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Abstract: The advancement in technology and the availability of specialized digital signal processing
chips have made digital filter design and implementation more feasible in a variety of fields, including
biomedical engineering. This paper makes two key contributions. First, it uses a genetic algorithm to
optimize the coefficients of finite impulse response (FIR) filters. Second, it conducts a case study on
using genetic algorithms to optimize FIR filters for electrocardiogram (ECG) biomedical signal noise
removal. The goal of the proposed filter design approach is to achieve the desired signal bandwidth
while minimizing the side lobe level and eliminating unwanted signals using a genetic algorithm.
The results of a comprehensive analysis show that the genetic algorithm-based filter is more effective
than conventional filter designs in terms of noise removal efficiency.

Keywords: genetic algorithms; digital filters; metaheuristic optimization; finite impulse response (FIR);
side lobe level (SLL)

1. Introduction
1.1. Problem Statement

Electrocardiography (ECG) is one of the common biomedical signals that are used
to predict and assess heart health status that results from weak heart muscle myocardial
infarction, heart attacks, or other related diseases. To obtain optimal results, ECG signals
must be analyzed by using Holter monitors to obtain a real-time analysis. While this is
more efficient, it requires a special algorithm to handle the computational complexity of
huge data, involving noise removal, analysis, and post-processing.

Digital filters are widely used in many different fields to remove noise, to split multiple
signals [1], for missing data imputation [2], and to enhance the quality of received sig-
nals [3,4]. In recent years, genetic algorithms (GA) have been increasingly used to optimize
the design of digital filters because they can handle the issue of computational complexity
and big data.

GA [5] is a metaheuristic optimization algorithm that can be used to find optimal,
or near optimal, solutions to problems that are too computationally expensive and are
difficult to solve using traditional methods. In the case of digital filter optimization, the
goal is to find a set of coefficients that optimizes the performance of the filter using some
performance metric.

Electrocardiography (ECG) is a well-known and reliable tool that is widely used in
the medical field to analyze and diagnose the condition of the heart. This analysis is very
crucial for the early detection of heart diseases. ECG signals are very weak signals and,
hence, susceptible to disturbances in the measurement environment. Using digital filters to

BioMedInformatics 2023, 3, 1197–1215. https://doi.org/10.3390/biomedinformatics3040071 https://www.mdpi.com/journal/biomedinformatics

https://doi.org/10.3390/biomedinformatics3040071
https://doi.org/10.3390/biomedinformatics3040071
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedinformatics
https://www.mdpi.com
https://orcid.org/0000-0002-6817-4870
https://orcid.org/0000-0002-6690-5529
https://doi.org/10.3390/biomedinformatics3040071
https://www.mdpi.com/journal/biomedinformatics
https://www.mdpi.com/article/10.3390/biomedinformatics3040071?type=check_update&version=2


BioMedInformatics 2023, 3 1198

remove unwanted parts of these signals is critical for the performance and accuracy of the
algorithms and software tools that are used to detect abnormal heart conditions [6].

The GA approach to digital filter optimization has several advantages over traditional
methods [7,8]. First, it is not limited to finding local minima, which can be a problem
with traditional methods. Second, it can be used to find solutions to problems that are too
complex for traditional methods. Third, it is relatively easy to implement. This approach is
a promising technique that has the potential to significantly enhance the design of digital
filters used in different fields, including biomedical engineering.

1.2. Contribution Statement

In this paper, a GA-based digital filter is proposed to optimize the coefficients of
FIR filters for ECG signals. The search space for the filter is defined by 20 coefficients.
Finding the optimal values of these coefficients is practically extremely large due to the
high non-linearity of the frequency response of the filters.

The actual coefficients of the filter are mapped to the genes of a chromosome. Each
coefficient represents a gene, while the whole coefficients represent a chromosome. The
genetic algorithm works by iteratively generating new populations of filters, each of which
is a slight variation of the previous population. The filters in each population are evaluated
based on their SLL, and the best filters are selected to create the next generation. This
process continues until a filter with a sufficiently low SLL is found.

The objective, or fitness, function to be optimized is the minimization of the side lobe
level (SLL) [9]. The side lobe level is a measure of the noise that is produced by the filter
outside of its passband. A low side lobe level indicates that the filter is good at removing
noise. The genetic algorithm works by iteratively generating new populations of filters,
each of which is a slight variation of the previous population. The filters in each population
are evaluated based on their side lobe level, and the best filters are selected to create the
next generation. This process continues until a filter with a sufficiently low side lobe level
is found.

