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Abstract: This study investigates the potential of low-cost infrared cameras for non-contact moni-
toring of blood pressure (BP) in individuals with fragile health, particularly the elderly. Previous
research has shown success in developing non-contact BP monitoring using RGB cameras. In this
study, the Eulerian Video Magnification (EVM) technique is employed to enhance minor variations
in skin pixel intensity in specific facial regions captured by an infrared camera from the forehead
and palm. The primary focus of this study is to explore the possibility of using infrared cameras for
non-contact BP monitoring under low-light or night-time conditions. We have successfully shown
that by employing a series of straightforward signal processing techniques and regression analysis,
we were able to achieve commendable outcomes in our experimental setup. Specifically, we were
able to surpass the stringent accuracy standards set forth by the British Hypertension Society (BHS)
and the Association for the Advancement of Medical Instrumentation (AAMI) protocol.
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1. Introduction

Non-contact measuring techniques have made significant progress in recent years in
the monitoring of physiological parameters such as heart rate, oxygen saturation, and blood
pressure. One of the most important advantages of non-contact measuring techniques is that
they are non-invasive and therefore eliminate the risk of infection and discomfort associated
with the use of invasive procedures. For the elderly, non-contact measuring techniques have
even more significant benefits. Aging often brings with it a decline in health and functional
status, making the elderly more susceptible to age-related diseases, such as cardiovascular
diseases [1]. Therefore, non-contact measuring techniques provide a valuable tool for
monitoring the health status of the elderly, without causing discomfort or stress. Non-
contact measuring techniques also offer the advantage of continuous monitoring, which
allows for real-time monitoring of physiological parameters without the need for frequent
interruptions. This can be particularly useful in critically ill patients, who require constant
monitoring of their vital signs. In this paper, our primary objective is to comprehensively
investigate the use of non-contact techniques for blood pressure monitoring in order to
help detecting early warning signs of potential health problems in the elderly.

Hypertension and hypotension are both medical conditions that relate to blood pres-
sure levels. Blood pressure is the force exerted by circulating blood against the walls of
blood vessels. Hypertension refers to persistently elevated blood pressure, while hypoten-
sion refers to persistently low blood pressure. Tracking blood pressure levels is particularly
important for elderly individuals due to the increased prevalence of these conditions and
their association with various health risks. Hypertension, also known as high blood pres-
sure, is defined as a systolic blood pressure (SBP) of 140 mmHg or higher and/or a diastolic
blood pressure (DBP) of 90 mmHg or higher [2]. It is a leading risk factor for cardiovascular
diseases, including stroke, heart attack, heart failure, and kidney disease. Hypertension
can result from multiple factors, such as genetic predisposition, unhealthy lifestyle choices,
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and age-related changes in blood vessel function [3]. In the elderly, hypertension is highly
prevalent and has distinct characteristics compared to younger individuals. It is estimated
that approximately 46% of adults in the United States have hypertension [4]. As people age,
their blood vessels become stiffer, and the risk of developing hypertension increases [5].
Hypertension in older adults is associated with a higher risk of cardiovascular events,
cognitive decline, kidney disease, and mortality [6].

Hypotension, or low blood pressure, is generally defined as a systolic blood pressure
below 90 mmHg and/or a diastolic blood pressure below 60 mmHg [7]. Elderly individuals
with hypertension may also experience transient hypotensive episodes, which refer to
temporary drops in blood pressure that can have significant clinical implications. These
episodes may indicate compromised blood flow to vital organs like the brain and heart,
and they can be associated with acute cardiovascular and cerebrovascular incidents [8].
Managing hypotension in elderly hypertensive patients requires careful consideration, as
tailored therapy is necessary to balance the risks associated with medications [8].

Direct blood pressure monitoring, while providing valuable insights into cardiovascu-
lar health, is not without its limitations. These limitations span both practical considerations
and physiological factors, warranting a comprehensive examination to inform the broader
context of blood pressure assessment. Direct blood pressure monitoring often involves
invasive procedures, such as catheterization, which can lead to discomfort and potential
complications. The insertion of catheters or other invasive devices can cause tissue damage,
infection, or discomfort, thereby limiting the feasibility and acceptability of continuous
monitoring in various clinical settings [9–11]. Additionally, the act of invasive monitoring
itself can elicit physiological responses, including stress, pain, and sympathetic activation,
collectively known as the “white coat effect” [12]. These responses can transiently ele-
vate blood pressure, confounding accurate interpretation and clinical decision-making. In
contrast, a non-contact system relies on optical techniques, such as image photoplethys-
mography (iPPG) and remote photoplethysmography (rPPG), to capture physiological
signals from the skin’s surface, minimizing the psychological and physiological stressors.

