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Abstract: iPSC reprogramming involves dynamic changes in chromatin accessibility necessary for
the conversion of somatic cells into induced pluripotent stem cells (iPSCs). IPSCs can be used to
generate a wide range of cells to potentially replace damaged cells in a patient without the threat
of immune rejection; however, efficiently reprogramming cells for medical applications remains a
challenge, particularly in human cells. Here, we conducted a cross-species meta-analysis to identify
conserved and species-specific differences in regulatory patterns during reprogramming. Chromatin
accessibility and transcriptional data as fibroblasts transitioned to iPSCs were obtained from the
publicly available Gene Expression Omnibus (GEO) database and integrated to generate time-resolved
regulatory networks during cellular reprogramming. We observed consistent and conserved trends
between the species in the chromatin accessibility signatures as cells transitioned from fibroblasts
into iPSCs, indicating distal control of genes associated with pluripotency by master reprogramming
regulators. Multi-omic integration showed key network changes across reprogramming states,
revealing regulatory relationships between chromatin regulators, enhancers, transcription factors,
and target genes that result in the silencing of the somatic transcription program and activation of the
pluripotency gene regulatory network. This integrative analysis revealed distinct network changes
between timepoints and leveraged multi-omics to gain novel insights into the regulatory mechanisms
underlying reprogramming.

Keywords: iPSC; stem cells; pluripotent; reprogramming; chromatin accessibility; networks; epigenetics;
multi-omics; PECA

1. Introduction

Characterized by the phenomenal capacity to give rise to every cell type in the body,
induced pluripotent stem cells (iPSCs) can be used to replace damaged or diseased tissues
and hold great promise for the advancement of potential therapeutics in the field of
regenerative medicine [1]. Somatic cells can be reverted to a pluripotent state by inducing
the expression of the four Yamanaka factors, Oct4, Sox2, Klf4, and c-Myc, in a process known
as iPSC reprogramming [2]. However, iPSC reprogramming, especially in human cells, is
an inefficient process that results in heterogeneous populations wherein few cells effectively
achieve pluripotency [3,4]. Currently, our ability to harness reprogramming for practical
applications in regenerative medicine is hampered by our incomplete understanding of the
molecular mechanism that underpins reprogramming in human cells.

In the interest of developing more efficient ways to derive these cells for clinical appli-
cations, various genomic and epigenomic sequencing approaches have been conducted
to better understand the mechanism of reprogramming. The reprogramming process has
most extensively been characterized in mouse embryonic fibroblasts (MEFs) in an effort to
describe the transcriptomic and epigenomic modifications involved in the acquisition of
pluripotency [5–9]. Fewer studies have focused on reprogramming towards pluripotency
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in human cells due to the comparative technical challenges and confounding factors, such
as variations in donor genetic background and reprogramming systems [10,11]. Human
and mouse pluripotent stem cells have different morphologies, signaling systems, and
epigenetic configurations, that result in differences between the two models with respect to
reprogramming [12]. Mouse studies have mainly focused on reprogramming to a naïve
pre-implantation-like cellular state [13], whereas human cells conventionally undergo re-
programming to a more advanced, primed state, complicating the translatability of mouse
models to human reprogramming.

Various transcriptomic and epigenetic approaches have been employed to understand
reprogramming mechanisms and profile the transcriptome and chromatin accessibility of
human reprogramming cells [14–17]. Genome-wide analyses of accessible chromatin, which
marks the presence of active regulatory DNA [18], including promoters, enhancers [19–21],
and transcription factor binding sites [19,22–24]. These studies have uncovered orches-
trated global changes in chromatin accessibility [25] and regulatory elements directing the
reprogramming process that are crucial components of the reprogramming mechanism [8].
However, regulatory networks for reprogramming typically rely on co-expression analysis,
and fail to incorporate how these extensive changes in chromatin accessibility relate to
changes in gene expression. Current network models of human cellular reprogramming
have been limited by lack of temporal resolution or multi-omic integration. Some studies
do not incorporate time course data of the reprogramming process, but rather iPSCs that
had already undergone reprogramming [25]. Alternatively, others use co-expression-based
software to derive regulatory networks primarily from expression data or do not fully
capitalize on integration of both transcriptome and epigenome data when constructing
their network [14,26].