The remainder of the paper is organized as follows. Section 2 presents the related
work. Section 3 explains the research methodology. Section 4 highlights and compares
different options of the proposed methodology. Moreover, Section 5 discusses the results
for the case study of using GA to filter ECG signals. Finally, Section 6 concludes the paper.

2. Related Work

Metaheuristic optimization algorithms such as (GA) [10], ant colony optimization
(ACO) [11], and chemical reaction optimization (CRO) [12] are used to solve different
optimization problems. These algorithms have been extensively used in recent years to
implement digital filters in a wide range of applications [13].

The authors in [14] proposed a comprehensive fitness function for an infinite impulse
response (IIR) digital filter design with six terms, including a low delay parameter. Low
delay filters are preferred since they achieve quasi-real-time processing. Other parame-
ters can be included in the fitness function to meet linear phase, minimum phase, and
stability constraints.

The authors in [15] proposed a method to detect breast malignancies. The filter bank
that has been used to obtain the filter response is the Maximum Response Eight Filter Bank.
(GA) and linear discriminant analysis have been used for feature selection and feature
reduction, respectively.

An optimal fourth-order Butterworth active low-pass filter design by the hybrid in-
tensified current search (HICuS) algorithm was proposed in [16]. With AI-based modern
optimization, the HICuS algorithm is claimed to be one of the most efficient metaheuris-
tic optimizers.

The authors in [17] presented a differential evolution algorithm that uses a combina-
tion of rectangular and polar coordinates. The algorithm was developed using thirteen
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commonly used numerical optimization test functions. The algorithm was then applied to
design an infinite impulse response (IIR) digital filter.

A digital filter design problem that involves multiple, often conflicting, filter parame-
ters has been presented in [18]. Hence, an optimization algorithm is needed. A low-pass
finite impulse response (LPFIR) filter optimal design has been achieved using particle
swarm optimization (PSO) and dynamic adjustable PSO (DAPSO). Other recent works
in [19–23] presented the design of FIR with variable multiple stop band, coefficients opti-
mization in adaptive equalization, and FIR design using arithmetic optimization and (GA).

Similarly, there are different techniques used to denoise the ECG signal. The denoising
techniques include empirical mode decomposition (EMD), ensemble empirical mode de-
composition (EEMD), and discrete wavelet transform (DWT) [24]. Denoising ECG signals
were also explored in [25] by using time–frequency techniques.

At the same time, there are different techniques used to filter and analyze electrical
signals extracted from humans, like electromyography (EMG), as cited in [26]. These meth-
ods are complete ensemble empirical mode decomposition with adaptive noise (CEEM-
DAN) and ensemble empirical mode decomposition (EEMD). In this technique, the sig-
nals are analyzed by time–frequency techniques such as adaptive optimal kernel (AOK)
and Choi–Williams.

Compared to the conventional techniques used to design digital filters, the proposed
genetic algorithm technique provides better exploration of the problem search space to
avoid getting stuck with a local optimum. It also provides easy and straightforward
encoding of the filter optimization problem.

3. Methodology

The research methodology is described in four stages as depicted in Figure 1. Stage
one is FIR filter design and coefficient generation. Stage two uses (GA) to map the filter
coefficient. Stage three is to predict the best solution of the filter coefficient using a genetic
algorithm. Stage four evaluates the (GA) prediction using impulse response.

FIR filter 
coefficients

Genetic 
algorithm

Predict best 
solution

Evaluate filter 
impulse response

Stage one Stage fourStage threeStage two

Figure 1. Research methodology flow chart.

Stage one (FIR filter design): The filtering process uses a direct-form discrete-time FIR
filter of order M. The top part is an M-stage delay line with M + 1 taps shown in Figure 2.
Each unit delay is a z−1 operator in Z-transform notation. For a causal discrete-time FIR
filter of order M, each value of the output sequence is a weighted sum of the most recent
input values as in Equation (1).

y[n] =
M

∑
i=0

bix[n− i] (1)

where x[n] and y[n] are the discrete input and output signals, respectively. M is the filter
order, and bi is the value of the impulse response at the ith instant for M of an M-order
FIR filter.



BioMedInformatics 2023, 3 1200

Figure 2. Structure of a direct-form discrete-time FIR of order M.