There exists a substantial body of prior research dedicated to the investigation of non-
contact methods for blood pressure estimation and monitoring with plain RGB cameras
and non-magnifying signal processing approaches [13–17]. Nevertheless, as far as our
understanding goes, our approach distinguishes itself through the utilization of an infrared
camera, in conjunction with motion magnification. There have been non-contact method-
ologies primarily centered on facial signals [14,16,17] or, in some cases, the combined
utilization of facial and raised hand signals [13,15].

This study aims to assess the feasibility of using single-channel infrared videos for
accurate blood pressure estimation in the elderly. The motivation behind this research is
the potential benefits offered by these videos, including reduced computational complexity,
lower hardware requirements, and immunity to varying light conditions. By leveraging
these advantages, we seek to develop a novel approach that overcomes current limitations
in blood pressure measurement. Our goal is to enhance eldercare by providing healthcare
professionals with a reliable tool for unobtrusive and accurate blood pressure monitoring,
thereby advancing the field of geriatric healthcare.

2. Dataset Protocol & Equipment

In order to assess the performance of the proposed method for estimating systolic
and diastolic blood pressure, a dataset of infrared videos with blood pressure measure-
ments was created in which fifteen (15) participants participated, ranging in age from
55 to 92 years, predominantly representing an elderly demographic. The reference point for
each participant’s blood pressure was a clinically validated [18,19] commercial automatic
upper arm blood pressure monitor (Omron M6 Comfort (HEM-7360-E), manufactured in
Shimogyo ku, Kyoto, Japan) that monitored the blood pressure levels. All the subjects
were filmed in a room with natural sunlight using an infrared camera. We employed a
carefully designed approach that involved taking three consecutive readings within a span
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of two minutes, with a 30-s interval between each measurement, totalling 3 min. The
rationale behind this methodology stems from the fact that blood pressure readings can
exhibit inherent variability due to a multitude of factors, such as physiological fluctuations,
environmental conditions, and measurement artifacts [20]. By acquiring multiple readings
in quick succession, we aimed to reach the highest level of accuracy [4]. The participants
were instructed to remain as still as possible during the recordings. To avoid potential
registration issues, the participants were seated at a fixed distance from the camera, strate-
gically chosen to include the forehead region and the upper palm region within the field of
view. By ensuring that both the forehead region and the upper palm region were within
the camera’s view, we aimed to maximize the capture of relevant physiological signals
during our data acquisition process. But, due to the inclusion of elderly participants in our
study, we considered various factors to ensure their comfort and accurate data collection.
Recognizing the potential challenges posed by any unnecessary movement or instability,
we made a thoughtful decision regarding their hand positioning. To facilitate the most
conducive conditions for data gathering, we opted to utilize a rectangular mirror as a
pivotal component of our setup. Volunteers were directed to gently glide their right hand
underneath the mirror and comfortably rest it on a designated table, exposing their upper
palm region via the mirror’s reflection.

In the existing literature, we observed that authors have employed a range of camera
types, including expensive cameras [17], high-speed cameras [16], moderately high-spec
cameras [13,15], and webcams [14]. Many of these options fall within the price range of a
few hundred dollars. Our goal was to strike a balance between cost and performance. In
this study, we utilized a wired Google Nest Cam, listed with a retail price of 70 USD, to
record video footage of the participants. The camera settings were configured to “Infrared
Always” mode, providing a resolution of 1920 × 1080 Full HD and a frame rate of 30 fps.
To minimize potential distortion caused by the camera’s wide-angle lenses, the camera was
positioned at eye level, maintaining a distance of 85 cm from the participants. To obtain the
video clips, the researchers downloaded them from Google’s Cloud service, where they had
been uploaded. It is important to note that the video clips obtained from the cloud service
contained compression noise, which had the potential to impact the accuracy of the process.
Due to limitations imposed by the provided software from Google, direct extraction of raw
sensor data was not feasible, necessitating the use of the compressed video clips available
through the Google Cloud service. This approach was adopted to showcase the feasibility of
the proposed method, even when employing lower-end commercial equipment, as opposed to
high-end cameras with higher resolution or frame rates that may not be easily accessible to the
average home user. Despite the presence of compression noise in the video clips, the proposed
approach still yielded satisfactory results, thereby validating the proof of concept put forth by
this study. An example frame of the acquired video is shown in Figure 1.

Figure 1. The experimental setup showcases an anonymized volunteer, with the specific regions of
interest highlighted. The delineated blue rectangle denotes the targeted forehead area, while the
encompassed red rectangle corresponds to the upper palm region. These demarcated zones represent
the focal points for data acquisition and analysis in this study.
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3. Proposed Methodology

The proposed methodology comprises five key steps:

1. Face & Hand Detection: Precisely locating facial and hand regions of interest using
advanced computer vision techniques.