Associating changes in chromatin accessibility with changes in gene expression can
help to decipher gene regulatory networks by informing whether differentially expressed
genes also have differential chromatin accessibility in regulatory regions [27] or are con-
trolled by certain transcription factors based on the accessibility of specific motifs present
in open chromatin [28]. Paired expression and chromatin analysis algorithms have been
developed to link regulatory regions and their targets on a genome-wide basis using prior
ChIP-seq and co-accessibility data [29], highlighting local cis interactions such as co-binding
transcription factors (TFs), promoter regulation, and local enhancer regulation, and long-
range cis interactions such as chromatin looping and distal enhancer regulation [30,31].

While prior studies have pioneered the study of the diverse routes traversed by
reprogramming cells [14] and presented a roadmap for transcription-factor-mediated re-
programming in human cells [32], no study to date has integrated transcriptomic and
epigenomic data to reconstruct regulatory networks and develop a model that fully en-
compasses the reprogramming machinery in the human cell. How the epigenome directs
changes in gene expression that result in the reprogramming process remains a key missing
link in our knowledge of how pluripotency is attained and remains a hinderance in our
ability to innovate efficient reprogramming methods for therapeutic use. More integrative
approaches have now been developed to construct regulatory networks from joint analysis
of gene expression and chromatin accessibility data [29] that can be utilized to address
these knowledge gaps.

In this present work, we first conducted a meta-analysis on chromatin accessibility
in reprogramming iPSCs to identify conserved patterns across species. Using recently
developed integrative approaches to address the limitations of earlier studies, multiple next
generation sequencing data types were integrated to generate novel regulatory networks
reflecting the changes reprogramming cells undergo, integrating the regulatory action
of distal elements on their target genes. The results from these analyses can be used
to better understand the mechanism of reprogramming, and how it can be exploited to
improve the efficiency of current reprogramming methods so that they can be harnessed
for therapeutic purposes.
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2. Materials and Methods

Data Acquisition. RNA and ATAC-sequencing data that were generated as mouse
and human fibroblasts transitioned to iPSCs, were obtained from the publicly available
Gene Expression Omnibus (GEO) database. The datasets used in this study were de-
posited under accession numbers GSE101905 [8], GSE93029 [33], and GSE147641 [32]. The
GSE101905 and GSE93029 datasets contained samples from a fibroblast stage, four inter-
mediate reprogramming stages, and a pluripotent stage. GSE147641 contained samples
from a fibroblast stage, three intermediate reprogramming stages, and two pluripotent
stages. The pluripotent stages included iPSC cells from day 21, as well as later iPSC cells
derived after several passages to check genomic stability. The RNA sequencing data from
GSE101905 utilized in the current study, had been processed with HISAT2 [34] and Genom-
icRanges [35] software and deposited in the GEO database in tabular format consisting of
transcripts per million (TPM) counts. The RNA sequencing data from GSE93029 had been
processed with RSEM [36] software and deposited in the GEO database as raw counts. The
RNA sequencing data from GSE147641 had been processed with STAR [37] v2.5.2b and
featureCounts [38] v1.5.2 software and deposited in the GEO database as raw counts. For
the characterization of peaks, we used and compared the two mouse datasets, GSE101905
and GSE93029. For the paired expression and chromatin accessibility analysis, we used
only the GSE101905 dataset for mouse, and GSE147641 for human.

RNA-seq Pre-processing. For the mouse dataset GSE101905 [8], processed GEO
expression files were provided in gene symbol and TPM format and directly inputted into
PECA2 [29,39] v3.0.1 for paired expression and chromatin analysis (PECA). For the human
dataset GSE147641 [32], gene Ensemble IDs were supplied in processed GEO RNA-seq
files; therefore, Ensemble IDs were converted to gene symbols with the Biomart [40,41]
v2.46.3 mapIds function using the AnnotationDbi package org.Hs.eg.db [42] v3.12.0. Human
RNA-sequencing files containing transcript-level values were consolidated to gene-level
values using TxImport [43] v1.18.0. Human dataset tag counts were normalized by the
gene length provided by FeatureCounts and converted into reads per kilobase per million
mapped reads (RPKM) values using the rpkm() function in edgeR [44] v3.32.1. To directly
compare gene expression in similar units for human and mouse in figures detailing gene
expression, raw human counts were converted to TPM values using the TPM() function in
RNAnorm [45] 2.0.0, then analyzed with PECA2 software. RNA-sequencing files containing
gene symbols and TPM or RPKM values were used for downstream paired chromatin and
expression analysis. The methods diagram for the data analysis used in the current study
is summarized in Figure 1.