The frequency response H(z) is expressed in terms of the Z-transform transfer function
as shown in Equation (2):

H(z) =
Y(z)
X(z)

=
∑M

k=0 bkz−k

1 + ∑N
k=1 akz−k

(2)

Ideally, we would like to have M negligible for small computations with a target
frequency response provided by the ideal low-pass filter as follows in Equation (3):

H(ω) =

{
1, i f |ω| ≤ |ωc|
0, i f ωc ≤ |ω| ≤ π

(3)

Stage two (map and process FIR coefficients using GA): The general structure of GA
is depicted in Figure 3. The process started by choosing a sample of an initial population
of 20 chromosomes, each one containing 20 genes, which was created randomly in the
range [0, 1]. The genes represent the filter coefficients. For this research, the results are
optimized for 20 coefficients to create a balance between computation and filter enhance-
ment. However, the number of filter coefficients can be altered based on the application
and nature of the data and their associated noise.

Following the selection of filter coefficients, the initial set was passed to a fitness
function for frequency response evaluation and side lobe level (SLL) estimation. The
selection is completed for the minimum SLL. If the condition of the minimum SSL level
does not meet the desired threshold, the GA selects new genes or filter coefficient ran-
domly using crossover and mutation, re-evaluates the fitness function SSL, and repeats the
previous procedures.

0.5 0.7 0.30.1 0.4

0.1 0.5 0.80.3 0.7

0.6 0.8 0.80.3 0.1

0.4 0.5 0.90.1 0.2

Filter coefficients

Generate initial 
population

Evaluate with fitness 
function SSL

Stop if 
condition 
satisfied

Selection

Crossover

Mutation

New 
population

Optimal 
solution

Yes

NoNext 
generation

Gene chromosome

population

Figure 3. General structure of a (GA) for digital filter applications.

Stage three (predict the best solution): The mapped filter coefficients are filtered
out by using GA to select the best solution among the coefficients. Figure 4 depicts
20 frequency responses for the population and emphasizes the best solution shown in red
with a thick solid line. Figure 5 illustrates the frequency response in magnitude for the
best solution extracted from the initial population. The spectrum was extracted using fast
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Fourier transform [27]. The coefficients of the best solution are shown below. The SLL is
shown in Figure 5 with −16.1660 dB.

Figure 4. A normalized filter gain vs relative frequency of a population for 20 filters (chromosomes).
Each filter is visualized in differnt colours. The best filter is shown in red with minimum side lobe
level (SLL). Relative or normalized frequency is in logarithmic scale. The filter order is N−1 = 19.

Stage four (evaluate the best solution): Finally, the best solution is evaluated using the
impulse response to select the minimum SSL. This step is important to make sure the best
solution is optimized in the desired frequency bandwidth and is at the extreme minimum
level for other frequencies. The GA has some randomness in the process, and this step is
essential as a final quality control measure for choosing the best solution. Figure 5 depicts
the impulse response coefficient of the best solution extracted from the initial population
provided by b[n] coefficients. In this example, filter coeffs (b[n]) = [0.5009 0.4457 0.6175
0.5180 0.4395 0.8174 0.7331 0.9891 0.8428 0.7717 0.6087 0.9935 0.4332 0.3967 0.4869 0.6107
0.3800 0.0383 0.8333 0.7669]. The best SLL from the initial population is −16.1660 dB .

Figure 5. The the best filter based on the minimum SLL selected from the initial population. The SLL
is at −16.166 dB. Relative or normalized frequency is in logarithmic scale. Filter order is (N−1) = 19.

4. Comparative Analysis of the GA Algorithm Options for FIR Filter Optimization

The analysis of the GA algorithm is formulated as an optimization problem. The core
of an optimization problem is based on the minimization of a fitness function. The latter
has to be set meticulously to achieve our objective of reaching a minimum SSL. The fitness
function has input variables provided by the filter coefficients and the resolution of the
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frequency response of the filter. The objective is to minimize the maximum of the SLL as an
output. This output is supplied to the (GA) for minimization.

Detailed results and analysis for the study are listed and discussed in Sections 4.1–4.4,
in addition to detailed information in Appendices A and B. These sections summarize the
comprehensive study options. Each section shows results regarding using optimization
solver functions with sub-functions for each GA algorithm option. The results are provided
by the SLL and the filter coefficients, along with graphs on convergence and frequency
response. The GA is set with different options in order to study the effect of each parameter
on the result of the minimization. The GA uses other options provided by the solver.