2. ROI Extraction: Extracting critical facial landmarks and hand-knuckle coordinates
from the detected areas.

3. Motion Magnification: Amplifying subtle movements and physiological signals to
reveal important dynamics.

4. Filtering: Removing noise and artifacts to enhance data accuracy.
5. Peak Detection: Identifying and characterizing relevant peaks in the signals.

The proposed methodology uses the above five steps to perform noninvasive estima-
tion of blood pressure. Figure 2 illustrates a flowchart representing the proposed system.

Face & Hand
Detection

ROI
Extraction

Motion
Magnification

Input
IR

Video
Filtering Peak Detection PTT

Figure 2. The figure displays a flowchart outlining the blood pressure estimation methodology under
consideration. The primary objective is to obtain the average Pulse Transit Time (PTT) for each
volunteer and investigate its correlation with both systolic and diastolic blood pressure.

3.1. Facial & Palmar Segmentation

The forehead region was deliberately chosen due to its well-established association
with reliable cardiovascular signals, including pulse rate and blood flow. The forehead
region offers convenient accessibility for individuals of all genders. It is essential to take
into account that facial hair, particularly in the jaw, lips, and chin areas, is more common in
men, which may present challenges, when utilizing these areas for monitoring purposes.
Simultaneously, the upper palm region was also strategically targeted for blood pressure
estimation. The upper palm’s consistent blood supply provided by the superficial palmar
arch and deep palmar arch [21] and stable skin characteristics contribute to its suitability for
noninvasive blood pressure estimation. At first, we employed OpenCV’s deep learning Face
Detector, specifically the Single Shot Detector (SSD) model, as a fundamental component of
our facial detection process in the 3-min video clip, followed by the next step of isolating
the region of the forehead. The isolation process is facilitated by utilizing standard ratios
between essential face landmarks typically found in the average human face, as elaborated
in more detail in [22–24]. In prior research, we elucidated the process of isolating the
forehead region through the employment of mathematical methodologies. Then, we
delineated a computational framework to accurately extract and segregate the forehead
region from the rest of the facial anatomy [25]. Given the comprehensive treatment of this
mathematical underpinning in our prior research, we have opted to refrain from redundant
repetition within the context of the current study. Next, we use mediapipe’s hand detection
framework, which allows for the detection of hand landmarks in an image, enabling the
rendering of visual effects over the hands. The approach infers 21 3D keypoints of a
hand from a single frame, enabling real-time hand and finger tracking. Figure 3 visually
demonstrates the accurate and precise localization of 21 3D hand-knuckle coordinates [26].
In the context of this application, our primary focus lies on the specific area formed by the
landmarks 0, 1, 5, 9, 13, and 17. These key landmarks serve as critical reference points,
precisely marking the boundaries and spatial extent of the upper palm area that we are
keenly interested in analyzing.
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Figure 3. The analytical localization of 21 3D hand-knuckle coordinates.

3.2. Motion Magnification

In the subsequent step, we implement the Eulerian Video Magnification (EVM)
method, initially proposed by Wu et al. [27], to enhance blood flow signals captured
by the infrared camera in the facial and palmar region. The EVM technique involves
amplifying the subtle variations in the intensity of infrared light due to changing blood
flow, achieved by setting the amplification factor to α = 120. Specifically, we assume
the presence of a small invisible movement δ(t) at pixel r = (x, y) in the original video
sequence V(x, y, t). The motion magnification approach aims to magnify this movement,
producing the magnified video sequence I(x, y, t) using the following relation:

I(r, t) = V(r, t) + αB(r, t) ≈ f (r + (1 + α)δ(t)) (1)

To perform motion amplification, Wu et al. [27] utilize a Laplacian pyramid decompo-
sition for each frame, and the amplification is applied along the time axis t. The concept
can be extended to encompass multiple frequencies, thereby enabling the selection of a
range of motion frequencies for amplification within the framework. For this particular
application, we carefully selected a frequency range of amplification between 0.4 and 4 Hz.
This range includes the typical human heart rate range and even accounts for instances of
high heart rate, such as supraventricular tachycardia (SVT), where the heart rate may reach
a peak of 240 beats per minute (bpm) [28]. A similar frequency range was employed by
Kong et al. [29] in their blood flow signal amplification experiments. To optimize computa-
tional efficiency, motion magnification is exclusively applied to the extracted forehead area,
rather than the entire face, and the upper palm area. This strategic approach contributes to
reducing the computational cost of the proposed methodology.

Eulerian Video Magnification (EVM) has emerged as a powerful tool for visualizing
subtle temporal variations in videos that may not be discernible with the naked eye. Its
efficacy has been demonstrated in diverse applications, including the extraction of vi-
tal physiological information from videos of human faces [30,31] and animals [32]. This
technique can be relatively immune to variations in human skin complexion due to its un-
derlying mathematical principles [27]. The adoption of EVM in our research aims to unlock
valuable insights into blood flow dynamics and provide a comprehensive understanding
of physiological processes in the facial and palmar regions.

