical variables are expressed as percentages, with associated p-values derived
from the Chi-squared test. Importantly, no significant differences were observed in the
demographic, clinical, or epidemiological data between the training group (N = 102) and
the test group (N = 45).

Table 2. Basic characteristicd of the patients.

Variable Train Cohort (N = 102) Test Cohort (N = 45) p Value *

Continuous variable mean (sd)

Age (Years) 55.73 (12.57) 55.64 (12.21) 0.01

Weight (Kg) 60.65 (13.02) 59.64 (12.06) 0.01

BMI 22.35 (4.44) 21.93 (3.34) 0.01

OS 11.82 (11.74) 13.52 (11.78) 0.01

Bevacizumab (mg/kg) 5.71 (1.51) 5.62 (1.37) 0.01

Antibiotic Days 2.94 (5.6) 4.93 (7.63) 0.01

Categorical variable (%)

Sex Male (56) and Female (46) Male (27) and Female (18) 0.4

ECOG Yes (53) and No (49) Yes (25) and No (20) 0.32

Site Left (73) and Right (29) Left (34) and Right (11) 0.81

Surgery No (25), Palliative (24) and
Radical (53)

No (14), Palliative (9) and
Radical (22) 0.78

Differentiation Degree 0 (18), 1 (66) and 5 (18) 0 (10), 1 (31) and 5 (4) 0.01

Metastatic organ 1 (59), 2 (44), 3 (27), 4 (13)
and 5 (45) 1 (17), 2 (13), 3 (6) and 4 (8) 0.01

Therapy

BEV plus
capeOX/FOLFOX (49),

BEV plus FOLFOX (24) and
BEV plus others (29)

BEV plus
capeOX/FOLFOX (26),

BEV plus FOLFOX (6) and
BEV plus others (13)

0.27

PFS 1 (63), 2 (41) and 3 (26) 1 (33), 2 (13) and 3 (9) 0.63

Antibiotic Yes (37) and No (65) Yes (34) and No (21) 0.04

Antibiotic Range No (65), 0–6 days (10) and
7–40 days (15)

No (21), 0–6 days (22) and
7–40 days (14) 0.53

Hypertension Yes (66) and No (36) Yes (27) and No (18) 0.02

Side Effects Yes (94) and No (8) Yes (42) and No (3) 0.01
* Computed using the t-test for continuous variables and the chi-squared test for categorical variables.

For instance, our analysis reveals that, on average, the age at the time of diagnosis
is 68 for men and 72 for women. This aligns with the understanding that the majority of
colorectal cancers occur in individuals older than 50. Notably, for colon cancer, the average
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age is 63 for both men and women, as reported in [53]. Although Table 2 presents the
distribution of sexes between males and females and underscores the importance of sex
in colorectal cancer (CRC), our research analysis did not stratify the sexes. While up to
50% of colon cancers may have a strong inherited factor, it is important to note that diet
and lifestyle play essential roles in rectal cancer. Excess weight is associated with an
increased risk of cancer. However, it is not considered an essential factor in this population
group [54,55]. Additional characteristics outlined in Table 2 underscore that metastasis
remains the leading cause of cancer-related mortality in CRC patients, primarily due to
the spread of cancer to other body parts [4,56]. This is particularly significant in rectal
cancer, where the overall survival (OS) for individuals diagnosed at a localized stage is
significantly higher compared to cases where cancer has spread to distant parts of the
body [57]. Consequently, metastases contribute to over 40% of cancer-related mortality
in CRC patients. Cancer data analysis often reveals high variability and influence among
cancer variables. The interpretation of treatment effects is significantly impacted by PFS,
introducing subjective biases related to treatments [58]. The location of the colorectal
tumor is a crucial factor in disease progression and overall survival [59]. Notably, patients
undergoing radical surgery have a higher likelihood of receiving a metastasis diagnosis.
Combining the Bevacizumab monoclonal antibody with chemotherapy has demonstrated
greater efficacy than treatments involving only chemotherapy or the monoclonal antibody.
However, this combination may also elevate the risk of some adverse gastrointestinal
adverse [60].