The fitness function that relies on estimating the maximum of the SLL of the normal-
ized discrete frequency response is discussed in the following sections. For each solver
option from the four alternatives, a graph compares the four SLL cases, and another graph
compares the convergence. The GA results are compared with the conventional FIR re-
sults generated by Matlab V.R2022n, where the seed of the random number in the Matlab
generator is fixed.

4.1. Algorithm Settings Results and Analysis

The study of algorithm settings has two categories: crossover function and mutation
function. The crossover function has two options: heuristic and crossover two-point. At
the same time, the mutation options are adapt-feasible and Gaussian.

Figure 6 shows the gain with respect to normalized frequency for cases (1–4); see
Appendix A. The lowest performance in Figure 6 is provided by the heuristic function.
Crossover two-point, Gaussian mutation and adapt-feasible mutation demonstrate similar
performance up to a 1 dB margin.

Figure 6. Minimization of the SLL. The magnitude spectrum shows two algorithm settings, each with
two functions, as described in the legend.

At the same time, for the above-mentioned four cases, the convergence speeds are
different, as shown in Figure 7. The SLL and the filter coefficients are listed for each case;
see Appendix A. The crossover heuristic has the best performance since it converges in
71 generations, followed by crossover two-point with 193 generations, and then comes
mutation with adapt-feasible, followed by Gaussian mutation with 235 generations and
326 generations, respectively.
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Figure 7. Illustration of algorithm setting and analysis four categories convergence speed of the SLL
minimization. Four algorithm-setting categories are depicted in the figure.

The results of various options of algorithm settings are listed in Table 1. The population
size is 200 for all cases. By analyzing Figures 6 and 7, we can observe that the optimal
solution is provided by crossover with a two-point function since it achieves an SLL close
to the best solution with moderate convergence.

Table 1. Algorithm setting evaluation results.

Alg. Setting No. Sub-Function
Solver Setting SSL (dB) Gen. No.

Convergence

Crossover 1 Heuristic −19.0941 71
Crossover 2 Two-point −30.1599 193
Mutation 1 Adapt-Feasible −30.4694 235
Mutation 2 Gaussian −30.8327 236

Further analysis and experimental results for mutation and crossover are presented in
Appendix B.

4.2. Population Settings Results and Analysis

The population setting has two solver options: max gens and stall time limit. Max
gens were evaluated using two sub-functions, settings 100 and 200, while the stall time
sub-functions are set as 2 and 4 s. Table 2 summarizes the results for various options on the
configurations of the GA population setting category. Each solver option is studied, with
two sub-functions each. The SSL values are presented in dB.

Table 2. Population setting evaluation results.

Solver Option No. Sub-Function
Solver Setting SSL (dB) Gen. No.

Convergence

Max gens 1 100 −30.0219 100
Max gens 2 200 −30.1599 193

Stall time limit 1 2 s −30.1599 193
Stall time limit 2 4 s −30.1599 193

In Figure 8, when max generation is set to 100, the SLL stops at−30.0219, while the SLL
stops at SLL of −30.1599 dB at generation 193 before the max generation of 200. For a stall
time limit of 2 and 4 s, the SLL converges to the same value with the same filter coefficients.
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Figure 8. Minimization of the SLL (max gen. 100 and 200).

Figure 9 shows the convergence speed of the SLL. By analyzing Figures 8 and 9, we
can observe that increasing the number of generations or stall time limit will not improve
the SLL if the fitness converges before reaching the set values.

Figure 9. Convergence speed of the SLL minimization. For max generations of 100, the fitness stops
exactly at 100 generations, while, for the three other cases, the generations stop at 193 generations.
The lines for the four categories are not clear because they have the same convergence in this case.
Please refer to Table 2 for detailed numbers.

4.3. Runtime Limits Results and Analysis

Runtime limits have two categories: population size and initial population. Population
size has two sub-function solver settings: 100 and 300. In contrast, the initial population
has two solver settings: x0 and x1; see Appendix A for more details. The SSL convergence
of the number of population settings category is depicted in Figure 10 with respect to the
population sample of different generations numbering 202, 235, 253, and 274, as listed in
Table 3. The initial values for x1 are population size 300, population size 100, and initial x0,
respectively. Changing the population size or initial conditions will shift the convergence
speed. Increasing the population size will decrease the convergence iterations.