3.3. Post-Processing & Peak Detection

For every recorded video segment focused on the forehead and palm regions, a system-
atic computational procedure is executed to compute both the mean and standard deviation
metrics for each individual frame in order to quantify the temporal characteristics of the
physiological signals embedded within the video sequences. The next step involves the
application of a fundamental band-pass filtering technique within the frequency spectrum
of 0.4 to 4 Hz. The primary objective of this filtering procedure is to eliminate unwanted
noise and artifacts from the signal. Following the completion of the filtering procedure,
our analysis enters a critical phase where the detection of discrete peaks within the refined
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signals obtained from both the forehead and palm regions becomes the focal point. A
discerning criterion is applied whereby pairs of detected peaks, should their temporal
separation exceed 5 frames, are purposefully omitted from further consideration. The ratio-
nale behind the selection of a 5-frame threshold is rooted in a contextual understanding
of temporal dynamics and the specific parameters of our experimental setup. Drawing
inspiration from the work of Fan et al. [13], who similarly endeavored to compute pulse
transit time between facial and palm regions, we recognize that pulse transit time spans
a range of approximately 60 milliseconds (ms) in their study. Considering our camera’s
recording speed of 30 frames per second (fps), we extrapolate that a 5-frame interval
equates to a temporal window of approximately 167 ms. Our methodology involves the
systematic accumulation of median time intervals among peak pairs for each individual
video recording. These collected median time intervals serve as crucial temporal markers.
Subsequently, an averaging procedure is employed to compute the mean value of these
individual median time intervals across all video recordings within a given volunteer’s
dataset. Ultimately, a comprehensive summation of our investigative process results in the
derivation of dual definitive measurements per individual volunteer. Building upon this
foundational framework, our pursuit extends towards the application of basic machine
learning regression methodologies. The objective therein is the formulation and refinement
of two distinctive functions, each characterized by a dual-input configuration. Figure 4
demonstrates the procedure of determining the time distance between the local peaks of
the forehead and the upper palm signal. Specifically, we endeavor to construct a two-input
function tailored to prognosticate systolic blood pressure, as well as a parallel counterpart
calibrated to anticipate diastolic blood pressure.
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Figure 4. The presented graph illustrates a part of the waveform derived from the forehead signal
(depicted in blue) alongside the waveform originating from the upper palm signal (depicted in red),
both exhibiting discernible local peaks. Our analysis involves the computation of the mean temporal
disparity between corresponding peaks, with a specific criterion set at an interval equal to or less
than five frames.
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4. Regression Techniques
4.1. Generalized Additive Models

Generalized Additive Models (GAMs) represent a type of regression model designed
to capture intricate non-linear connections between a response variable and one or more
predictor variables [33]. These models excel in regression tasks by accommodating more
intricate relationships present in the data compared to conventional linear regression
models like Generalized Linear Models (GLMs). Unlike GLMs, which are restricted to
linear relationships and impose distribution assumptions on the response variable, GAMs
offer a more versatile approach [34]. They were introduced to overcome these limitations
by utilizing Additive Models, which amalgamate various functions of predictor variables
(basis functions) to model non-linear relationships. A noteworthy feature of GAMs is
their capacity to manage an array of response variable distributions without requiring
predefined assumptions.

Mathematically, a GAM expresses the relationship between a random variable Y and
a series of predictor random variables X1, X2, . . . , Xp through summation:

E{Y|X1, X2, . . . , Xp} = f0 +
p

∑
j=1

f j(Xj) (2)

Here, fj(·) signifies smooth nonparametric functions that are standardized so that
E{ fj(Xj)} = 0 [33]. In essence, Generalized Additive Models stand out as a more adapt-
able and potent tool for regression tasks compared to Generalized Linear Models. Their
effectiveness is particularly notable when confronted with intricate, non-linear associations
within the data.

Determining the number of splines in a GAM is a balancing act between model
intricacy and goodness of fit. Opting for fewer splines may result in a more concise model
but risk underfitting, whereas increasing the number of splines can heighten complexity
and lead to overfitting. In our study, the selection of the number of splines in the Linear
GAM model was influenced by prior insights and assumptions regarding the complexity
of relationships between predictor variables and the response variable. Additionally,
factors like the available sample size and computational resources played a role. Through
experimentation, we have reached the deduction that employing seven splines represents
the optimal choice for this specific application and dataset. This decision is driven by
the imperative to minimize both the mean absolute error and standard deviation, while
simultaneously upholding the accuracy of the model.