When analyzing different variables, one should consider whether the observations
are independent or not. This is particularly important when no repeated measure design
or matched data exist. In this analysis, we found no repeated observations. We calculated
the correlation coefficient and presented it in a heatmap to better understand the relation-
ship between each pair of independent variables (Figure 2). Based on the assumption of
independence, we have excluded the following independent continuous variables: Age,
OS, Dosage, Antibiotic Days, Weight, and BMI. These variables showed a high correlation
coefficient (0.5) with each other. Generally, a weak positive correlation falls between 0.1
and 0.3, a moderate correlation between 0.3 and 0.5, and a strong correlation between 0.5
and 1.0 [61].

Figure 2. Heat map correlation of basic patient characteristics for heterogeneous classification variables
for categorical mCRC variables.
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Figure 3 presents a heatmap plot illustrating the correlation coefficients among
all variables, including both continuous and categorical ones. Positive correlations are
notably observed between BMI and Weight (WT), as well as between Antibiotics, Antibi-
otic Range, and Antibiotic Days, reflecting their inherent dependencies. The remaining
correlation coefficients are approximately zero, signifying an absence of statistically
significant correlations.

Figure 3. Heat map correlation of basic patient characteristics for heterogeneous classification for
continuous and categorical mCRC variables.

KDE analysis was conducted for all variables utilized in the models, demostrating the
distribution of observations across both the training and testing datasets. The consistency
observed in these plots implies no notable disparities between the training and testing
datasets, affirming their comparability. Detailed information regarding the dataset split,
ensuring balance, is provided in Table 2, obviating the need for graphical representation in
the KDE analysis.

3.2. Model Performance

The confusion matrix in Figure 4, as well as the one associated with the classification
report, shows the performance of the nine classification models. The figure provides a
comprehensive comparison of the models based on the test data for the actual and predicted
counts of each class, while a classification report shows the calculated metrics of each class.
Similar results were observed among the various models considered in terms of accuracy,
precision, recall, F-Beta, and AUC. Although these metrics may not reach the typically
defined standards, they align with results seen in other clinical research [42,62].

The confusion matrix for the Consensus Top Meta Models identifies the types and
sources of errors a model makes, while the classification report helps to evaluate the quality
and reliability of the model. As a result, the Consensus Top Meta Models demonstrated
superior performance in terms of various metrics when compared to the other models.
Operating as both a statistical approach and an ML algorithm tailored for classification
problems, M9 is founded on the probability concept. Notably, M9 possesses the ability to
map any real value onto a scale within the range of 0 to 1. M9 relies on several fundamental
assumptions to maintain its effectiveness. Consensus Top Meta Models refers to a set of
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meta models that have been widely accepted or agreed upon as the most prominent in a
particular domain. These models, having achieved a consensus within the community or
industry, represent distinguished and effective approaches to addressing specific challenges
or issues in the corresponding field. This term underscores the convergence of opinions
and recognition surrounding these meta models as leading benchmarks in their application
area [63]. The M9 model has met the benchmarks that are indicative of a valuable ML
model. While the requirement for high accuracy may vary based on the specific objectives
of the model, industry standards generally deem an accuracy above 90% as satisfactory.
Similar criteria apply to other metrics, with values approaching 100% or 1 considered
more favorable. Consequently, the meta model has emerged as the optimal classification
model. Table 3 displays the obtained model parameters, encompassing the coefficient for
each independent variable, accompanied by its coefficient standard error, z-value, p-value,
and 0.025 and 95% confidence intervals (CI). Importantly, it is observed that three of the
independent variables, Treatment, Site, and Differentiation, present p-values exceeding
0.05, indicating that they are not deemed statistically significant predictors. To enhance
the reliability of the model, a subsequent Consensus Top Meta Model was conducted,
excluding the non-significant variables. Notably, the antibiotic variable exhibited a p-value
larger than 0.05 (0.159), exposing no significance association with mortality in metastatic
colorectal cancer (mCRC) patients treated with bevacizumab.

