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Abstract: Cardiac arrest is a sudden loss of heart function with serious consequences. In developing
countries, healthcare professionals use clinical documentation to track patient information. These data
are used to predict the development of cardiac arrest. We published a dataset through open access to
advance the research domain. While using this dataset, our work revolved around generating and
utilizing synthetic data by harnessing the potential of synthetic data vaults. We conducted a series of
experiments by employing state-of-the-art machine-learning techniques. These experiments aimed to
assess the performance of our developed predictive model in identifying the likelihood of developing
cardiac arrest. This approach was effective in identifying the risk of cardiac arrest in in-patients, even
in the absence of electronic medical recording systems. The study evaluated 112 patients who had
been transferred from the emergency treatment unit to the cardiac medical ward. The developed
model achieved 96% accuracy in predicting the risk of developing cardiac arrest. In conclusion, our
study showcased the potential of leveraging clinical documentation and synthetic data to create
robust predictive models for cardiac arrest. The outcome of this effort could provide valuable insights
and tools for healthcare professionals to preemptively address this critical medical condition.

Keywords: bed head ticket; cardiac arrest; clinical documents; decision tree classification model; early
warning system; deep learning; developing country; machine learning; recurrent neural network

1. Introduction

Dysfunction in the heart’s conduction system frequently leads to cardiac arrest, which
results in the heart’s inability to pump blood efficiently. Ventricular fibrillation is the pri-
mary cause of cardiac arrest in 65–80% of cases [1]. Numerous heart-related conditions can
lead to cardiovascular complications, including coronary artery disease, cardiomyopathy,
inherited conditions, congenital heart disease, heart valve disease, acute myocarditis, and
conduction disorders, such as long QT syndrome. However, many patients may not recog-
nize or ignore symptoms, with chest pain being the most common indicator of potential
cardiac issues.

Ischemic coronary illness causes over 70% of cardiac arrests and is the leading cause of
cardiac dysfunction. Risk factors include hypertension, hyperlipidemia, diabetes, smoking,
age, and a family history of coronary disease [2]. In Sri Lanka, cardiovascular diseases
(CVD) accounted for a high mortality rate of 534 deaths per 100,000 [3]. The risk of cardiac
arrest within the first 24 h after a heart attack was 20–30%, and the survival rate was around
25%, even with proper medical treatment.

Timely help and treatment are crucial for survival in sudden cardiac arrest cases. Early
warning systems (EWSs) could help identify patients at an increased risk of deterioration
and subsequent death due to cardiac arrest [4]. Patients admitted to the intensive care
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unit (ICU) due to sudden cardiac arrest have frequently exhibited symptoms of clinical
deterioration hours prior to the event, which could have been detected early using an early
warning system (EWS). A study carried out by Marinkovic [5] demonstrated that patients
who had higher EWS scores before having a cardiac arrest experienced the worst outcomes.
This highlighted the need for an EWS for the early detection and treatment of cardiac arrest
in order to reduce the mortality rate of this condition. Therefore, an EWS was designed
based on patients’ vital signs to aid this process [6].

According to previous studies, single parameter and aggregate weighted track and
trigger systems (AWTTS) were used by multiple EWSs [7]. Many EWSs have been de-
veloped using statistical methods and linking observations. Some have been developed
based on clinical consensus, and there has been no common ground of agreement regarding
whether one EWS’s performance was better than another EWS’s [8].

In machine-learning and deep-learning domains, the deep-learning–based early warn-
ing system (DEWS) model was stated as the first model, which was developed using
a deep-learning technique to predict cardiac arrest [9]. When exploring further, it was
observed that machine learning and AI technology have played a pivotal role in the early
prediction of cardiac arrest [9–20].

In low- to middle-income countries (LMIC), The effectiveness of using an EWS de-
veloped in high-income countries (HIC) may be compromised, as the algorithms may
not be sufficiently sensitive and specific to identify patients at risk of deterioration [21].
Furthermore, most of the risk algorithms have been based on European populations, and it
was unclear whether they would be valid for South Asian populations [22]. Although all
the previously mentioned machine-learning models utilized electronic medical records, it
is essential to note that LMIC countries like Sri Lanka remain unfamiliar with electronic
medical records (EMR) beyond clinical documentation, making it challenging to find data
and models that can meet their specific requirements.