ATAC-seq Pre-processing. To obtain binary alignment and map (BAM) files necessary
for downstream PECA analysis, raw ATAC-sequencing fastq files were obtained from the
Sequence Read Archive (SRA) with the SRAtoolkit [46] v2.10.8 prefetch command. ATAC-seq
SRA fastq files were aligned to the mouse mm10 genome and human ATAC-seq SRA files
to the human hg19 genome using bowtie2 [47] v2.3.2. The resulting ATAC-seq BAM files
were sorted and indexed with SAMtools [48] v1.10. Mitochondrial DNA alignments were
removed with the removeChrom Harvard ATAC-seq module (https://github.com/jsh58/
harvard/blob/master/removeChrom.py, accessed on 20 September 2021). PCR duplicates
were removed with Picard v2.24.1 (http://broadinstitute.github.io/picard/, accessed on 20
September 2021). Blacklisted genomic from the mm10 Boyle Lab Blacklist [49] v2 regions,
which generally cause erroneous signal, were filtered out from mouse files and blacklisted
genomic regions from the hg19 Boyle Lab blacklist v2, 2019 were filtered out from human
files using bedtools2 [50] v2.29.2.

Differential Chromatin Accessibility and Motif Enrichment Analysis. To visualize
the variation in chromatin accessibility in multiple reprogramming datasets, processed
ATAC-seq bed files from two mouse studies, GSE101905 and GSE93029, were merged.
ATAC-seq samples provided in the GSE101905 dataset were previously processed with
bowtie2 v2.2.7, sambamba [51] v0.6.3, and MACS [52] v2.1.0 software. ATAC-seq samples
provided in the GSE93029 dataset were previously processed with bowtie2, SAMtools, and

https://github.com/jsh58/harvard/blob/master/removeChrom.py
https://github.com/jsh58/harvard/blob/master/removeChrom.py
http://broadinstitute.github.io/picard/
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dfilter [53] software. ATAC-seq samples from two human donors, GSE147641, were also
merged. Bedtools2 v2.29.2 intersect was used to merge peaks of biological and technical
replicates of ATAC-sequencing samples, requiring a reciprocal 50% overlap between repli-
cate peaks. Corresponding MEF and iPSC timepoints from both datasets were merged. For
intermediate timepoints, all peaks provided by GSE101905 that were present in at least one
intermediate peak in the GSE93029 dataset were retained for downstream analysis, using
the multi-intersect bedtools function. For motif enrichment analysis, bedtools subtract was
used to remove fibroblast stage peaks that overlapped with peaks in reprogramming cell
samples, which were not differentially accessible. Hypergeometric Optimization of Motif
EnRichment [54] (HOMER) v3.12, 6-8-2012 was used to identify motifs enriched in peaks
with the findMotifsGenome.pl program and locate genes nearest to each consensus peak to
perform gene ontology analysis with the annotatePeaks.pl –go option. The Chipseeker [55,56]
v1.36.0 R package was used to generate plots of locations of consensus peaks and their
genomic features. To visualize the correlation between peaks and motifs, a motif file was
generated with findMotifsGenome.pl and used with the annotatePeaks.pl tss –m option to
locate distances of each motif instance from accessible regions.
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Figure 1. Methods diagram of multi-omic data integration procedure. RNA and ATAC sequencing
data were obtained from publicly available Gene Expression Omnibus (GEO) repositories. The data
were processed into the binary alignment and map (BAM) file and gene-level transcripts per million
(TPM) format for integration with paired expression and chromatin accessibility analysis. Integrative
regulatory networks were generated and visualized with Cytoscape software version 3.9.1.
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Paired Expression and Chromatin Accessibility Analysis (PECA2). For each sam-
ple, ATAC-seq BAM files were integrated with TPM or RPKM gene expression files with
PECA2 [29,39] v3.0.1. PECA2 was selected because the software is able to correlate a large
number of transcription factors with enhancers and target genes by taking advantage
of prior Encyclopedia of DNA Elements (ENCODE) data from multiple cellular contexts.
PECA2 canvases the whole spectrum of known transcription factors in the ENCODE mouse
and human ChIP-seq databases, and as a result, can investigate diverse transcription factor
binding interactions and a broader context of regulatory activity than individual ChIP-seq
experiments. PECA2 generated the output files containing epigenetic regulatory inter-
actions for each sample. PECA2 prior data combines an extensive amount of ChIA-PET
data, co-accessibility data, and ENCODE ChIP-seq datasets from a diversity of tissues,
totaling 931,427 enhancers in total that include more than 70% of conserved non-coding
sequences [29]. The construction of trans-regulatory networks is based off several assump-
tions built into the PECA model, which supports that the interactions between target
genes and their transcription factors can be modeled based on the accessibility of regu-
latory elements and expression of TFs and chromatin regulators. It should be noted that
while PECA’s prior information is experimentally validated in multiple cellular contexts,
PECA extrapolates data derived from known contexts and transfers these findings to new,
different contexts [29,39].