Figure 4. Classification matrix and classification report for Oversampling Pool for models. Models:
Oversampling Pool for models (M1), Logistic Regression (M2), Decision Trees (M3), Naive Bayes
(M4), Support Vector Machines (M5), Random Forest (M6), XG Boost Classifier (M7), Consensus All
Meta Models (M8) and Consensus Top Meta Models (M9).
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Table 3. Initial logistic classification model parameters.

Coef Std Err z p > |z| 0.025 0.975

Sex 1.0159 0.724 1.403 0.161 −0.404 2.435
Age −0.0189 0.023 −0.828 0.408 −0.064 0.026

Weight −0.0645 0.057 −1.132 0.258 −0.176 0.047
BMI 0.1180 0.165 0.715 0.475 −0.205 0.441

ECOG 0.7840 0.533 1.471 0.141 −0.261 1.828
Site 1.3709 0.632 2.170 0.030 0.133 2.609

Surgery 0.2714 0.377 0.720 0.472 −0.468 1.011
Differentiation −0.4130 0.182 −2.266 0.023 −0.770 −0.056

Metastasis Organs −0.1550 0.240 −0.646 0.518 −0.625 0.315
Treatment 0.8158 0.312 2.616 0.009 0.205 1.427

Dose (mg/kg) 0.0433 0.180 0.240 0.810 −0.310 0.397
OS −0.0016 0.027 −0.061 0.951 −0.054 0.050
PFS 1.7059 0.903 1.889 0.059 −0.064 3.476

Antibiotic days 0.1228 0.091 1.345 0.179 −0.056 0.302
Antibiotic 2.0652 1.465 1.410 0.159 −0.806 4.936

Antibiotic Range −1.7250 1.225 −1.409 0.159 −4.125 0.675
Hypertension −0.0492 0.247 −0.199 0.842 −0.533 0.435

Side effects 0.3020 0.891 0.339 0.735 −1.444 2.048

The refined M9, optimized by excluding the Treatment, Site, and Differentiation
variables, as mentioned earlier, was constructed. Despite the acknowledged impact of
differentiation grade on survival time [64], it is worth noting that poorly differentiated
CRCs often exhibit heightened aggressiveness and a lack of targeted therapies [65]. The pa-
rameters of the optimized model were derived from the variables detailed in Table 4.
Notably, the optimized M9 model reveals that the antibiotic variable has a p-value > 0.05.
It is significant to observe that the p-value for antibiotic exposure is 0.182. Therefore, pre-
vious assumption related to mCRC and antibiotics could be maintained. Nevertheless,
several questions remain unanswered, including details about the specific type of antibiotic,
dosage, or mode of administration (oral or intravenous), which could offer more nuanced
conclusions. Furthermore, while the meta model demonstrated the highest prediction
accuracy, there is still room for improvement to enhance both accuracy and precision.

Scrutinizing these assumptions unveils that M9 can be applied with greater flexibility
than conventional regression procedures, rendering it suitable for various therapeutic
circumstances. In any given scenario, M9 computes the probability that a case with a
specific set of values for the independent variables belongs to the modelled category [33].
Consequently, M9 finds frequent application in health sciences studies, particularly in
models concerning illness conditions (diseased or healthy) and decision making (yes or no).
To improve prediction accuracy, the meta model was analyzed with consideration of the
number of independent variables required, ensuring that accuracy was not compromised.
The influence of each independent variable on the model’s accuracy was evaluated by
iteratively running the model, excluding one variable at a time to measure the impact of its
omission on accuracy. The results are presented in Table 5. The table illustrates the effect of
omitting each independent classification variable on the model’s accuracy, utilizing the test
dataset. Notably, Hypertension, Differentiation, ECOG, and Treatment had a substantial
impact (≥3) on the accuracy, designating them as significant predictors.

Generally, an AUC of 0.5 suggests no discrimination, 0.7 to 0.8 is considered acceptable,
0.8 to 0.9 is deemed excellent, and values above 0.9 are considered outstanding. The M9
model exhibited an AUC of 0.93 (Figure 5), indicating an acceptable level of discrimination.
Nevertheless, there is room for improvement to achieve a higher AUC.
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Table 4. Optimized logistic classification model parameters.