Therefore, the research aim of this study was to develop a model that considered these
unique needs and limitations by making several important contributions:

• Publishing an open-access bed-head-ticket dataset.
• Introducing a machine-learning model that could predict the risk of fatal cardiac arrest

and showed improved results.
• Analyzing the dataset with machine-learning models to compare the usability of

the dataset.

Repository links

• Dataset (Zenodo) https://zenodo.org/record/7603772
• Model (GitHub) https://github.com/LahiruRajapaksha/cardiac-arrest-prediction-

using-bed-head-tickets.git

2. Materials and Methods
2.1. Methodology

To begin, Figure 1 illustrates a detailed workflow that explains different stages and
procedures undertaken during our study. The research was designed as a retrospective
cohort study, focusing on patients admitted to the cardiac ward between 13 August 2018
and 6 February 2020, at the Teaching Hospital, Karapitiya (THK), Galle, Sri Lanka. The
study population included patients who had been transferred to the cardiac ward from the
emergency treatment unit (ETU), excluding pediatric patients. A total of 112 patients, aged
15–89 years, were included in the study, with 82 male patients and 30 female patients. The
bed head ticket (BHT) dataset is available at Zenodo (https://zenodo.org/record/7603772),
licensed as Creative Commons Attribution 4.0 International (CC BY 4.0) [23].

https://zenodo.org/record/7603772
https://github.com/LahiruRajapaksha/cardiac-arrest-prediction-using-bed-head-tickets.git
https://github.com/LahiruRajapaksha/cardiac-arrest-prediction-using-bed-head-tickets.git
https://zenodo.org/record/7603772
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Figure 1. Comprehensive workflow chart. We divided data into training, testing, and validation sets,
starting with collecting and pre-processing data. Additionally, we used a synthetic data vault (SDV)
to augment our training dataset for four experiments. The figure depicts the model’s development
process, which included training and prediction. It also highlights the significance of comparing our
model’s performance with existing models.

Ethical clearance was obtained from the Ethics Review Committee of the Faculty of
Medicine, University of Ruhuna, Galle, Sri Lanka, and the study adhered to the relevant
guidelines and regulations established by the committee. Permission to access data was
granted by the Director of the Teaching Hospital, Karapitiya. As this was a retrospective
study, obtaining informed consent from all subjects was not applicable.

Data collection involved extracting information from the BHTs in the hospital’s record
room. Due to the absence of electronic clinical data, each BHT was manually examined to
collect the necessary data. The BHTs contained information on the patient’s health status,
clinical history, management actions, investigations, treatments, progress, and diagnosis.

The extracted BHT data were categorized into five main categories: demographic
features, examinations, lab reports, patient histories, and outcomes (Figure 2). The extracted
features, observed at a rate of over 60% (Figure 3) within the study group, were selected for
model development.

Demographic Examinations Lab Reports Patient History Hospital Outcome

Features

Age

Gender

Vital Signs

GCS Scale

Triage Score

Disease Type

Troponin Level

Cholesterol Level

Serum Electrolyte Levels

Blood Urea Level

Creatinine Level

FBS Level

Consumption of Alcohol

Smoking status

Family History of IHD

Survive

Dead

Figure 2. Categorization of extracted features into groups. The features were divided into five main
groups: Demographic, Examinations, Lab Reports, Patient History, and Hospital Outcome (whether
the person died or survived the event).
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Figure 3. The frequency of recorded features among the 112 patient records.

2.2. Data Pre-Processing

As illustrated in Figure 4, the extracted clinical data were primarily divided into two
categories: time-series data and non-time-series data. The time-series data consisted of
patient information recorded in relation to time, while non-time-series data encompassed
the remaining data. The clinical dataset contained 21 features: age, heart rate (HR), systolic
blood pressure (SBP), diastolic blood pressure (DBP), respiratory rate (RR), body temper-
ature (BT), blood oxygen saturation level (SpO2), level of consciousness, troponin level,
total cholesterol level, fasting blood sugar (FBS), serum electrolytes (sodium, potassium,
chloride), urea level, creatinine level, triage score (risk score upon admission), alcohol
consumption, smoking status, family history of ischemic heart diseases (FHIHD), and
hospital outcome.