Using the PECA.sh MATLAB script, PECA2 was used to generate six kinds of output
files: a chromatin regulator (CR) binding matrix, enhancer openness file, trans-regulatory
score (TRS) matrix, transcription factor–target gene (TF–TG) interaction network file, and a
TF–TG interaction module file. The chromatin regulator (CR) binding matrix contained
the likelihood of recruitment of common CRs to known enhancers by TFs. The likelihood
p-value was calculated based on the accessibility of the enhancer region, the expression
of transcription factors that mediate the interaction (which are TFs that have a motif
match to the enhancer and known protein–protein interactions with the CR), and the
binding potential and specificity of the transcription factor for the given enhancer. The
enhancer openness file contained the calculated openness score of enhancer regulatory
elements (REs), based on user-provided chromatin accessibility data versus prior ENCODE
data containing the median openness of known enhancers. The trans-regulatory score
(TRS) matrix file contained the predicted regulation score of transcription factors (TF)
on target genes (TG), which are used to infer important TF–TG interactions. The TRS
incorporates information about the expression of a TF, the expression of a target gene,
and whether the TF has motif-matches for the target gene’s enhancers. Enhancers are
associated with genes using the distance between the target gene and the enhancer, as well
as the correlation between the accessibility of the target gene’s promoter and the enhancer.
The TF–TG interaction network file contained TF–TG regulatory relationships scored by
probability of regulation, and the predicted enhancers mediating these interactions. Lastly,
the TF–TG interaction module file contained only the highest ranked interactions in the
network file. The PECA_compare_Diff.sh function was used to merge technical replicates
and compare all timepoints against the fibroblast stage to create differential networks,
identifying transcription factor–target gene interactions unique to that timepoint.

Enhancer Identification and Analysis. PECA2 was also used to identify the most
essential enhancers mediating interactions between hub transcription factors and their
target genes. From the PECA2 network file for each timepoint, the enhancers that were
associated with the top 200 TF–TG interactions with the highest scores were selected for
downstream analysis. The sum of the associated TF–TG score interactions for six main
transcription factors were plotted as a heatmap with the gplots [57] R package heatmap.2
function, with enhancer regions clustered on the y-axis by dendrogram. The row z-score
histogram color legend was produced by setting the scale parameter to normalize the
heatmap by row. In addition, the top 60 enhancers from the PECA2 network file for mouse
day 9 and human day 13 were selected and cross-referenced with the enhancer openness
files for all timepoints. Enhancers were matched to corresponding enhancer regions in all
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other timepoints, provided that the enhancer remained open and was detected as accessible
in the other timepoints. For dissimilar timepoints with significantly less enhancer overlap,
such as the fibroblast stage, the proportion of enhancers that were no longer open were not
included in median/distribution analysis for that timepoint. Statistics comparing the mean
openness between timepoints were calculated with the stat_compare_means function t-test
option from the ggpubr [58] v0.6.0 R package.

Network Visualization and Analysis. Network files were imported into Cytoscape [59]
v3.9.1 to visualize transcription factor (TF)–target gene (TG) interactions, depicted by
network edges. Edge width was scaled by the probability of regulation according the
to the score provided by PECA2’s analysis, and edge color was scaled by the Pearson’s
correlation of the TF and TG expression across ENCODE data. Corresponding expression
files quantified in transcripts per million (TPM) were imported per timepoint, and node
color was scaled according to gene expression. Networks were filtered for transcription
factors and target genes with the top 15 highest PECA scores, and all edges between these
nodes using Cytoscape edge and node filter functionalities. In cases where the difference in
node significance between the 15th and 16th ranked nodes was arbitrarily close, the top
16 nodes were included.