4.2. Polynomial Regression

Linear Regression, Quadratic Regression, and Cubic Regression are fundamental
statistical techniques that serve as powerful tools for modeling and analyzing the relation-
ships between variables in empirical data, each offering distinct degrees of complexity
and flexibility.

4.2.1. Linear Regression

Linear Regression entails fitting a straight line to the data points, thus establishing a
linear relationship between the independent (predictor) variable, usually denoted as x, and
the dependent (response) variable, typically denoted as y. The equation takes the form

y = β0 + β1x + ε (3)

where β0 is the intercept, β1 is the slope, and ε represents the residual error. The goal is to
find the best-fit line that minimizes the sum of squared residuals, effectively capturing the
overall trend between the variables.
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4.2.2. Quadratic Regression

Quadratic Regression, building upon the foundation of Linear Regression, introduces
curvature to the model by incorporating a quadratic term. The equation becomes

y = β0 + β1x + β2x2 + ε (4)

where β2 represents the coefficient of the quadratic term. This technique accommodates
situations where the relationship between variables is more nuanced, potentially exhibiting
a parabolic pattern (upward or downward curvature).

4.2.3. Cubic Regression

Cubic Regression further extends the repertoire by incorporating cubic terms, enabling
the representation of even more intricate curves within the data. The equation takes the form

y = β0 + β1x + β2x2 + β3x3 + ε (5)

where β3 signifies the coefficient of the cubic term. This technique is invaluable when the
underlying relationship demonstrates pronounced curvature, including scenarios where
the data follow an “S” or “U” shaped trajectory.

5. Results
5.1. Implementation

Motion magnification tasks were executed using Mathworks MATLAB R2018b, pri-
marily due to the availability of the original motion magnification code by Wu et al. [27] in
MATLAB [35]. On the other hand, the proposed machine learning regression approaches
were implemented using Python v3.10.8, employing the scikit-learn package. For the
face/hand detection and segmentation algorithm, Python v3.10.8 was employed, meeting
MediaPipe’s and PyGAM’s python version requirements for total compatibility. For con-
ducting the experiments, we utilized a high-performance Ubuntu 22.04 PC equipped with
64 GB RAM, an Intel i9 11900F 2.5 GHz 16-Core CPU, and an NVIDIA GeForce RTX 3090
GPU with 24 GB of RAM. The computer system, provided by the ASPiDA project, was
utilized for conducting our experiments. It is noteworthy that the algorithms tested exhibit
optimal performance even when executed on a considerably less powerful computer. Our
objective was to ensure that our models were highly efficient and capable of real-time
execution in various practical applications and scenarios. The average memory used for
Linear, Quadratic and Cubic Regression is just 125.85 Megabytes and the average time
consumed in data loading and data processing is 4 milliseconds, while the average memory
used for Generalized Additive Model Regression is 109.45 Megabytes and the average time
consumed in data loading and data processing is 834 milliseconds.

5.2. Validation Standards

The American Association for the Advancement of Medical Instrumentation (AAMI)
and the British Hypertension Society (BHS) have independently published comprehensive
standards pertaining to sphygmomanometers, encompassing rigorous protocols for evalu-
ating the accuracy and performance of these medical devices [36,37]. The grading criteria,
employed by the British Hypertension Society (BHS), are depicted in Table 1. The BHS
protocol assigns grades to devices based on their agreement with the mercury standard
for systolic and diastolic pressures. The highest level of agreement is denoted by grade
A, while the lowest level is indicated by grade D. For a sphygmomanometer to fulfill the
BHS protocol, it must achieve at least grade B for both systolic and diastolic readings,
reflecting a clinically acceptable level of accuracy and agreement with the mercury stan-
dard [36]. Similarly, the Association for the Advancement of Medical Instrumentation
(AAMI) has formulated its own evaluation criteria for sphygmomanometers. According
to the AAMI protocol, the test device’s measurements should closely match the mercury
standard, with a mean difference from the standard not exceeding 5 mm Hg for blood
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pressure readings. Additionally, the standard deviation, which represents the variability
of differences between the test device and the mercury standard, should not exceed 8 mm
Hg [37]. Compliance with both of these standardized criteria provides confidence in the
reliability of these medical devices for blood pressure measurement.

Table 1. This table presents the grading criteria employed by the British Hypertension Society (BHS).
The grades in the table correspond to the cumulative percentage of readings that fall within 5 mm Hg,
10 mm Hg, and 15 mm Hg of the mercury standard. To achieve a specific grade, all three percentages
must be equal to or greater than the corresponding values indicated in the table.