Of the 21 features, 19 were selected for inclusion, while 3 were excluded from the final
feature list. Troponin level, total cholesterol level, and fasting blood sugar level, which
could be used to detect co-morbidities in patients, were excluded due to insufficient records
in the BHTs for the majority of patients. Data pre-processing consisted of two steps. First,
19 common features were selected, including the patient hospital outcome (target variable).
Second, missing value imputation was performed for the selected features. In cases of
missing data for a particular feature in a patient, the data value obtained most recently
to that missing value was considered, or, if not available, the median value of the data
was used.

When considering time-series data (SBP, DBP, HR, RR, BT, SpO2), patients were
monitored hourly throughout their hospital stay. In the selected dataset, patients were
monitored for at least 1 h and a maximum of 266 h (11 days). A suitable time step (time
window) for observation was chosen within this range. The time step was determined
based on the average observation time of a patient (52 h). This 52-hour observational time
window was considered the prediction window of the model. For the non-time-series data,
results from the patient’s lab tests on the hospital admission date were also considered.
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Figure 4. Data pre-processing workflow.

2.3. Data Division and Preparation

After pre-processing the dataset, we partitioned the dataset into three distinct subsets
at a ratio of 8:1:1, namely the training set, testing set, and validation set. Then, the training
dataset was further enhanced through the infusion of synthetic data generated by the SDV
(Figure 5). The goal of the SDV was to build generative models of relational databases [24].
By incorporating its capability of creating artificial instances that could mimic the statistical
properties of the original dataset, we expanded our training data, fostering greater diversity
and aiding the model’s ability to capture complex patterns.

Data Set

Train Data Set

Validation Data Set

Test Data Set

Experiment No 4

Experiment No 3

Experiment No 2

Experiment No 1

SDV MODEL

Figure 5. Data division and preparation for the model. After splitting the pre-processed dataset
into the training dataset, testing dataset, and validation dataset, we used an SDV to generate three
additional training datasets, bringing the total number of training datasets to four. (SDV = Synthetic
Data Vault).
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When generating the synthetic data for experiments 2–4, our consistent aim was to
achieve a balanced ratio of survived-patient data to dead-patient data at 1:1, ensuring equal
representation (Table 1).

Table 1. Summary of the number of patient records and sequences contained in training datasets.
Except for experiment 01, we maintained the survived/dead-patient ratio as 1:1.

Training Dataset 01 Training Dataset 02 Training Dataset 03 Training Dataset 04

No. of
Sequences

No. of
Records

No. of
Sequences

No. of
Records

No. of
Sequences

No. of
Records

No. of
Sequences

No. of
Records

Real Survived-Patient Data 4287 74 4287 74 0 0 4287 74
Synthetic Survived-Patient Data 0 0 0 0 4870 74 4870 74
Real Dead-Patient Data 743 15 743 15 0 0 743 15
Synthetic Dead-Patient Data 0 0 1768 59 4702 74 5259 133
Total 5030 89 6798 148 9572 148 15,159 296

2.4. Model Architecture

Integrating artificial intelligence into clinical practice has led to numerous studies
focused on predicting adverse events, such as cardiac arrest, before they occur. Evidence
from these studies suggested that deep-learning models were more efficient at identifying
high-risk patients than existing EWSs [25]. The Recurrent neural network (RNN) models
were particularly well-suited for handling temporal sequence data. Among the RNN
variants, long short-term memory (LSTM) demonstrated remarkable performance among
various sequence-based tasks [26]. Recent studies have also shown that deep-learning
models employing RNN architectures with LSTM outperformed clinical prediction models
developed using logistic regression [27,28]. Consequently, we chose the LSTM structure to
model the temporal relationships within the data extracted from the BHTs.