Table 3. Runtime limits.

Pop. Setting No. Sub-Function
Solver Setting SSL (dB) Gen. No.

Convergence

Pop. Size 1 100 −30.7976 253
Pop. Size 2 300 −31.5810 235

Initial. Pop 1 Initial Pop. (x0) −31.3811 274
Initial. Pop 2 Initial Pop. (x1) −31.3141 202
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Figure 11 shows that the default value of the GA is 200 chromosomes. When the
population is set to 300, the SLL is almost constant when the initial condition is varied. It
changes from −31.3811 dB to −31.3141 dB, with a difference of 0.067 dB.

Figure 10. Minimization of the SLL. For population size increasing from 100 to 300, the SLL decreases
from −30.7976 dB to −31.5810 dB, with a slight difference of less than 1 dB.

By analyzing Figures 10 and 11, we can observe the effect of changing the population
size and the change in the initial condition on the algorithm convergence for different
setting categories.

Figure 11. Convergence speed of the SLL minimization.

4.4. Tolerance Results and Analysis

The tolerance option has two categories: function tolerance and fitness limit. The func-
tion tolerance solver setting is set to the ex, and the fitness limit study selects 0.01 and 0.001
as two different decimal sub-function solvers. Table 4 summarizes the tolerance option
setting of the GA algorithm. The table also lists different solver options and different
generation numbers. Varying the fitness limit from 0.01 to 0.05 changes the SLL from
−30.1599 dB to −26.3296 dB; see Figure 12 for more details. For instance, 10x corresponds
to 10x (base 10, not base e = 2.71). For the convergence speed, see Figure 13. When the
function tolerance decreases from 10−5 to 10−4, the convergence decreases from 148 gen. to
92 gen. When the fitness limit varies from 0.01 to 0.05, the convergence gains high speed
from 193 generations to 14 generations.
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Table 4. Tolerance evaluation results.

Solver. Options No. Sub-Function
Solver Setting SSL (dB) Gen. No.

Convergence

Fun. tolerance 1 10−4 −29.9617 92
Fun. tolerance 2 10−5 −30.1490 148
Fitness limit 1 0.01 −26.3296 14
Fitness limit 2 0.001 −30.1599 193

Figure 12. Minimization of the SLL, changing the function tolerance from 10−5 to 10−4, shifting the
SLL from −30.1490 dB to −29.9617 dB with faster convergence. Where the base e = 10 in the figure.

By analyzing Figures 12 and 13, we can observe the effect of changing the function
tolerance and the fitness limit on both the SLL and the convergence speed (number of
generations required for the stop criteria), as depicted in the figures’ captions.

Figure 13. Convergence speed of the SLL minimization of different tolerance options. Where the base
e = 10 in the figure.

5. ECG Filtering Results Discussion

This section presents a case study for the optimized FIR filter coefficients using GA.
The validation of the proposed algorithm is performed on an ECG signal where an existing
noise is to be removed, and the comparison of both time and frequency signals is carried out.
The signal was then analyzed to assess the quality of the filtered signal. Comprehensive
results are shown below in different figures.

Figure 14 depicts the ideal ECG signal for a normal person. The figure shows the main
components of the ECG, which are the P-wave, QRS complex, and T-wave. The ideal signal
acts as a reference while removing the noise to make sure all the components are preserved.

The case study discusses a noisy ECG signal contaminated with 60 Hz noise and other
artifacts. The study removes the artifacts from a noisy ECG signal using GA. The 60 Hz
noise from the power line is the common source of interference that affects the ECG signal.
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It has a considerable effect as its amplitude is significant to interfere with the low-amplitude
ECG signal, which is in the range of Millivolts (mV) in most cases. Furthermore, there are
different types of artifacts and interference that affect ECG signals, like body movement
and external electromagnetic waves that are generated from other devices, mainly from
medical imaging devices at hospitals.

As illustrated in Figure 15, the noise effect is significant regarding P-wave and T-wave
as they have lower amplitude than the QRS complex of the ECG. Furthermore, there is an
artifact at the beginning of the signal; this artifact is typically generated from motion or
improper electrode attachments. The noise in the signal misleads the medical doctor while
identifying the patient’s case.

Figure 14. Ideal ECG signal for a normal person.

Figure 15. Example of one second of the noisy ECG signal.