Cytohubba [60] v0.1 was used for topological analysis such as degree and bottleneck
centrality, and multiple other centralities for the selected nodes, including edge percolated
component (EPC), closeness, betweenness, and stress centralities. Degree indicates the
number of connections a node has with other nodes in the network, or how many genes a
given gene regulates. A higher degree score correlates with the essentiality of the gene [61]
and is a characteristic of a hub regulator. Bottleneck centrality [62] is a measure of the extent
to which a node constrains connectivity, and how greatly the removal of a node disrupts the
network structure. Betweenness centrality [63] correlates closely with bottleneck centrality
and identifies nodes that act as focal points of information traffic in the network. A
node behaves as a bottleneck with high betweenness centrality if many of the shortest
paths between nodes must go through it to communicate across the network. These
nodes may have a low degree but are crucial to preserve network connectivity. Other
centralities included closeness centrality [64], where a high closeness score corresponds
to short distances to all other nodes; edge percolated component, a global measure of
connectivity also associated with essentiality [65]; and stress centrality [66], a measure of
the ability of a node to control the flow in a network based on the number of shortest paths
passing through the node. Nodes that are frequently on shortest paths between nodes
will have a higher stress centrality. Unlike bottleneck centrality, stress centrality measures
the absolute number of shortest paths instead of a fraction of the shortest paths passing
through a node.

The TRS matrix generated by PECA2 was used to produce TRS heatmaps of se-
lect genes within module file networks using the base R heatmap function. The gg-
plot2 [67] v.3.3.3 R package with the stat_summary mean function was used to produce
line graphs of the mean expression of network genes from each module file produced
by PECA2. Human symbols were converted to mouse symbols with the Human and
Mouse Homology Classes with Sequence information provided by the Mouse Genome
Informatics (MGI) Database (http://www.informatics.jax.org/downloads/reports/HOM_
MouseHumanSequence.rpt, accessed on 30 June 2023) by matching corresponding gene
symbols by DB Class Key. Jaccard Similarity, defined as the number of common genes
divided by the total genes in two networks, was used to compare similarity between net-
works. All transcription factors and the top 200 target genes identified in each module
file were used as input for canonical pathway analysis with Ingenuity Pathway Analy-
sis [68] software (QIAGEN Inc., Redwood City, USA, June 2023 release). Heatmaps of the
top canonical pathways were visualized using the −log(p-values) and gene ratios across
the timepoints.

http://www.informatics.jax.org/downloads/reports/HOM_MouseHumanSequence.rpt
http://www.informatics.jax.org/downloads/reports/HOM_MouseHumanSequence.rpt
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3. Results
3.1. Differential Chromatin Accessibility and Motif Enrichment Analysis
3.1.1. Peak Locations Show Diverse Changes in Chromatin Accessibility across Species
and Datasets

The initial objective of the meta-analysis was exploration of several datasets to confirm
conserved patterns between species and to verify the datasets were suitable for integrative
analysis. The locations of accessible regions within the genome were compared between
mouse and human reprogramming ATAC sequencing datasets (Figure 2). Two mouse repro-
gramming datasets and two human reprogramming replicates were merged to visualize
species-specific trends in chromatin accessibility. The meta-analysis revealed that distri-
butions of ATAC peaks by timepoint varied between experiments conducted on the same
species, which is attributable to differences in methodology, statistical selection of peaks,
and natural variation. Despite variation between studies, species-specific patterns emerged.
Reprogramming mouse cells exhibited a decrease in accessibility in promoter regions at
day 3 that continued until the iPSC stage, and human reprogramming cells exhibited a slight
increase in accessibility in promoter regions at day 7. The locations of peak with respect to
the transcription start site (TSS) showed a similar distribution for human and mouse. The
majority of accessible regions were located 10kb or further from the transcription start site
of genes. Regions 0-1kb from the transcription start site became less accessible early in the
time course at day 3 for mouse but stayed relatively constant for human.
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Figure 2. Peak locations show diverse changes in chromatin accessibility across species and datasets.
The Chipseeker1 R package was used to generate plots of locations of consensus peaks and their
genomic features. Mouse diagrams show the intersected ATAC peaks from two murine datasets
(GSE101905 and GSE93029). Human diagrams show the intersected ATAC peaks from two different
human donors (GSE147641). (A,B) The distribution of peaks within the genome in terms of promoters,
introns, exons, and other regions at the different timepoints by species. (C,D) The distribution of
peak locations with respect to the transcription start site (TSS) at the different timepoints by species.
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3.1.2. Motif Enrichment Analysis Reveals Common and Species-Specific Motifs
across Timepoints

