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Abstract: Precision medicine approaches often rely on complex and integrative analyses of multiple
biomarkers from “omics” data to generate insights that can help with either diagnostic, prognos-
tic, or therapeutical decisions. Such insights are often made using machine learning (ML) models
that perform sample classification for a particular phenotype (yes/no). Building such models is
a challenge and time-consuming, requiring advanced coding skills and mathematical modelling
expertise. Artificial intelligence (AI) is a methodological solution that has the potential to facilitate,
optimize, and scale model development. In this work, we developed an AI-based, user-friendly, and
code-free platform that fully automated the development of predictive models from quantitative
“omics” data. Here, we show the application of this tool with the development of cancer survival
prognostics models using real-life data from breast, lung, and renal cancer transcriptomes. In com-
parison to other models, our generated models rendered performances with competitive sensitivities
(72–85%), specificities (76–85%), accuracies (75–85%), and Receiver Operating Characteristic curves
with superior Areas Under the Curve (ROC-AUC of 77–86%). Further, we reported the associated
sets of genes (biomarkers) and their expression patterns that were predictive of cancer survival.
Moreover, we made our models available as online tools to generate prognostic predictions based
on the gene expressions of the biomarkers. In conclusion, we demonstrated that our tool is a robust,
user-friendly solution for developing bespoke predictive tools from “omics” data, which facilitate
precision medicine applications to the point-of-care.

Keywords: software tools; bioinformatics; cancer prognostics; predictive modelling

1. Introduction

Transcriptomics, proteomics, metabolomics, and lipidomics are examples of high-
throughput “omics” methodologies often described as precision medicine approaches,
which enable the quantitative screening of multiple key biomarkers [1–3]. These method-
ologies have been often used to characterize human tissue variability and correlation with
diseases such as cancer in attempt to find new predictive biomarkers of disease diagnostics,
outcomes, and response to therapy [2–4]. Transcriptomics is of particular importance as
it is an affordable and accurate gene expression quantification technique [1]. Often, the
identified gene expression biomarkers do not have enough predictive power on their own
to provide robust insights into the decision making at the point-of-care [5,6]. This has been
a persistent problem for cancer prognostics, as the currently used biomarkers still have a
low predictive power, explaining from only 25% to 75% of cases [7].

Appling machine learning (ML) modelling frameworks to “omics” data has been
considered as a methodological solution for combining biomarkers and improving the
predictive capacity of these biomarkers [6,8–10]. Once applying ML to an “omics” dataset
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associated with a phenotype outcome, these frameworks find key features (biomarker sig-
natures) that compose a predictive model with a certain predictive power and performance
(e.g., sensitivity, specificity, and accuracy) [6,11]. Models, in turn, are able to score a new
input of “omics” data with an unknown phenotype/outcome and make a binary phenotype
classification (yes/no) [6,8]. However, the technical challenges and limitations associated
with the implementation of ML have prevented the full application of its potential to the
point-of-care [12]. One critical limitation is associated with the complexity of developing
and validating ML algorithms [10,12]. These are hard and time-consuming tasks that
require advanced coding skills and mathematical modelling expertise to successfully im-
plement and test supervised learning classification algorithms [12]. Another is choosing
the correct ML algorithms (e.g., random forests, neural networks, support vector machines,
and regression models) which are suitable for describing the data [8,9]. In addition, the
chosen ML algorithm often has numerous tuning parameters for model refinement, which
makes it almost humanly impossible to find the best possible model in a reasonable time
without a systematic approach.

Automating ML-based model building and validation through artificial intelligence
has been proven to be useful for optimal model generation and provides a much faster and
more effective route for achieving better-performing models [13,14]. Genetic and evolution
inspired AI algorithms have been used in the past for these purposes. Both approaches are
inspired by biological mechanisms in nature, such as gene mutation and natural selection
rules, to solve optimization problems in a stochastic manner. While genetic algorithms
rely on core genetic operators and fixed-length binary representations, evolutionary ML is
more flexible due to its wider range of operators and representations. Although both AI
frameworks have been demonstrated to render substantial improvements to the quality of
ML models, evolutionary algorithms have less of a tendency for bias and provide the means
to better tailor the optimization criteria [15]. Meanwhile, evolutionary-inspired AI may also
increase the variability of the results and need to be carefully curated for possible artefacts.