To analyze the source of the noise on the complex structure of the ECG signal, we need
to analyze the magnitude and frequency response of the spectrum. This is important to
identify the signal that has a dominant spectrum over the typical range of ECG.

Figure 16 is the magnitude spectrum displaying the level of noise in dB with respect to
the frequency in Hz. Visualizing the noisy signal in the frequency domain helps to identify
the dominant noisy signal on the original data.
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Figure 16. The magnitude spectrum of the noisy ECG signal. The ECG signal is contaminated with a
60 Hz signal from the power line. The sampling rate is 720 samples/s. Half sampling is at 360 Hz.

Figure 17 is the spectrum of the filtered signal. The filtered ECG uses GA with the
Gaussian mutation category, which shows an attenuation of noise with more than 30 dB.
At half sampling rate, the signal is at −70 dB. The interference signal of 60 Hz is attenuated
with more than 30 dB. The analysis is for case 3; see Appendix A for details.

Figure 17. Filtered ECG spectrum magnitude using GA Gaussian mutation.

The final filtered ECG is shown in Figure 18 with respect to the time domain. Compar-
ing Figures 15 and 18 shows the excellent filtering behaviour of the Gaussian mutation GA
filter. The ECG signal in Figure 18 may be different from the ideal ECG in Figure 14 as the
real recording has some variations for normal cases between different patients.

Figure 19 shows the difference between the GA and standard FIR filter frequency
response. The figure shows the standard FIR attenuation gain as −40 dB compared to
−31 dB for the GA. The GA FIR presents a sharp passband relative to the standard FIR
magnitude for the same order, even though the relative cutoff frequency is set to 0.01 (1%).
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Figure 18. One second at the beginning of the filtered signal showing complete removal of the artifact,
60 Hz power signal interference with smoothed ECG signal using Gaussian mutation.

Figure 19. Comparison between GA FIR filter and conventional FIR for low-pass filters generated
by Matlab.

6. Conclusions

In this study, a GA is used to optimize and comprehensively analyze the synthesis of
digital low-pass filters. Sixteen cases are analyzed, and the results are shown to demonstrate
the effectiveness of the method. The fitness function is derived from the frequency response
of the finite impulse response low-pass filter. The inputs of the fitness are the coefficients of
the filter, which start with a random sequence, in addition to the frequency resolution of
the frequency response. The output is the side lobe level that has to be minimized for the
optimal filter synthesis. Different GA options have been tuned during the optimization
process to enhance the performance of the filter for a noisy real ECG recording. The
obtained filter shows enhanced results in suppressing different kinds of noise.

For future work, we suggest using deep learning algorithms to optimize filter design.
In the case of huge and complex datasets, a transformer-based model is recommended to
handle enormous samples as they can be processed in parallel.



BioMedInformatics 2023, 3 1210

Author Contributions: Conceptualization, H.H. and A.K.; methodology, H.H. and A.K.; software,
H.H. and K.A.-h.; validation, H.H. and K.A.-h.; formal analysis, H.H. and K.A.-h.; investigation, H.H.,
A.K. and K.A.-h.; resources, H.H. and K.A.-h.; data curation, H.H. and K.A.-h.; writing—original
draft preparation, H.H. and A.K.; writing—review and editing, A.K. and K.A.-h.; visualization, H.H.
and K.A.-h.; supervision, A.K.; project administration, A.K. and K.A.-h. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: ECG signals database is publicly available at http://www.physionet.
org/physiobank/database/mitdb/ (accessed on 20 June 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ACO Ant colony optimization
Alg. Algorithm
CRO Chemical reaction optimization
DAPSO Dynamic adjustable particle swarm optimization
DSP Digital signal processing
dB Decibel unit
ECG Electrocardiogram
EEG Electroencephalogram
FIR Finite impulse response
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Appendix A. Comparative Analysis of Different GA Categories and Options

This section presents the results of 16 cases, as listed in Table A1. The results were
analyzed using different GA algorithms and different categories. For each option, there are
selected sub-function solvers. The filter coefficient and the SSL are also listed to show the
best solution among different options.

 http://www.physionet.org/physiobank/database/mitdb/
 http://www.physionet.org/physiobank/database/mitdb/
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Table A1. Comparison between different methodologies.

Case
No.