We were able to confirm the presence of key transcription factor motifs and analyze
differences in their frequencies between species. The most highly enriched motifs in
accessible regions were identified by day for each species using HOMER [54], which
identifies these motifs by sequence matching to known transcription factor motifs in the
HOMER database. Species comparison showed differences in the levels of motif enrichment
at the later timepoints. Somatic transcription factors such as FOSL-encoding genes and
JunB, which preserve fibroblast identity, were only highly enriched in the initial, pre-
reprogramming and the earliest intermediate stages of each species and lost enrichment
thereafter, similar to previous patterns observed in mouse [7] and human [14]. The most
highly enriched motif in human accessible regions was CCCTC-binding factor (CTCF), a
zinc-finger protein that controls gene expression by rearranging chromosomal architecture
and regulating distant chromatin interactions, as well as the CTCF paralog, BORIS.

Notably, both species showed the composite Oct4-Sox2-Tcf-Nanog (OSTN) motif
as highly enriched and statistically significant by HOMER during the reprogramming
timepoints (Table 1). Tcf3, which enhances early-stage reprogramming and co-occupies
many pluripotency genes with Oct4, Sox2, and Nanog, is part of the T-cell factor protein
family. Binding sites for T-cell factor proteins (Tcf) [69], which constitute part of the WNT
signaling pathway and are sufficient for embryonic stem cell self-renewal [70–73], were
present in this motif. The OSTN motif became increasingly more accessible during the
reprogramming time course for both species, indicating that regulatory elements containing
the motif became open as reprogramming progressed (Figure 3).

Table 1. Motif enrichment analysis revealed common and species-specific motifs across timepoints.
Hypergeometric optimization of motif enrichment (HOMER) software identified transcription factor
binding sites that were most highly enriched in differentially accessible peak regions. The motifs are
ordered by the top 10 most significant p-values returned by HOMER for each time point. Peaks with
the top 5000 p-values were selected for motif enrichment analysis.

MOUSE

MEF Day 3 Day 6 Day 9 Day 12 iPSC

Fos Klf5 OSTN 1 OSTN 1 OSTN 1 OSTN 1

Atf3 Klf6 Oct4 Oct6 Klf5 Sox3
Fra1 Sox3 Oct6 Sox3 Sox2 Sox10

BATF Klf4 Sox3 Oct4 Sox3 Sp5
Fra2 OSTN 1 Brn1 Sox2 Oct4 Sox21
JunB Klf1 Klf5 Oct1 Sox21 Sox6
Fosl2 Sox2 Sox10 Brn1 Sox6 Sox2
AP-1 Klf3 Sox6 Sox6 Klf1 Sox15

Jun-AP1 Sox10 Sox2 Sox10 Klf4 Oct4
NFY EKlf Sox21 Sox21 Sox10 Sp2

HUMAN

HF Day 3 Day 7 Day 13 Day 21 iPSC

FOS FOS CTCF CTCF CTCF CTCF
FRA1 FRA1 BORIS BORIS BORIS BORIS
ATF3 ATF3 KLF5 OSTN 1 TEAD1 OSTN 1

BATF BATF OSTN 1 KLF5 TEAD3 SOX3
JUNB FRA-2 KLF1 KLF1 OSTN 1 OCT4
AP1 AP-1 KLF6 OCT4 TEAD4 BRN1

FRA2 JUNB SP2 KLF6 TEAD SOX6
FOSL2 KLF5 KLF4 SP5 TEAD2 SOX21

JUN-AP1 FOSL2 KLF14 KLF14 SOX3 OCT6
CTCF JUN-AP-1 EKLF KLF4 JUN-AP1 SOX2

1 OSTN is an abbreviation for the composite OCT4-SOX2-TCF-NANOG motif.
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mouse motif density analysis.