Grade ⩽5 mm Hg ⩽10 mm Hg ⩽15 mm Hg

A 60 85 95
B 50 75 90
C 40 65 85
D ⩽40 ⩽65 ⩽85

5.3. Performance

Through rigorous experimentation, we evaluated four distinct regression models, and
our findings reveal that the Cubic and Generalized Additive Model (GAM) regression
models have demonstrated consistent adherence to the established criteria outlined by
both the British Hypertension Society (BHS) and the Association for the Advancement of
Medical Instrumentation (AAMI) protocols. Notably, the substantial R2 scores attained by
these models serve as robust indicators of the considerable correlation achieved between
the estimated blood pressure values and the reference standards, thereby substantiating
the efficacy and potential clinical relevance of our approach. Detailed results and model
performance metrics are provided in Table 2. We have systematically generated regression
fitness curves for each individual model concerning both systolic and diastolic blood pres-
sure parameters. These fitness curves graphically encapsulate the relationship between the
predicted and actual blood pressure values, providing a visual representation of the models’
efficacy in approximating blood pressure dynamics. These graphical representations, offer
a comprehensive insight into the models’ performance, aiding in the assessment of their
precision and suitability for blood pressure estimation. Additionally, we must emphasize
that while Cubic Regression initially outperforms a generalized additive model (GAM) due
to its ability to capture complex data patterns, the situation may change with an increase in
the amount of data. With more data, the GAM has the potential to surpass cubic regression
in terms of accuracy and generalization. This shift occurs because the GAM, being a more
flexible and less prone to overfitting model, can better adapt to the growing complexity of
the data. It can effectively capture nuanced relationships and generalize more accurately,
striking a balance between fitting the training data and making predictions relevant to
a wider range of scenarios. The corresponding plots illustrating these regression fitness
curves are available in Figures 5–8.

In Table 3, the presented data provide a comparative analysis of the outcomes yielded
by our proposed methodology in contrast to those obtained by alternative approaches.
While we may not have exceeded the performance of the current state-of-the-art approach,
it is noteworthy that our results, achieved employing an infrared camera, which inherently
provides a more limited information spectrum, compared to a conventional RGB camera,
along with the application of video motion magnification for the first time, demonstrate a
commendable level of efficacy and potential. It is essential to reiterate that, as it is evident
from Table 3, not all methods meet the criteria for both medical protocols, or in some cases,
an exploration of their compatibility with these criteria has not been undertaken.
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Table 2. This table showcases the outcomes of linear, quadratic, cubic, and generalized additive
model (GAM) regressions for predicting blood pressure using the BHS and AAMI protocols.

Linear
Regression

Quadratic
Regression

Cubic
Regression GAM

Systolic Blood Pressure-CP5 1 20
(D)

60
(A)

80
(A)

58
(B)

Systolic Blood Pressure-CP10 2 53.33
(D)

60
(D)

93.33
(A)

92.53
(A)

Systolic Blood Pressure-CP15 3 66.67
(D)

86.67
(C)

100
(A)

100
(A)

Diastolic Blood Pressure-CP5 1 40
(C)

66.67
(A)

80
(A)

68.4
(A)

Diastolic Blood Pressure-CP10 2 86.67
(A)

100
(A)

100
(A)

100
(A)

Diastolic Blood Pressure-CP15 3 93.33
(B)

100
(A)

100
(A)

100
(A)

Systolic Blood Pressure-MAE 4 12.01 7.04 3.8 4.99
Systolic Blood Pressure-SD 5 8.43 5.41 3.11 3.37

Diastolic Blood Pressure-MAE 4 6.38 3.86 2.08 4.03
Diastolic Blood Pressure-SD 5 3.91 2.71 2.33 2.48

Systolic Blood Pressure-R2 Score 0.1664 0.6948 0.9068 0.8598
Diastolic Blood Pressure-R2 Score 0.2311 0.6944 0.8658 0.6924

1 (Cumulative Percentage of readings that fall within 5 mm Hg of error); 2 (Cumulative Percentage of readings
that fall within 10 mm Hg of error); 3 (Cumulative Percentage of readings that fall within 15 mm Hg of error);
4 (Mean Absolute Error-mm Hg); 5 (Standard Deviation-mm Hg).

Table 3. Quantitative Performance Analysis: A Comparative Evaluation of the Presented Method
and Established Approaches. The cell values are represented in the format of Mean Absolute Error
(MAE) ± Standard Deviation, aligning with the guidelines established by the AAMI protocol.