GA Algorithm
Option Category Sub-Function Solver Setting SSL (dB) Filter Coefficients

1 Algorithm Setting Crossover
function Heuristic −19.0941 [0.1728 0.5336 0.5986 0.2363 0.4960 0.7534 0.6947 0.5135 0.4703 0.6803

0.6439 0.6650 0.7603 0.2939 0.4812 0.3335 0.4335 0.3923 0.3140 0.3530]

2 Algorithm Setting Crossover
function Crossover two-point −30.1599 [0.1119 0.1180 0.1937 0.3267 0.3476 0.4794 0.5589 0.6952 0.7050 0.7677

0.8614 0.7511 0.7524 0.7646 0.6211 0.5923 0.4037 0.4056 0.3399 0.2514]

3 Algorithm Setting Mutation
Function Gaussian mutation −30.8327 [0.1359 0.2439 0.2813 0.3658 0.4837 0.6359 0.6791 0.8025 0.8434 0.8723

0.9373 0.9739 0.8859 0.8013 0.6949 0.5921 0.5364 0.4193 0.2180 0.3143]

4 Algorithm Setting Mutation
Function Adapt-feasible mutation −30.4694 [0.2063 0.2968 0.3638 0.5322 0.6796 0.7954 0.8321 0.9273 1.0000 1.0000

0.9863 0.9579 0.9579 0.8361 0.6728 0.4515 0.5123 0.2934 0.2521 0.2428]

5 Population Setting Population Size Size = 100 −30.7976 [0.1575 0.2661 0.2467 0.4623 0.5886 0.5737 0.7992 0.9097 0.9834 0.9999
0.9954 1.0000 0.9933 0.8660 0.7521 0.6720 0.5120 0.4924 0.2738 0.2611]

6 Population Setting Population Size Size = 300 −31.5810 [0.1916 0.2769 0.3671 0.3364 0.6227 0.6609 0.7728 0.8591 0.9155 0.9637
0.9567 0.9225 0.8709 0.7921 0.6803 0.5446 0.5021 0.3453 0.2449 0.2105]

7 Population Setting Initial Population
value x0 = [0.5425 0.1422 0.3733 0.6741 0.4418 0.4340

0.6178 0.5131 0.6504 0.6010 0.8052 0.5216 0.9086
0.3192 0.0905 0.3007 0.1140 0.8287 0.0469 0.6263]

−31.3811 [0.3034 0.2449 0.3330 0.4338 0.5682 0.7429 0.8100 0.8999 0.9730 0.9947
0.9979 0.9346 0.8853 0.8487 0.6816 0.5995 0.5000 0.3849 0.2243 0.1835]

8 Population Setting Initial Population
value x1 = [0.5476 0.8193 0.1989 0.8569 0.3517 0.7546

0.2960 0.8839 0.3255 0.1650 0.3925 0.0935 0.8211
0.1512 0.3841 0.9443 0.9876 0.4563 0.8261 0.2514]

−31.3141 [0.2438 0.2903 0.4232 0.5260 0.5379 0.7947 0.8925 0.8748 0.9824 1.0000
0.9999 0.9441 0.8710 0.7934 0.6194 0.5883 0.4087 0.3561 0.2031 0.1954]

9 Runtime Limits Max Generations value = 100 −30.0219 [0.1087 0.1176 0.1907 0.3214 0.3442 0.4764 0.5565 0.6933 0.7032 0.7667
0.8613 0.7482 0.7511 0.7637 0.6208 0.5923 0.4035 0.4112 0.3396 0.2504]

10 Runtime Limits Max Generations value = 200 −30.1599 [0.1119 0.1180 0.1937 0.3267 0.3476 0.4794 0.5589 0.6952 0.7050 0.7677
0.8614 0.7511 0.7524 0.7646 0.6211 0.5923 0.4037 0.4056 0.3399 0.2514]

11 Runtime Limits Stall Time Limit value (T) = 2 s −30.1599 [0.1119 0.1180 0.1937 0.3267 0.3476 0.4794 0.5589 0.6952 0.7050 0.7677
0.8614 0.7511 0.7524 0.7646 0.6211 0.5923 0.4037 0.4056 0.3399 0.2514]

12 Runtime Limits Stall Time Limit value (T) = 4 s −30.1599 [0.1119 0.1180 0.1937 0.3267 0.3476 0.4794 0.5589 0.6952 0.7050 0.7677
0.8614 0.7511 0.7524 0.7646 0.6211 0.5923 0.4037 0.4056 0.3399 0.2514]
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Table A1. Cont.