3.1.3. Oct4-Sox2-Tcf-Nanog (OSTN) Orchestrates Changes from Distal Enhancers

Limiting the accessible regions to those containing the highly enriched OSTN motif
revealed a clearer pattern that was conserved across species. The accessible OSTN mo-
tifs were predominately located in distal intergenic and downstream accessible regions
(Figure 4). This would suggest that while many promoter regions become accessible as a
result of reprograming, the OSTN transcription factors mainly orchestrate reprogramming
changes at much further distances, through regulatory elements at least 10–100 kb or even
greater distances away from the target gene.

3.2. Cis-Regulatory Network Analysis
3.2.1. Enhancers Mediating TF–TG Interactions during Reprogramming

Because the Oct4 and Sox2 transcription factors acted primarily from distal regulatory
regions to invoke transcriptional changes, identifying the key enhancers involved and their
regulatory activities was the next consideration. Given that putative enhancers were located
10–100 kb or further from target genes, an integrative, paired expression, and chromatin
accessibility (PECA) model was implemented instead of proximity-based enhancer annota-
tion. PECA2 was used to rank the most essential enhancers and identify enhancer interac-
tions with hub transcription factors and target genes. A total of 2,384,764 unique enhancer
interactions were identified in mouse cis-regulatory networks, and 1,135,104 enhancers
interactions in human networks in the initial timepoints (Supplemental Tables S1 and S2).
Enhancers associated with the top 200 highest predicted regulatory scores between tran-
scription factors and target genes were selected from each timepoint and correlated with
fibroblast and pluripotent-associated transcription factors (Figure 5). The most active
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enhancers at day 0 fibroblast stages where the most highly associated with fibroblast-
associated transcription factors such as Fosb, Fosl2, and Jdp2, for both mouse and human
reprogramming cells. The most active enhancers at reprogramming timepoints day 3 and
onwards, were associated with pluripotency-associated transcription factors such as Pou5f1,
Sox2, and Sox21 for both species, indicating integrative paired chromatin accessibility and
expression methods were able to quantify relationships between transcription factors and
enhancers accurately. Regulatory relationships between additional transcription factors
and enhancer regions are further documented in Supplemental Tables S1 and S2.
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Figure 4. Oct4-Sox2-Tcf-Nanog (OSTN) orchestrates changes from distal enhancers. The Chipseeker
R package was used to generate plots of locations of the OSTN motif. Mouse diagrams (A,C)
show the intersected ATAC peaks from two murine datasets (GSE101905 and GSE93029). Human
diagrams (B,D) show the intersected ATAC peaks from two different human donors (GSE147641).
The distribution of the OSTN motif within the genome in terms of promoters, introns, exons, and
other regions at different timepoints by species. The distribution of OSTN motif instances with
respect to the transcription start site (TSS) at the different timepoints by species.
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Figure 5. Enhancers mediating transcription factor–target gene (TF−TG) interactions during repro-
gramming. Enhancers were filtered for those interacting with somatic and pluripotent hub regulators
(Fosb, Fosl2, Jdp2, Pou5f1, Sox2, Sox21). Enhancers associated with the top 200 paired expression
and chromatin accessibility (PECA) regulation scores in day 0 fibroblasts mediated interactions of
fibroblast-associated transcription factors (Fosb, Fosl2, Jdp2) in both human (A) and mouse (C). En-
hancers associated with the top 200 PECA regulation scores from reprogramming cells (day 12 mouse,
day 13 human) and final pluripotent stem cells mediated interactions of pluripotent-associated tran-
scription factors (Pou5f1, Sox2, Sox21). Enhancers on the y-axis are clustered by their transcription
factor interaction profile. Not all enhancer labels are listed on the y-axis labels for improved readabil-
ity; a select few enhancers representative of each cluster are displayed. For a complete list of the top
enhancers identified by PECA2 software, refer to Supplemental Tables S1 and S2. Heatmaps were
normalized by row, with a histogram of the number of values with a given z-score is provided in
the upper right-hand corner of each timepoint plot. The histogram is overlaid on a color key, which
indicates the corresponding color for a given z-score. Darker color indicates the enhancer is involved
in TF–TG interactions with higher PECA scores with regards to probability of regulation for a given
transcription factor. A Manhattan plot including the intermediate timepoint enhancers associated
with the top 200 TF–TG regulatory scores for mouse day 12 (B) and human day 13 (D) are included.
The height of the peak corresponds to the number of enhancers located in that region.