2.4.1. LSTM Model

The deep-learning cardiac arrest prediction model (DLCAPM) consisted of a LSTM
model that was designed to handle time-series data, followed by a dense layer. During the
model’s development, we employed a sigmoid activation function for the dense layer, the
Adam optimizer with default parameters, and binary-cross entropy as the loss function.
The complete dataset was divided into 20% for validation and testing and 80% for training.
Inputs to the LSTM model included SBP, DBP, HR, RR, BT, and SpO2 levels. The input
data fed into the LSTM comprised a three-dimensional array as no. of patients × time step
× no. of input features (5030, 6798, 9572, and 15,159 patient record sequences, respectively),
as illustrated in Figure 6. The first phase of the model handled temporal data, while the
second phase combined the results of the time-series data with the non-time-series data.
The combined data were then input into the decision-tree model to predict the final outcome
based on the model’s results.

LSTM Inputs
Before Reshaping After Reshaping

5030 x 6

No of patients: 89

No of data sequences: 5030

Patient 01 : 56 data sequences

Patient 02 : 56 data sequences

Patient 89 : 56 data sequences

89 x 56 x 6

LSTM Inputs

Figure 6. Data reshaping. This figure demonstrates an example scenario using experiment 01, where
there were 89 patients and a total of 5030 patient sequences. The average observation time for a
patient was approximately 56 h per time step. Based on this, the data for experiment 01 were reshaped
into a 3D array with dimensions 89 × 56 × 6, where 89 represents the number of patients, 56 denotes
the average observation time in hours per time step, and 6 signifies the number of features.
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2.4.2. Decision-Tree Model

In the medical domain, the clinical practice involves continuous decision-making,
where optimal decision-making strives to maximize effectiveness and minimize loss [29].
Clinical decision analysis (CDA) highlighted the significant role of decision trees in this
process [30]. Among the five methodologies employed for decision-making, designing
a decision tree was considered one [31]. Due to their reliability, effectiveness, and high
accuracy in decision-making, decision trees have been widely utilized in various medical
decision-making studies [32]. These factors led us to select the decision tree as the model to
handle non-time-series data, including the LSTM outcome. The LSTM model was designed
to generate a risk score based on time-series data acquired within a time window of 52 h.

2.4.3. Latent Vector Space

Latent vector space was employed in machine learning to analyze data that could be
mapped to a latent space, where similar data points were in close proximity. In simpler
terms, it could be described as a representation of compressed data. This latent space
representation retained all the essential information required to represent the original data
points, thereby facilitating data analysis. Latent space representations have been utilized
to transform more complex forms of raw data, such as images and videos, into simpler
representations, a concept implemented in representation learning.

In the context of the LSTM model, the latent vector space served as an input parameter
for the decision-tree model. The decision-tree inputs were a combination of non-time-
series data, including demographic information, lab results, triage score, Glasgow-coma-
scale (GCS) values, and patient histories, as well as the latent output of the LSTM model
(Figure 7). This approach allowed for a more comprehensive analysis by integrating both
time-series and non-time-series data, enhancing the model’s decision-making capabilities.

Risk Score

Hidden LayersInputs

Ti
m

e 
Se

rie
s 

D
at

a

LSTM Model

Latent Output Non Time-Series Data

Decision Tree

Class Label [Death = 0, Survive = 1]

Decision Tree Model

Figure 7. Model architecture.

2.4.4. Handling the Data-Imbalance Problem

Class imbalance has been a common challenge in real-world data, particularly in
medical fields, making it difficult to optimize machine-learning algorithm performance. In
this study, there were 93 majority-class (survived) and 19 minority-class (dead) patients,
yielding a 1:5 ratio.

To address the class imbalance, the synthetic minority over-sampling technique
(SMOTE) was used first to over-sample the minority class, generating synthetic data and
achieving a 1:1 class ratio. However, as was recently demonstrated by Van den Goorbergh,
SMOTE did not improve discrimination but, instead, led to significantly miscalibrated
models [33]. Due to this reason, we moved forward with a SDV to address the data-
imbalance problem.
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3. Results

In this result section, we present the results of a series of comprehensive experiments
conducted to assess the performance of the deep-learning cardiac arrest prediction model.
To enhance the robustness of our experiments, we incorporated an SDV to generate syn-
thetic data, permitting us to thoroughly assess the predictive capabilities of the model.
(Table 2).