TPOT (genetic) and EvA-3 (evolutionary) are two auto ML algorithms that have been
applied to the generation of optimal predictive models for early ovarian cancer detection,
aneuploidies detection, and cancer prognostics [13,16,17]. Although these algorithms
facilitate model development, they are not user-friendly or code-free. Further, current ML
algorithms have been rendering poor-performing predictive models for cancer prognostics
using transcriptomics [18]. In this work, we developed a novel AI-driven, user-friendly, and
code-free web platform for the automated generation of predictive models from “omics”
datasets (https://digitalphenomics.com, accessed on 10 August 2023). Here, we applied
the tool using an evolution-inspired algorithm for the generation of breast, lung, and renal
cancer survival prognostics models.

2. Materials and Methods
2.1. Tumour Transcriptomics Datasets

Tumour transcriptomics datasets were built using real-life biomedical data consisting
of the TCGA transcriptomics data of tumour biopsies from patients with breast, lung,
and renal cancers [19,20]. The transcriptomics data were collected from the 2021 updated
records of the Human Protein Atlas database, which contained the mRNA expression of
200 genes from 1075 anonymized cancer patients [21,22]. The collected transcriptomics
data were already pre-processed and normalized to express the number of fragments per
Kilobase of transcript per million of fragments mapped. We curated the collected data in the
same way as previously performed to make it comparable with the previously generated
model performances using TPOT [18]. Therefore, we selected the same 58 genes and
considered the key components of the signalling pathways involved in the regulation of the
epithelial-to-mesenchymal transition, which has a role in cancer invasion and metastasis
acquisition [23]. From the patients’ collected metadata, we selected the transcriptomes
associated with the patients that had been reported to survive for over 5 years after the
diagnostics (good prognostics), or those with a reported death occurring in less than 2 years
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(poor prognostics). The sample numbers of the datasets are summarized in Table 1. A CSV
dataset file for each cancer type was created with the gene IDs (first column) and respective
FPKM mRNA expression values of all the patient samples (following columns). We also
created a metadata CSV file that mapped the survival phenotype of each patient sample
with the expression data on the dataset. The datasets were made available in the digital
phenomics platform (https://digitalphenomics.com, accessed on 30 May 2023).

Table 1. Cancer transcriptomics datasets and their sampling numbers.

TCGA Refs N Poor
Prognostics

N Good
Prognostics

N
Total

Tumour
Tissue Dataset ID

BRCA 40 199 239 Breast TCGA BCSD
LUSC, LUAD 231 94 325 Lung TCGA LCSD

KICH, KIRC, KIRP 108 210 318 Renal TCGA RCSD

2.2. Platform Development

The Digital Phenomics Platform version 1.0 was developed under a micro-services
architecture design for scaling with a robust performance on multiple servers. These micro-
services included: cybersecurity; an encrypted relational database; encrypted models and
datasets storage; a private and secure user environment; container systems for indepen-
dently running microservices (Docker); a queueing system; AI-driven model building; an
FTP system; API management and supervision; and visualization tools. Multiple coding
languages and frameworks were used for the development of the platform. These included
Javascript, Python, HTML, PHP, bash, and Nodejs.

2.3. Model Generation

Predictive models were generated on the digital phenomics platform
(https://digitalphenomics.com, accessed on 25 June 2023) version 1.0. The model genera-
tion used the AI software O2P-Mgen version 1.0 developed by the Bioenhancer Systems
LTD. This AI was programmed to conduct all the model training, optimization, refinement,
and validation automatedly. Using this tool, the data for the model training were selected
by the AI with a proportion that was always lower than 50% of the dataset, leaving the
remaining data for testing. The AI performed supervised ML to develop models using
an evolution-inspired algorithm that found the best combination of biomarkers under a
multi-objective fitness function for the optimal sensitivity and specificity (EvA-3 algorithm
version 2.0). The algorithm performed time-dependent learning of individual biomarker
candidates with statistical significance, with multiple attempts. Next, through generating
decision trees, it applied, in a step-wise manner, the multi-objective fitness function for
the biomarker n + 1 during the model evolution. The multi-objective fitness function was
programmed to optimize the sensitivity, specificity, and ROC-AUC metrics, computed
under the model validation step. The non-parametric Mawhinney statistical test was used
by the AI to compare between groups. The performance metrics were computed by the AI
according to the guidelines of Dankers et al. [24].

To build models, the AI was programmed to search for biomarker characteristics
that reflected the up-regulations, down-regulations, gene activations, or gene expression
inhibitions (e.g., gene knockouts) in the model training groups (positives vs. negatives). For
the cancer datasets, we set the good survival prognostics as positives and the poor survival
prognostics as negatives. By default, the AI only selected biomarker up-regulations and
down-regulations on the training data when the p-values were below 0.05, in order to
ensure enough statistical significance. In the case of gene activations and inhibitions, the AI
was programmed to look for binary expression behaviour in the data, considering a residual
degree of tolerance. Models were constructed by the AI using the generic scoring function
(Score), where: Pi is the absolute distance between the median level of biomarker i on the
group of positives for the phenotype and the sample value; Ni is the absolute distance
between the median level of biomarker i on the group of positives for the phenotype and the
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sample value; Wi is the enrichment of biomarker i on the group positive for the phenotype;
and n is the total number of biomarkers in the model.