Coef Std Err z p > |z| 0.025 0.975

Sex 0.7932 0.626 1.266 0.205 −0.434 2.021
Age −0.0201 0.020 −0.981 0.327 −0.060 0.020

Weight −0.0668 0.049 −1.353 0.176 −0.164 0.030
BMI 0.1632 0.140 1.163 0.245 −0.112 0.438

ECOG 0.5002 0.478 1.045 0.296 −0.438 1.438
Surgery 0.1301 0.341 0.382 0.703 −0.538 0.798

Metastasis Organs −0.0425 0.219 −0.194 0.846 −0.471 0.386
Dose (mg/kg) 0.0585 0.161 0.364 0.716 −0.256 0.373

OS 0.0129 0.024 0.543 0.587 −0.034 0.059
PFS 0.7439 0.756 0.984 0.325 −0.737 2.225

Antibiotic days 0.1156 0.086 1.344 0.179 −0.053 0.284
Antibiotic 1.7211 1.289 1.335 0.182 −0.806 4.248

Antibiotic Range −1.4772 1.132 −1.305 0.192 −3.695 0.741
Hypertension 0.0454 0.219 0.208 0.836 −0.383 0.474

Side effects 0.3693 0.789 0.468 0.640 −1.177 1.915

Table 5. Impact of omitting each independent variable on the accuracy of the decision tree model.

Omitted Variable Model Accuracy (%) Accuracy Reduction (%)

Sex 0.78 −15
ECOG 0.96 +3

Site 0.87 −6
Surgery 0.91 −2

Differentiation 0.98 +5
Metastasis Organs 0.93 0

Treatment 0.93 +3
PFS 0.89 −4

Antibiotic 91 −2
Antibiotic Range 0.82 −11

Hypertension 0.98 +5
Side effects 0.93 0

Figure 5. The ROC curve for M9 model. True positive rate (axis Y) is a metric that assesses a model’s
capability to accurately predict true positives within each available category. On the other hand, the
false positive rate (axis X) is a metric that gauges a model’s proficiency in predicting true negatives
within each available category. The dashed line connects the points (0,0) and (1,1) on the ROC plot to
represent the performance of a classifier that makes random guesses or predictions. It represents the
scenario where the true positive rate (sensitivity) is equal to the false positive rate (1 - specificity).
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3.3. Feature Analysis

Figure 6 illustrates the significance of each model’s features. Nearly all of the models
demonstrated a consistent significance in the structural aspects of each model’s features.
All models incorporated OS, Age, and PFS, underscoring the relevance of dietary and
lifestyle factors in colorectal cancer (CRC) [54,55]. However, the positions of ECOG, BMI,
and Antibiotic Days were permuted in various models, as were Metastasis Organs and PFS,
along with Site, Surgery, Sex, and Antibiotics. Despite these variations, similar significance
values were observed for each model’s features across the nine models. Even though the
Antibiotic variable does not present a high significance, Antibiotic Days do. For this reason,
taking a cancer treatment at the same time as an antibiotic could have a high influence on
survival [52].

Figure 6. Features′ importance analysis. Models: Oversampling Pool for models (M1), Logistic
Regression (M2), Decision Trees (M3), Naive Bayes (M4), Support Vector Machines (M5), Random
Forest (M6), XG Boost Classifier (M7), Consensus All Meta Model (M8) and Consensus Top Meta
Models (M9). Legend: Blue: Indicates that the presence of a feature is negatively contributing to
the prediction. Red: Shows that the presence of a feature is positively contributing to the prediction.
Purple: White or neutral: May represent missing values or absence of significant contribution from a
particular feature to the prediction. The intensity of the colour (either lighter or darker) indicates the
magnitude of the feature contribution.
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Clinical Significance

The survival function derived from the Kaplan–Meier estimator provides a valuable
quantification of survival analysis, depicting the relationship between time and the proba-
bility of surviving beyond a specific time point. Figure 7 visually represents the probability
of survival over time. At any given moment, the survival function is computed as the
ratio of patients surviving beyond that point to the total number of patients. The resulting
curve takes the form of a step function, with steps occurring at time points where one or
more patients have died. The plot distinctly indicates that there is no apparent difference
between patients who took antibiotics and those who did not.