Table 2. Experiments performed by incorporating synthetic data in order to evaluate the results of
the combined model. RS = Real Survived, RD = Real Dead, SS = Synthetic Survived, SD = Synthetic
Dead. The survived/dead ratio of the patients was maintained at 1:1.

Experiment No. RS RD SS SD Accuracy

01 74 15 - - 0.954
02 74 15 - 59 0.954
03 - - 74 74 0.964
04 74 15 74 133 0.967

After executing the designed experiments, we were able to achieve peak accuracy
through experiment 4, where the experiment encompassed a dataset of 296 patient records.
The hyper-parameters were optimized according to Table 3.

Table 3. Hyper-parameter values.

No. of Epochs Learning Rate Batch Size LSTM Nodes Optimizer

100 0.001 10 2 Adam

The creatinine levels were the most critical predictor, followed by the sodium and
blood-urea levels. Studies have suggested that these markers were related to renal function,
which was linked to cardiovascular diseases [34]. Additionally, potassium levels, FHIHD,
and age played key roles in classifying cardiac patients, supporting the association between
cardiovascular diseases and decreased potassium levels [35].

FHIHD was recognized as a well-established risk factor for cardiovascular diseases [36].
In the study’s findings, the risk factor FHIHD emerged as one of the most reliable predictive
features for cardiac arrest. (Figure 8) displays the probabilistic prediction window for six
randomly selected patients (three from each of the two classes). The LSTM model was
proficient in providing predictions from admission up to 52 h later. In other words, the
model’s prediction window spanned 52 h. The model demonstrated a prediction accuracy
of 96% with a confidence interval from 95.01% to 95.85%.
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Figure 8. Prediction of the risk score within 52 h. We randomly selected three patients from each
of the two classes (class: dead, survived) to make a probabilistic prediction about the occurrence of
cardiac arrest.
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3.1. Comparison with Existing Models

We assessed the performance of the developed deep-learning cardiac arrest prediction
model (DLCAPM) by comparing it with well-established machine-learning algorithms,
such as logistic regression, random forest, naïve Bayes, and support vector machine (SVM).
The evaluation used all the features incorporated in the DLCAPM model. Table 4 presents
the performance metrics, including accuracy, sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and F-score, for each of the compared models.
The results demonstrated that the LSTM component of the DLCAPM model exhibited
superior performance in comparison to the selected models.

Table 4. Performance comparison with existing machine-learning models (The Bolded entries of
LSTM & decision tree were the two models used in the deep-learning cardiac arrest prediction model
(DLCAPM)).

Model Accuracy Sensitivity Specificity PPV NPV F-Score

LSTM 0.96 0.95 0.93 0.98 0.81 0.86
Decision Tree 0.76 0.69 0.81 0.72 0.79 0.80

SVM 0.89 0.84 0.82 0.81 0.82 0.84
Logistic Regression 0.88 0.93 0.81 0.92 0.81 0.87

Random Forest 0.88 0.89 0.90 0.87 0.81 0.91
Naïve Bayes 0.85 0.89 0.80 0.82 0.88 0.91

3.2. Correlation Analysis

The correlation analysis evaluated the relationships among the model’s input features.
Pearson’s and Spearman’s coefficients have commonly been used: The former was for
normally distributed variables, and the latter for skewed or ordinal variables. A coefficient
near ±1 indicated a strong correlation, either positive or negative [37]. In this study,
Spearman’s rank correlation was used due to the Gaussian distribution, and Figure 9 shows
the heat map of the correlational coefficients. A high positive correlation existed between
systolic and diastolic blood pressure values.

Figure 9. Correlational heat map between time-series inputs SBP = Systolic Blood Pressure,
DBP = Diastolic Blood Pressure, HR = Heart Rate, RR = Respiratory Rate, BT = Body Temperature,
SpO2 = Blood Oxygen Saturation Level.
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3.3. Characteristics of the Study Population

In the cohort study, patient data were analyzed to assess the observed characteristics
of the study population, as shown in Table 5. From these observations, we could infer
that males may be more susceptible to cardiovascular diseases and cardiac arrests. This
study also examined the impact of various risk factors that could potentially contribute
to developing CVD. Among these risk factors, alcohol consumption, smoking, and an
FHIHD were identified as the most significant contributors. Of the total population (males
and females), 37% of individuals reported having an FHIHD. Notably, none of the female
patients were documented to consume alcohol or smoke. Among the male patients, 73%
(81 patients) were found to engage in at least one of these behaviors, with 69% (55 patients)
consuming alcohol, 63% (51 patients) smoking, and 26% (21 patients) engaging in both
alcohol consumption and smoking.