BHS-SBP BHS-DBP AAMI-SBP AAMI-DBP

Fan [13] - - 8.42 ± 8.81 12.34 ± 7.10
Rong [14] Passed Passed 2.1 ± 3.35 0.79 ± 2.58

Goudarzi [17] - - 0.45 ± 12.39 −0.2 ± 6.41
Rong [38] Passed Passed −1.13 ± 7.25 0.14 ± 4.48

Proposed Method Passed Passed 3.8 ± 3.11 2.08 ± 2.33

5.4. Potential Biases

Our study acknowledges the presence of certain potential biases that warrant con-
sideration and mitigation for the sake of comprehensive research integrity. One such
bias pertains to the exclusive inclusion of male volunteers in our dataset. In order to
augment the scope and generalizability of our findings, future investigations should be
thoughtfully designed to encompass a diverse gender representation, thereby facilitating
a more comprehensive exploration of physiological responses across genders. Moreover,
the current study’s participant demographic skews towards an elderly population, in-
troducing another potential bias. A crucial avenue for enhancing the robustness of our
methodology involves broadening participant recruitment to encompass individuals span-
ning a spectrum of age groups. This expansion would foster a richer dataset, enabling a
more nuanced understanding of the interplay between age and blood pressure dynamics.
Furthermore, the monocultural composition of our volunteer cohort, predominantly com-
prising individuals of Caucasian ethnicity, is a potential bias that necessitates attention.
To bolster the robustness and applicability of our methodology, future endeavors should
strive to incorporate individuals from diverse ethnic backgrounds, thereby capturing the
variability in skin complexions and potentially unveiling ethnicity-specific patterns in
blood pressure estimation.
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Figure 5. This graph illustrates the regression curves depicting the dynamic interplay between frames’
averages and systolic/diastolic blood pressure regarding Linear, Quadratic and Cubic Regression.
The data points, plotted along with their corresponding regression lines, provide insights into the
nature and strength of the association between chosen variables and systolic/diastolic blood pressure.
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Figure 6. This graph illustrates the regression curves depicting the dynamic interplay between frames’
standard deviation and systolic/diastolic blood pressure regarding Linear, Quadratic and Cubic
Regression. The data points, plotted along with their corresponding regression lines, provide insights
into the nature and strength of the association between chosen variables and systolic/diastolic
blood pressure.
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Figure 7. This graph illustrates the regression curves depicting the dynamic interplay between frames’
averages and systolic/diastolic blood pressure regarding GAM Regression. The data points, plotted
along with their corresponding regression lines, provide insights into the nature and strength of the
association between chosen variables and systolic/diastolic blood pressure.
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Figure 8. This graph illustrates the regression curves depicting the dynamic interplay between frames’
standard deviation and systolic/diastolic blood pressure regarding GAM Regression. The data points,
plotted along with their corresponding regression lines, provide insights into the nature and strength
of the association between chosen variables and systolic/diastolic blood pressure.

6. Conclusions

Our study has effectively showcased compelling evidence supporting the feasibility
of non-contact, non-invasive blood pressure monitoring utilizing data derived from a
monochromatic infrared stream, while simultaneously upholding cost-efficiency. The
method put forth in this study leverages precise facial and palmar segmentation combined
with the technique of motion magnification. Through this approach, we successfully
deduce the pulse transit time between the corresponding signals acquired from each video
within our dataset. This transit time data are further aggregated and analyzed to compute
the average transit time specific to each participant. Leveraging an array of regression
tools, the obtained results were subjected to rigorous validation against internationally
recognized health protocols, exceeding the stipulated criteria. In our investigation, our
approach, which utilized a substantially smaller dataset compared to the most precise
method examined in our comparative study, has demonstrated considerable promise. The
results obtained thus far indicate that the accuracy of our approach can be further enhanced
through the acquisition of additional data.
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23. Kaya, K.S.; Türk, B.; Cankaya, M.; Seyhun, N.; Coşkun, B.U. Assessment of Facial Analysis Measurements by Golden Proportion.

Braz. J. Otorhinolaryngol. 2019, 85, 494–501. [CrossRef]
24. Fernandes, J.W. The Legacy of Art in Plastic Surgery. Plast. Reconstr.-Surg.-Glob. Open 2021, 9, e3519 [CrossRef] [PubMed]
25. Stogiannopoulos, T.; Cheimariotis, G.A.; Mitianoudis, N. A Study of Machine Learning Regression Techniques for Non-Contact

SPO2 Estimation from Infrared Motion-Magnified Facial Video. Information 2023, 14, 301. [CrossRef]
26. Fernandez, J. Mediapipe Hands. GitHub. Available online: https://github.com/google/mediapipe/blob/master/docs/

solutions/hands.md (accessed on 4 April 2023).
27. Wu, H.Y.; Rubinstein, M.; Shih, E.; Guttag, J.; Durand, F.; Freeman, W. Eulerian Video Magnification for Revealing Subtle Changes

in the World. ACM Trans. Graph. 2012, 31, 1–8. [CrossRef]
28. Garratt, C.; Ward, D.; Antoniou, A.; Camm, A.J. Misuse of Verapamil in Pre-Excited Atrial Fibrillation. Lancet 1989, 333, 367–369.