Figure 7. Statistical probability of survival for antibiotic regime in mCRC. Purple: No antibiotic
intake. Brown: Yes antibiotic intake.

The findings illustrated in Figure 7 were supported by the Hazard Ratio (HR) value.
Hazard Ratios were employed in survival analysis to compare the risk of death between
patients who took antibiotics and those who did not. The obtained HR value was one,
signifying that as the HR covariate increases by 0%, there is no significant difference in
event hazard between different Antibiotic groups.

4. Discussion

Our study suggests that a range of ML models can proficiently predict and classify
cancer-related issues. The top meta models identified by consensus exhibited superior
performance across various metrics. These consensus models introduce a novel weighted
method explicitly crafted to minimize false negatives and false positives while maintain-
ing accuracy. In the proposed weighted consensus model, we normalize the accuracy of
individual classification models. During the prediction phase, these models might predict
different classes. In the experimental evaluation of the weighted consensus model, we
utilized classification algorithms, including Logistic Regression, Decision Trees, Naive
Bayes, Support Vector Machines, Random Forest, and XGBoost. Our results indicate that
the proposed meta-model performs comparably to the current state-of-the-art techniques,
achieving an accuracy of 93%. Notably, it effectively mitigates false negatives and false
positives. One noticeable application of the meta-model in our study involved examin-
ing the association between antibiotic exposure and clinical outcomes in mCRC patients.
This analysis, reminiscent of a hospital-based cohort study, confirmed a non-significant
association, aligning with the findings of other studies [24]. However, an important ob-
servation emerged—the duration of antibiotic exposure during cancer treatment holds
more significance than the mere presence or absence of antibiotic use [52]. Our study
underscores that the period of antibiotic treatment could exert a substantial influence on
survival outcomes. This insight adds depth to our understanding, suggesting that assessing
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the duration of antibiotic use is crucial for a more nuanced interpretation of its impact
on clinical outcomes. ML methods have shown promising features in cancer prediction,
as evident in studies related to breast cancer and large-B-cell lymphoma (DLBCL) [66–68].
These methods contribute to informed decision making in clinical practice for colorectal
cancer. However, challenges such as dataset size, quality, and algorithm selection persist.
The dataset’s quality and the algorithm’s appropriateness depend on factors like data types,
sample size, time constraints, and desired prediction outcomes. Overall, the successful
performance of the meta model suggests that they could be valuable tools in real-world
clinical settings. By providing accurate predictions of cancer survival, these models can
aid in individualized treatment strategies, optimizing dosage regimens, and ultimately
improving therapeutic outcomes.

Antibiotics play a pivotal role in the management of colon cancer (CRC) across various
disease stages, exerting both direct and indirect effects. However, their efficacy can vary
based on the specific type utilized. Emerging research indicates that different antibiotic
classes may elicit varied responses in certain cancers, potentially impeding tumour growth.
Conversely, the effectiveness of previously administered antibiotics may diminish over
time. Despite being commonly employed as adjuvant therapies alongside surgical, radio-
therapeutic, chemotherapeutic, and immunotherapeutic interventions, concerns regarding
antibiotic resistance and reproductive toxicity are mounting. Moreover, antibiotic usage
can disrupt the balance of the intestinal microbiota, thus affecting the efficacy of combined
cancer treatments [69]. Consequently, careful consideration must be given to selecting
the optimal type, dosage, and administration route (oral or intravenous) of antibiotics to
synergize with cancer therapies.

The feature importance analysis for the classification models has uncovered that
certain antibiotic-related variables are more influential than the mere presence or absence
of antibiotic use. This discovery aligns with the existing knowledge in the field, where the
impact of antibiotics on cancer survival lacks clear significance. Our results expand on
this understanding by evaluating the importance of the specific type of antibiotic used in
cancer treatment. Indeed, different antibiotics have been shown to exert varying effects on
the density and diversity of the microbiota [6,7]. This nuanced insight contributes to the
ongoing discourse on the role of antibiotics in cancer treatment, highlighting the need for a
more comprehensive consideration of the various factors at play.