Table 5. Characteristics of the study population.

Characteristic Data
Study period 13 August 2018–6 February 2020

Hospital Teaching Hospital Karapitiya, Galle, Sri Lanka
Total patients 112
Input vectors 19

Age group 59–76 years
Male (%) 73%

Symptoms before admission Chest pain on the left side (1/2 h before the admission),
Tightening of the chest, Vomiting, Sweating, Nausea, Cough, Fever

Patients with FHIHD (%) 37%
Consume alcohol, Male (%) 69%

Smoking, Male (%) 63%
Smoking & use alcohol, Male (%) 26%

4. Discussion

The model’s performance was assessed using two optimization algorithms, Adam
and Admax. Multiple iterations were performed, and hyper-parameter combinations were
used to identify the four most optimal configurations, which yielded the highest accuracy.
Table 6 presents the evaluation metrics for each of these four selected runs. Among these
experiments, the best results were achieved in experiment 04 for training the model.

Table 6. Performance of the model on four experimental datasets. Note that we tested the LSTM and
the decision-tree models separately.

Metric

LSTM Decision Tree
Experiment Number Experiment Number

01 02 03 04 01 02 03 04
Accuracy 0.93 0.85 0.94 0.96 0.80 0.83 0.80 0.76
Precision 0.90 0.88 0.90 0.98 0.68 0.70 0.66 0.72

Recall 0.91 0.85 0.91 0.95 0.65 0.68 0.63 0.69
F-Score 0.81 0.86 0.81 0.86 0.82 0.85 0.82 0.80

AUC score 0.97 0.95 0.97 0.98 0.79 0.83 0.79 0.75

In a study related to ours, researchers had utilized a dataset comprised of 15 electronic-
medical-record (EMR) data parameters [38]. Interestingly, eight of these parameters, namely
age, gender, diastolic blood pressure (DBP), systolic blood pressure (SBP), body temper-
ature, respiratory rate (RR), blood pressure (BP), and creatinine, were also a part of our
study. However, their research had a more extensive dataset of 34,452 patients, whereas
our study had a limited sample of 112 patients. Due to the limited size of our dataset and
the class-imbalance issue, we employed the synthetic data vault to generate a training
dataset, while the other previous study had utilized the SMOTE technique. Nonetheless,



Biomedinformatics 2024, 4 44

considering the datasets of both studies, it might be beneficial to explore cross-validation
approaches for the models.

Table 7 shows the sensitivity, specificity, positive predictive value (PPV), negative pre-
dictive value (NPV), and accuracy measures for the outperformed LSTM and the decision-
tree models in experiment 04, respectively.

Table 7. Evaluation metrics of LSTM and decision-tree models of the deep-learning cardiac arrest
prediction model.

Statistic
Value 95% CI

LSTM Model Decision-Tree Model LSTM Model Decision-Tree Model
Sensitivity 95.83% 69.57% 95.37% to 96.25% 47.08% to 86.79%
Specificity 93.42% 81.82% 92.07% to 94.61% 64.54% to 93.02%

Positive Predictive Value 98.71% 72.73% 98.44% to 98.93% 55.19% to 85.24%
Negative Predictive Value 81.04% 79.41% 79.37% to 82.60% 67.07% to 87.96%

The receiver-operating characteristic (ROC) curve is a graphical representation that
demonstrates the diagnostic ability of binary classifiers by plotting sensitivity against
specificity. A better-performing classifier would have a curve closer to the top-left corner.
To compare classifier performances, a common approach has been to calculate the area
under the ROC curve. Figure 10a presents the ROC curve for the LSTM model.