[CrossRef] [PubMed]
29. Kong, L.; Zhao, Y.; Dong, L.; Jian, Y.; Jin, X.; Li, B.; Feng, Y.; Liu, M.; Liu, X.; Wu, H. Non-Contact Detection of Oxygen Saturation

Based on Visible Light Imaging Device Using Ambient Light. Opt. Express 2013, 21, 17464–17471. [CrossRef] [PubMed]
30. Brieva, J.; Moya-Albor, E.; Ponce, H. A Non-Contact SpO2 Estimation Using a Video Magnification Technique. In Proceedings of

the 17th International Symposium on Medical Information Processing and Analysis, Campinas, Brazil, 17–19 November 2021.
31. de Fátima Galvão Rosa, A.; Betini, R.C. Noncontact SPO2 Measurement Using Eulerian Video Magnification. IEEE Trans. Instrum.

Meas. 2019, 69, 2120–2130. [CrossRef]
32. Lauridsen, H.; Hedwig, S.D.; Perrin, K.L.; Williams, C.J.; Wrege, P.H.; Bertelsen, M.F.; Pedersen, M.; Butcher, J.T. Extracting

Physiological Information in Experimental Biology via Eulerian Video Magnification. BMC Biol. 2019, 17, 103. [CrossRef]
[PubMed]

33. Hastie, T.; Tibshirani, R. Generalized Additive Models. In Statistical Science; Routledge: Oxfordshire, UK, 1986; Volume 1.
34. MacCullagh, P.; Nelder, J.A. Generalized Linear Models; Chapman and Hall: London, UK, 1989.
35. Video Magnification. Available online: https://people.csail.mit.edu/mrub/vidmag/#code (accessed on 14 October 2023).
36. O’Brien, E.; Petrie, J.; Littler, W.; De Swiet, M.; Padfield, P.L.; Altman, D.; Bland, M.; Coats, A.; Atkins, N. The British Hypertension

Society protocol for the evaluation of blood pressure measuring devices. J. Hypertens. 1993, 11 (Suppl. S2), S43–S62.

http://dx.doi.org/10.1016/j.semarthrit.2016.03.015
http://dx.doi.org/10.1186/cc1489
http://www.ncbi.nlm.nih.gov/pubmed/12133178
http://dx.doi.org/10.1161/CIR.0000000000000803
http://www.ncbi.nlm.nih.gov/pubmed/32567342
http://dx.doi.org/10.1007/s12652-018-1026-6
http://dx.doi.org/10.1016/j.bspc.2020.102328
http://dx.doi.org/10.1007/s10015-020-00622-6
https://www.stridebp.org/bp-monitors
http://dx.doi.org/10.1097/01.prs.0000293863.45614.f9
http://dx.doi.org/10.1155/2014/428250
http://dx.doi.org/10.1016/j.bjorl.2018.07.009
http://dx.doi.org/10.1097/GOX.0000000000003519
http://www.ncbi.nlm.nih.gov/pubmed/33936915
http://dx.doi.org/10.3390/info14060301
https://github.com/google/mediapipe/blob/master/docs/solutions/hands.md
https://github.com/google/mediapipe/blob/master/docs/solutions/hands.md
http://dx.doi.org/10.1145/2185520.2185561
http://dx.doi.org/10.1016/S0140-6736(89)91734-0
http://www.ncbi.nlm.nih.gov/pubmed/2563516
http://dx.doi.org/10.1364/OE.21.017464
http://www.ncbi.nlm.nih.gov/pubmed/23938616
http://dx.doi.org/10.1109/TIM.2019.2920183
http://dx.doi.org/10.1186/s12915-019-0716-7
http://www.ncbi.nlm.nih.gov/pubmed/31831016
https://people.csail.mit.edu/mrub/vidmag/#code


Biomedinformatics 2024, 4 453

37. White, W.B.; Berson, A.S.; Robbins, C.; Jamieson, M.J.; Prisant, L.M.; Roccella, E.; Sheps, S.G. National Standard for Measurement
of Resting and Ambulatory Blood Pressures with Automated Sphygmomanometers. Hypertension 1993, 21, 504–509. [CrossRef]
[PubMed]

38. Rong, M.; Li, K. A Multi-Type Features Fusion Neural Network for Blood Pressure Prediction Based on Photoplethysmography.
Biomed. Signal Process. Control. 2021, 68, 102772. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1161/01.HYP.21.4.504
http://www.ncbi.nlm.nih.gov/pubmed/8458649
http://dx.doi.org/10.1016/j.bspc.2021.102772

	Introduction
	Dataset Protocol & Equipment
	Proposed Methodology
	Facial & Palmar Segmentation
	Motion Magnification
	Post-Processing & Peak Detection

	Regression Techniques
	Generalized Additive Models
	Polynomial Regression
	Linear Regression
	Quadratic Regression
	Cubic Regression


	Results
	Implementation
	Validation Standards
	Performance
	Potential Biases

	Conclusions
	References