While colorectal cancer can affect individuals of all genders, current evidence does not
indicate a differential impact of gender on the incidence of colon cancer itself [70]. However,
certain risk factors, such as the influence of sex hormones and age, may vary between
genders and contribute to the development of colon cancer. Furthermore, variations
in symptoms and clinical presentation have been observed between men and women
diagnosed with colon cancer. Therefore, any analysis of colon cancer must take into account
these gender-related factors. Consequently, future analyses should consider stratifying the
data by sex to explore potential differences between females and males in colorectal cancer
outcomes and the impact of antibiotics on their survival [71].

Unfortunately, different datasets present different variables, making it challenging
to make comparisons between different studies. The analysis of cancer heavily relies on
managing vast and variable datasets. Challenges arising from this data deluge include
noise, heterogeneity, sparseness, incomplete data fields, random errors, systematic biases,
and extracting relevant clinical phenotypes. All of these challenges are generated by phar-
maceutical and healthcare processes [11,12]. Consequently, the comparable analysis makes
it difficult to perform. For this reason, it is essential to acknowledge that these studies
faced certain limitations. Firstly, they often dealt with a relatively limited amount of data,
which may impact the generalizability of their models. Additionally, the lack of external
validation in many of these studies raises concerns about the robustness and reliability of
their findings. Finally, heterogeneity and not homogeneity between hospitals or research
centres make it difficult to analyze the generalizability of the impact of these models. Even
though a small-sample-size dataset may limit the ability to detect small size effects and
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can lead to overestimation or underestimation of size effects, our study relied solely on
a small public dataset, which is a constraint of our research. While the dataset exhibits
high accuracy, its generalizability is constrained by several limitations. These include its
relatively small size and the lack of external validation. Recognizing and mitigating these
limitations are crucial for a more precise interpretation of the findings. Additionally, it is
essential to proactively address any potential biases in the analysis.

Working with larger and more diverse datasets, including private datasets, may lead
to different or complementary findings, such as identifying other determining factors that
can be significant in predicting the impact of bevacizumab in the treatment of mCRC
patients. However, meta models can adaptively balance the effect of meta learning and
task-specific learning within each task, minimizing the possibility of having imbalance
and overfitting problems. In a published study, a meta-analysis on 2760 mCRC patients
suggested that primary tumour resection was the critical factor in the improved survival of
mCRC patients who received bevacizumab treatment [72]. A systemic review and meta-
analysis of nearly 4000 previously untreated or advanced mCRC patients showed that the
combination of chemotherapy and bevacizumab increased the survival rates of patients
who had not received prior chemotherapy for metastatic colorectal cancer. The patients
who received bolus 5-FU or capecitabine-based chemotherapy with bevacizumab showed
higher progression-free survival and overall survival rates compared to those who received
infusional 5-FU plus bevacizumab, where there was no difference in progression-free sur-
vival and overall survival [73]. In a study that examined the impact of primary tumour
location on the efficacy of bevacizumab combined with CAPEOX (capecitabine and oxali-
platin) in the first-line treatment of metastatic colorectal cancer (mCRC), researchers found
that patients with primary tumours in the sigmoid colon and rectum had significantly
better outcomes in terms of progression-free survival (PFS) and OS compared to those with
primary tumours from the cecum to the descending colon. This study included a cohort of
667 mCRC patients treated with CAPEOX and bevacizumab from 2006 to 2011, revealed a
median PFS of 9.3 months and a median OS of 23.5 months for patients with sigmoid colon
and rectal tumours, substantially better than the outcomes for patients with tumours in
other locations. These findings were consistent even after adjusting for other prognostic
factors in multivariate analyses. However, for patients treated solely with CAPEOX, no sig-
nificant association between primary tumor location and treatment outcomes was observed.
This suggests that the addition of bevacizumab to CAPEOX may predominantly benefit
mCRC patients with primary tumors in the rectum and sigmoid colon, a hypothesis that
warrants further validation through data from completed randomized trials [74]. These
studies demonstrate that other factors, such as chemotherapy regimes, tumour resection,
and primary tumour location, can change the outcome of using bevacizumab in mCRC
patients. Thus, the impact and effectiveness of using this antibiotic in the treatment of
mCRC patients cannot be predicted accurately without considering other factors that affect
cancer pathophysiology as well as patients’ health and survival.