Score = ∑n
i

100Wi(−Pi+)

Pi+

3. Results
3.1. Digital Phenomics Platform

We developed a novel, user-friendly platform, Digital Phenomics Platform, tailored
for the generation of predictive models from “omics” data. We made this platform available
online (http://digitalphenomics.com, accessed on 10 August 2023). The platform is orga-
nized into modules that address a particular functionality (Figure 1). The GENERATOR
module enables us to build datasets (drag and drop) and build predictive models using
the uploaded datasets. Building models is straightforward, only requires pressing the add
button (+) or edit icon, and type/modify, models’ name, description, AI learning time, and
maximum false positive rate allowed. Upon saving the request, the AI initializes the model
building, which may take from minutes to hours, depending on the amount of learning
time requested.
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Figure 1. Digital Phenomics Platform under the generation of models. On the right, there is an
actionable link for the GENERATOR and PREDICTOR modules. Models link on GENERATOR
returns a table that shows all models developed and enables editing (pencil icon) or creating a new
model (+icon).

Once a model is generated, its characteristics and performance can be analysed by
clicking on the bar icon. This generates a table with predictive biomarkers, median levels
(positive prediction), the type of predictive regulation (e.g., up-regulation and down-
regulation), and the associated p-value. A dynamic ROC curve and a heatmap of the
predictions are generated, which can optionally be download. The heatmap shows the
biomarker scoring, overall predictive score, and outcomes on all the data used to build
the model. With this heatmap, users can easily identify false positives and negatives.
To generate predictions from unknown samples using the models, we implemented the
PREDICT module (Figure 2). In this tool, it is required to insert the values of the model
biomarkers and submit them for prediction. Upon submission, the results are shown
instantaneously on the platform in a visual and intuitive manner.
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selection and biomarker input values. (b) Unknown sample prediction example using the PRE-
DICT tool.

3.2. Testing Model Generation with Transcriptomics Data

We tested the model generation potential of the Digital Phenomics Platform with
real-life tumour transcriptomics datasets (Table 1). Using these datasets, we requested the
generation of 100 models for cancer survival prognostics with AI learning times ranging
from 1 to 120 min and a maximum of false positive rate of 25%, repeating it five times. All
models were successfully generated with specificities of >75%, fulfilling the user setup
requirement and indicating that the tool was robust. The accuracy of the generated pre-
diction tools was also checked by recapitulating the datasets’ outcomes and prediction
scores, where we manually checked the three models and calculated the sensitivities and
specificities. The generated models ‘ROCs’ AUCs showed an increase in predictive power
with learning time, reaching a plateau between 30 and 60 min (Figure 3). The results also
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indicated a performance variability in the model building independent of the learning time.
On the other hand, these results showed that the predictive power was also dependent
on the dataset. In contrast, the number of predictive biomarkers identified by the AI was
negatively correlated with the overall models’ performance, indicating that the AI was
struggling to make models from the renal and lung transcriptomics datasets. Further, the
model generation was observed to be approximately 2.4 times the learning time. This was
because the AI used the user-defined learning time for the model refinement and required
time dedicated to processing the data for finding the synergic effect of the biomarkers’ on
the model performance.
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3.3. Cancer Prognostic Models

We developed breast, lung, and renal cancer survival prognostic models using the
transcriptomics datasets (Table 1) and digital phenomics platform. The models were made
available for the generation of predictions on https://digitalphenomics.com, accessed
on 10 August 2023. The models’ performances, the number of predicted biomarkers
that composed the models, and their scoring cut-offs are presented in Table 2. We also
present in this table the best-performing models generated using TPOT on the same
datasets. The obtained models’ ROC curves (Figure 4) and their area under the curve values
(Table 2) indicated that these models had a good predictive power [24], whereas the models
generated with TPOT had an inferior predictive power. The sensitivity, specificity, and
accuracy of the breast cancer prognostic model were superior to 85% (Table 2), indicating
that this model had a good performance, making it suitable for making predictions on new
cancer transcriptomics data [24]. The lung and renal cancer models had lower performances
(Table 2), but with sensitivities, specificities, and accuracies always being superior to 70%,
indicating that these were reasonable models for generating predictions on new data [24].
As for the TPOT-generated models, performance metrics lower than 70% were always
present in any of the models, indicating that our platform algorithm was more robust in
these three cases. The biomarkers of the cancer prognostic models and their associated
predicted behaviour are presented in Figure 5. We found mainly up-regulations and some
down-regulations of the gene expressions in cancer survival phenotypes. Interestingly,
these results showed both distinct and conservative gene expression patterns between
breast, lung, and renal cancer. We identified eight genes (PI3K, β-catenin, MET, EGF,
TCF, LEF, Delta1, and Frizzled) that had up-regulated expressions and 1 (SNAIL1) with
down-regulation, conservative across the three cancers types.