However, the visual interpretations and comparisons of ROC curves could be mislead-
ing for imbalanced datasets. To address this issue, precision–recall curves were utilized.
Figure 10b illustrates the precision–recall curve for the LSTM model, and the supplemen-
tary figure shows the curve for the decision-tree classifier model.
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Figure 10. ROC curve and precision–recall curve of the LSTM model. (a) ROC curve. (b) Precision-
Recall curve.

The confusion matrix, which is crucial for statistical classifications in machine learning,
is a table describing a classification model’s performance and identifying class confu-
sion. Figure 11a,b displays the confusion matrices for the LSTM and decision-tree models,
respectively.
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Figure 11. Confusion matrices for (a) LSTM model and (b) decision-tree model.

4.1. Comparison with Existing EWSs

DLCAPM was evaluated against existing cardiac arrest early warning scores, including
the modified early warning score (MEWS), the cardiac arrest risk triage score (CART), and
the National Early Warning Score (NEWS), based on research by [10,16,39,40]. MDCalc
(https://www.mdcalc.com/ accessed on 26 August 2023), which has been referred to as
the most broadly used clinical decision tool by medical professionals, was used to calculate
risk scores for CART, MEWS, and NEWS, using collected data (RR, SpO2, BT, SBP, DBP,
HR, age, triage score). Table 8 displays the results for each score.

Table 8. Performance comparison of DLCAPM (deep-learning cardiac arrest prediction model, a
combination of LSTM and decision-tree models) against CART (cardiac arrest risk triage score),
MEWS (modified early warning score), and NEWS (National Early Warning Score) models. Bolded
entries are the results of the DLCAPM.

Model Accuracy Sensitivity Specificity PPV NPV F-Score
LSTM 0.96 0.95 0.93 0.98 0.81 0.86

Decision Tree 0.76 0.69 0.81 0.72 0.79 0.80
CART 0.60 0.50 0.75 0.75 0.75 0.60
MEWS 0.80 0.93 0.40 0.82 0.4 0.50
NEWS 0.80 0.84 0.66 0.94 0.66 0.66

4.2. Limitations

The record room at the Teaching Hospital, Karapitiya (THK) utilized Microsoft Excel
to store limited data from bed head tickets, making it necessary to manually review each
patient’s record in order to obtain the required information for this study, which was
time-consuming. The small sample size, the potential patient heterogeneity, and the focus
on a specific patient population within a single hospital unit limited the research’s general-
izability, potentially rendering it inapplicable nationwide. These limitations stemmed from
the legacy methods of maintaining patient data and the difficulties in retrieval.

Due to limited resources, only 112 patient records were extracted, which prevented
reaching the desired sample size for the model. To address this limitation, a SDV was
employed to increase the minority sample size. Furthermore, the study faced constraints
due to the scarcity of local research on the development of cardiac arrest EWSs in Sri
Lanka [21,41]. While the FHIHD feature provided a high-level understanding of a patient’s
family history and whether they had any heart-related conditions, it only offered a limited
view of the patient’s generational tree. Recent studies have revealed that sudden cardiac
deaths have occurred in completely asymptomatic individuals who carried pathogenic
variants in genes linked to sudden cardiac death [42]. However, this study did not collect
any genetic data, which was another limitation.

https://www.mdcalc.com/
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5. Conclusions

An efficient deep-learning cardiac risk prediction model was developed using clinical
features based on the BHTs of THK cardiac patients. This simple model used accessible
patient data and could offer bedside support for healthcare workers and assist the decision-
making process. An open-access dataset was published to encourage further research.

Early and accurate predictions can aid in timely interventions and prevent car-
diac events. Despite the model’s high accuracy, addressing data limitations could
further improve the model. Additional research is needed to explore its applicability in
other healthcare settings and its integration with existing patient monitoring tools for
enhanced predictions.

6. Future Work

To enhance the development of more generalized models, we aim to conduct future
studies with overlapping datasets, as we have a substantial amount of published clinical data
that share similar information. Furthermore, we plan to complement our existing datasets
by including this dataset in cross-validations with diverse geographical populations.
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SVM Support Vector Machine
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CART Cardiac Arrest Risk Triage Score
NEWS National Early Warning Score
MD CALC Medical Calculator
GRU Gated Recurrent Unit
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