Case
No.

GA Algorithm
Option Category Sub-Function Solver Setting SSL (dB) Filter Coefficients

13 Tolerances Function
Tolerances value = 10−5 −30.1490 [0.1114 0.1179 0.1935 0.3265 0.3472 0.4791 0.5588 0.6947 0.7047 0.7677

0.8613 0.7507 0.7521 0.7644 0.6208 0.5923 0.4037 0.4054 0.3399 0.2510]

14 Tolerances Function
Tolerances value = 10−4 −29.9617 [0.1085 0.1163 0.1896 0.3215 0.3422 0.4723 0.5575 0.6922 0.7006 0.7659

0.8626 0.7454 0.7475 0.7630 0.6218 0.5917 0.4032 0.4120 0.3399 0.2487]

15 Tolerances Fitness Limit Fitness Limit Value = 0.01 −30.1599 [0.1119 0.1180 0.1937 0.3267 0.3476 0.4794 0.5589 0.6952 0.7050 0.7677
0.8614 0.7511 0.7524 0.7646 0.6211 0.5923 0.4037 0.4056 0.3399 0.2514]

16 Tolerances Fitness Limit Fitness Limit Value = 0.05 −26.3296 [0.0376 0.0092 0.1892 0.2362 0.3246 0.4347 0.4748 0.6437 0.6288 0.7338
0.8300 0.7065 0.7334 0.7504 0.6110 0.5910 0.3996 0.3229 0.2517 0.3651]
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Appendix B. Analysis of Random Solutions for Crossover and Mutation

This section compares random seed solutions (no fixed seed) using crossover and
mutation functions. For each function, the sub-functions are analyzed, and figures are
shown. Four figures show the SLL and how the SLL varies. In each caption, the SLL
worst case and best case are specified with mean and median values, followed by the
SLL solutions. Figures A1–A4 show the filter’s magnitude frequency response with ten
solutions for crossover/heuristic, crossover/two-point, mutation adapt-feasible, and muta-
tion/Gaussian, respectively. By analyzing the mean and median values, we observe that
mutation/adapt-feasible is the best, followed by mutation/Gaussian, then crossover/two-
point, and then the worst case is crossover/heuristic.

Figure A1 depicts ten solutions for the crossover/heuristic sub-settings. The worst
case is SLL: −19.0941 dB, and the best case is SLL: −25.5974 dB. Mean = −21.7458 dB.
Median = −21.8616 dB. Ten SLL solutions = [−19.0941, −22.1809, −25.5974, −22.0978,
−20.8282, −21.9670, −21.7562 −19.2285, −21.4284, −23.2790].

Figure A1. Minimization of the SLL. Different colors resembles ten solutions for crossover/heuristic.

Figure A2 shows the minimization of the SLL. Different colors resemble ten solu-
tions for crossover/two-point. Worst case SLL: −28.8705 dB. Best case SLL: −31.7864 dB.
Mean = −30.8800 dB. Median = −30.9479 dB. Ten SLL solutions = [−31.1692, −31.7864,
−31.5800, −30.6253, −31.3180, −30.6638, −28.8705, −30.7265, −31.6496, −30.4102].

Figure A2. Minimization of the SLL. Different colors resembles ten solutions for crossover/two-point.

Figure A3 depicts the minimization of the SLL. Ten (10) solutions for mutation/adapt-
feasible. Worst case SLL: −30.7847 dB. Best case SLL: −31.7460 dB. Mean = −31.3768 dB.
Median = −31.3983 dB. Ten SLL solutions = [−31.2148, −31.1336, −30.7847, −31.5693,
−31.6100, −31.6331, −31.4939, −31.3027, −31.2802, −31.7460].
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Figure A3. Minimization of the SLL. Different colors resembles ten solutions for mutation/adapt-
feasible.

Figure A4 displays the minimization of the SLL. Ten (10) solutions for mutation/Gaussian.
Worst case SLL: −29.1817 dB. Best case SLL: −32.0514 dB. Mean = −30.9744 dB. Me-
dian =−31.2508 dB. Ten SLL solutions = [−29.8972,−31.7044,−31.2590,−31.4947,−29.1817,
−31.2425, −31.0011, −32.0514, −31.8377, −30.0746].

Figure A4. Minimization of the SLL. Different colors resembles ten solutions for mutation/Gaussian.
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