Table 2. Performances of the cancer survival prognostic models generated by the digital phenomics
platform (EvA-3) in comparison to the performances of the optimal models generated using TPOT.

Cancer AI Optimized Predictive Model ACC SPE SEN AUC

Breast
EvA-3 25 biomarkers scoring (cut-off = 221) 84.9% 85.0% 84.9% 86.1%
TPOT Multinomial Naïve Bayes Random Forest * 84.0% * 58.0% * 94.0% * 53%

Lung EvA-3 49 biomarkers scoring (cut-off = 690) 75.1% 76.2% 72.3% 77.0%
TPOT KNeighbours Random Forest * 52.0% * 83.0% * 59.0% * 48.0%

Renal
EvA-3 43 biomarkers scoring (cut-off = 530) 77.0% 79.6% 75.7% 82.1%
TPOT Normalised Random Forest * 71.0% * 66.0% * 94.0% * 70.0%

* Models performance values taken from Table 2 of Pais et al. 2023 [18]. SEN (sensitivity); SPE (specificity); AUC
(Area Under the Curve); and ACC (accuracy).
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prognostic model. Models are indicated by BCM (breast cancer model), LCM (lung cancer model),
and RCM (renal cancer model). Red indicates up-regulation, blue indicates down-regulation, and
grey indicates no predictive effect. All 58 genes in the datasets are depicted in the y-axis, and gene
product names are shown instead of the Ensembl gene IDs.

4. Discussion

Current “omics”-based precision medicine frameworks still rely on experienced bioin-
formaticians with expertise in data science and modelling to generate ML-based predic-
tive [12]. Although this is an ideal scenario for the academy, it is not efficient to implement
such frameworks to the point-of-care, as they are required to be scaled to the population
level. Our developed solution using AI replaced the role of the specialized bioinformatician
modeller and made it possible for unspecialized laboratory personnel to generate and
apply predictive models as online tools to the point-of-care. This is mainly because our tool
is user-friendly and does not require users to have any coding or advanced mathematical
modelling skills. These features are absent from the commonly used machine learning
frameworks used in bioinformatics “omics” data analyses, as they are implemented under



BioMedInformatics 2023, 3 1079

the python and R methods and libraries, which, in turn, requires coding and modelling
expertise for case-by-case application [12–14]. The tool was designed for a generic and
scalable application to large “omics” datasets, where multiple users can work in parallel.
This makes it possible for many academic or industry-related laboratories to apply ML
to “omics” data without investing in specialized human resources and computational re-
sources, which can be an economic burden above 100,000 GBP per year. Thus, it is expected
that our solution may have an impact on opening up new possibilities for academic labs,
start-ups, and diagnostic companies that want to focus on precision medicine approaches.

However, the current platform is still limited depending on the quality of the user’s
data and their capacity to curate, normalize, and process these data before uploading them
to the dataset GENERATOR. Future integration with large language model solutions such as
OpenAI GTP-4 would potentially improve the dataset generation, enabling users to access
and integrate external data and perform AI aid and self-supervised curations. The model
generation using our platform brings a distinct AI algorithm based on an evolutionary ML
framework in comparison to commonly used ML approaches [15]. The algorithm performs
a step-wise identification of biomarkers’ up/down-regulations during a model evolution
that brings about the advantage of finding synergic effects between n and n − 1 identified
biomarkers. Further, the implemented multi-objective fitness function enables models to
evolve towards more robust predictive tools, not only optimizing towards a particular
metric. Instead, models are being evolved towards the best synergic combination in a
particular branch of a decision tree, evaluated with multiple metrics (sensitivity, specificity,
and ROC-AUC). This has an advantage over the robust auto ML framework TPOT, which
only enables rigid one-metric optimisation [13,14]. Another advantage of the tool is that
users can also tailor the maximum false positive rate achievable, a feature not commonly
enabled in most auto ML tools.