5. Conclusions

In this paper, we presented a weighted consensus model that achieves high accuracy
in identifying potential mCRC-related deaths. We also investigated the impact of adminis-
trating an antibiotic, bevacizumab, on mCRC patients. To predict survival in mCRC, we
employed machine learning classification algorithms. Our analysis was based on multi-
source and heterogeneous clinical data obtained from openly accessible datasets. Our
findings showed that the presence or absence of antibiotics did not have a significant
predictive value for mCRC survival. However, upon closer examination, we found that the
variable ‘Antibiotic Days’ was the most crucial predictor in our study. Our analyses suggest
that an increase in ‘Antibiotic Days’ is positively correlated with cancer progression and
mortality in mCRC patients, emphasizing the importance of not only considering the use of
antibiotics but also paying attention to their duration. This phenomenon can be correlated
to the cumulative bevacizumab dose (CBD) caused by increasing the ‘Antibiotic Days’ as
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it was reported in another study [75] considering the terminal half-life of bevacizumab is
relatively long (about 20 days) in both men and women [76].

We used resampling techniques to overcome the limitations of the clinical data, such
as data dependence and bias. Variables were screened based on their importance, and we
compared the performance of ten different classification ML models. Although antibiotics
had an impact on the study, they were not considered significant in terms of survival.
Ultimately, we chose the logistic regression model as the best predictive model, with an
accuracy of 93%, indicating robust prediction capabilities across the clinical data. Our
proposed consensus method is a novel technique that minimizes false negatives and false
positives, depending on the requirements. This model has the potential to reduce the death
of mCRC patients by minimizing false negatives and positives. In contrast, the rest of
the classification methods exhibited an accuracy of 60% to 87%, suggesting that most of
them were good predictors for this study, taking into account that industry standards for
satisfactory accuracy generally exceed 70% and can be up to 90% [43,44].

Overall, our study sheds light on a potentially critical aspect of the intricate relationship
between antibiotics and mCRC survival, offering valuable insights for future research
and clinical considerations. This study further elaborates on the ability of ML to predict
survival in mCRC. Our findings highlight the predictive potential of the implemented
ML classification models in mCRC. While the capabilities of ML methods continue to
enhance and more patient data become available to cancer researchers, future studies
can uncover further details of associations between specific classes of antibiotics and
chemotherapy regimens in mCRC treatment. Notably, future studies can analyze other
datasets containing data such as antibiotics, mCRC, and survival, aiming to elucidate other
possible significant relations.
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AB AdaBoost classifier
AI Artificial Intelligence
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CRC Colorectal cancer
CI Confidence intervals
DT Decision Tree
FN False negative
FP False positive
GNB Gaussian Naive Bayes
HR Hazard Ratio
KDE Kernel density estimate
KNN K-Neighbors classifier
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LGMB LGBM classifier
LR Logistic regressor
mCRC Metastatic CRC
ML Machine learning
ORR Objective response rate
OS Overall survival
PFS Progression-Free Survival
RFC Random Forest classifier
ROC Receiver operating characteristic
SVC Support Vector classifier
TN True negative
TP True positive
XGB XGB classifier

Appendix A

Table A1. Confusion matrix.

Predicted: True Predicted: False

Actual: True True Positive (TP) False Negative (FN)
Actual: False False Positive (FP) True Negative (TN)

Accuracy =
TP + TN

TP + TN + FP + FN
(A1)

Recall =
TP

TP + FN
(A2)

F − beta = 1 + β2 ∗ Precision ∗ Recall
β2 ∗ Precision + Recall

(A3)

Precision =
TP

TP + FP
(A4)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(A5)

AUC =
1 + TPR − FPR

2
(A6)

TPR =
TP

TP + FN
(A7)

FPR =
FP

FP + TN
(A8)
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