Although our platform solution showed robust results, we highlight some of its
limitations and disadvantages in comparison to other solutions. One is the fact that the
digital phenomics platform relies only on a scoring-based evolutionary algorithm for model
generation, whereas other AI-driven auto ML frameworks, such as TPOT, use a library of
algorithms that include random forests, support vector machines, and neural networks [13].
Another limitation is that it can only develop supervised learning classifiers (yes/no),
which require a list of categorical features (biomarkers) associated with numerical values
(quantitative data). This brings about some uncertainty in the generated predictions when
it is near the scoring cut-off of the phenotype yes/no decision. The observed variability
associated with the performance of generated models in each attempt and the dependency
of the dataset can be also considered as limitations of this technology. This implies trial-and-
error attempts from the users to obtain the best-performing model. Furthermore, once new
data come, a model is not updated automatedly by the AI. A user intervention to conduct
another model development attempt is required. A future version of the AI algorithm
should take into account these limitations towards improvements that minimize the impact
of these limitations. Perhaps the future integration of multiple AI algorithms, such as TPOT,
as users’ input choices could enhance the chances of obtaining better models from “omics”
data. Further, it would also be important to add AI modules that enable the covering of
other types of modelling frameworks such as probabilistic and regression models.

Importantly, the Digital Phenomics Platform rendered promising breast, lung, and
renal cancer survival prognostic models from tumour transcriptomics data (Table 2). Our
models rendered a much higher predictive power (86% > AUCs > 77%) in comparison to the
ones generated using TPOT on the same datasets (70% > AUCs > 48%) [18]. This suggests
that our AI-driven modelling framework outcompeted the capacity of the compendium
of the ML algorithms implemented in TPOT for transcriptomics data. As we only tested
the platform for three real-case transcriptomics datasets, it is still soon to generalise the
platform efficacy to other biological systems and even other types of “omics” data, such as
proteomics, metabolomics, and lipidomics. Therefore, more studies should be conducted
to clarify the potential of the platform AI algorithm as a generic “omics” to phenotype
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modelling solution. In comparison to other published ML models, our model, for breast
cancer prognostics, performed with a superior sensitivity (86%) in comparison to the
reported 35–64%, whereas its specificity was inferior (85%) to the 97–99% [25] urthermore,
the obtained AUC for the breast cancer prognostic model (86%) was comparable with the
80–92% reported for other models [25] or the lung and renal cancer prognostic models,
we obtained in this work slightly superior performances (up to 10%) in comparison to the
ones published using other modelling approaches [26,27]. This suggests that our cancer
prognostic models are competitive alternatives to the ones already published. On the other
hand, most published models are not applied in clinical decision making, in part because
of the difficulty of implementing such ML approaches. As our approach offers the means
to easily apply our models with no modelling and coding expertise, we may argue that this
work is a step forward towards bringing ML to the point-of-care. Moreover, the models
already built from this work may already enhance the current cancer survival prognosis.
Now, the next step towards this goal is to make a general practice of the characterization of
the tumour biopsy transcriptome in the assessment of cancer prognostics.

Interestingly, the obtained conservative patterns of gene expressions among the cancer
types were compatible with the main markers of epithelial phenotype (β-catenin) and
incompatible with the markers of the mesenchymal phenotype (SNAIL1) [23,28]. This
may partially explain the survival prognostics, as the mesenchymal phenotype and over-
expression of SNAIL1 are often correlated with cancer invasion, whereas the epithelial
phenotype often correlates with benign cancers [29,30]. However, the other biomarkers
identified are considered to be involved in epithelial-to-mesenchymal transitions, known
to be hijacked during cancer invasion [31,32]. According to a regulatory network model
of epithelial-to-mesenchymal transitions, the identified biomarkers are more compatible
with mesenchymal than a more invasive hybrid phenotype [23,33]. Thus, our results agree
with this idea, but also highlight the complexity and heterogenicity of cancer deregulations
and their correlation with survival prognostics [7,25,27,34]. Moreover, our results from
the models may be useful as clues for future studies that aim to understand the molecu-
lar mechanisms associated with cancer survival, finding therapeutical targets for specific
cancers and therapy evaluation metrics.

5. Conclusions

In this work, we developed a novel AI-driven platform for the generation of predictive
models from “omics” data. Here, we demonstrated that the platform is a user-friendly,
coding-free, robust, and scalable solution suitable to be applied as a precision medicine
tool at the point-of-care. This was illustrated with the application of the platform for the
generation of breast, lung, and renal cancer prognostics from transcriptomics data. Impor-
tantly, with this work, we enabled the usage of competitive and novel cancer prognostic
models, which can be accessed online for the generation of predictions through the digital
phenomics platform.
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