BioMedInformatics 2023, 3 1026

3.2.2. Enhancer Dynamics during Reprogramming

Paired chromatin and expression analysis revealed dynamic, genome-wide changes in
enhancer reprogramming networks. The accessibility of enhancers from an intermediate
time point in each species was assessed using a sequencing-depth-normalized measure
of “openness” defined by PECA2 that is statistically comparable between samples. The
openness scores of accessible intermediate timepoint enhancers were plotted over time for
each species (Figure 6A,B). For mouse cells, the enhancer regions mediating the 50 most
highly ranked TF–TG interactions on day 9 opened quickly after reprogramming-inducing
doxycycline treatment was administered at day 3. For human cells, the top 50 enhancer
regions mediating the most highly ranked TF–TG interactions on day 13 were most open
during the latter half of the reprogramming time course, after the cells were transitioned to
naïve reprogramming media.
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Openness distributions of these 50 enhancers were compared at each time point, indicating intermedi-
ate enhancers open shortly after reprogramming-inducing doxycycline treatment on day 3 (mouse) or
shortly after transfer to naïve stem cell media on day 13 (human). The distribution of the enhancers’
openness is shown through violin plot curvature, where the majority of enhancers appear where the
width of the violin plot is widest, and statistical outliers are plotted as individual points. Median
values are indicated with a boxplot, with lower and upper hinges that correspond to the first and third
quartiles (the 25th and 75th percentiles). Statistical significance was calculated in a pair-wise manner
between the fibroblast stage and the corresponding timepoint (indicated with brackets) using a paired
t-test. Statistical significance calculations are demarcated by asterisks: * (p ≤ 0.05), *** (p ≤ 0.001),
**** (p ≤ 0.0001). (C,D) Chromatin regulators (shown on the y-axis) affecting the acetylation and
methylation of these enhancers were identified and ranked by the number of significant (p ≤ 0.05)
interactions with the selected 50 enhancers. Time points collected on each day (abbreviated as (D))
are indicated on the x-axis. The distribution of values in each heatmap is visualized as a color key
and histogram plot.

In addition to pioneer transcription factors with the capacity to remodel chromatin,
other epigenetic factors contributing to the openness state of these enhancers were also
investigated. Chromatin regulators with the most interactions with the top 50 enhancers
from the day 9 mouse and day 13 human samples included Chd4, a subunit of the NuRD
complex that is required for the maintenance of stem cell renewal [74] and the histone
methyl transferase Ezh2, which is required for a key step in iPSC generation, mesenchymal–
epithelial transition [75] (Figure 6C,D). Other members of the CHD remodeling factor family,
which are reported to actively open chromatin during factor-induced reprogramming,
also exhibited high numbers of enhancer interactions [76]. Additionally, the H3K4me3
effector WDR5 [77], which binds to, activates, and co-occupies many pluripotency genes
in coordination with Oct4 [77,78], was identified as a regulator of the selected 50 human
enhancers. Chromatin regulators had the most statistically significant interactions with
the highly ranked enhancers on the day the enhancers were detected, day 9 for mouse
and day 13 for human. However, many of these enhancers remained open and highly
ranked throughout the reprogramming process and maintained interactions with chromatin
regulators at other timepoints.

3.3. Trans-Regulatory Network Analysis during Reprogramming
3.3.1. Construction of Trans-Regulatory Networks

By integrating the information provided by ATAC-seq and RNA-seq for each day,
the regulation scores of transcription factors and their target genes were calculated for
all timepoints (Figure 7). Fibroblast networks exhibited the highest regulatory scores
between fibroblast-associated transcription factors such as FOSL2 and fibroblast-related
target genes. Pluripotent networks exhibited the highest regulatory scores between
transcription factors associated with pluripotency, such as POU5F1, an alias for Oct4.
Early intermediate networks reflected the transition from fibroblast-associated gene
interactions shown in earlier timepoints to pluripotent-associated gene interactions
shown in later timepoints. The expression patterns of modules peaked at their respective
timepoints, with earlier modules most highly expressed at earlier timepoints, and the
reverse for later timepoints. The mean expression patterns of transcription factors in
networks also correlated with those of the genes they regulated over time. TRS scores
were then used to determine the interactions between transcription factors in networks
and create time-resolved regulatory networks.
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Figure 7. Analysis of core regulatory modules for mouse and human. (A) Heatmap of the normalized
trans-regulatory score (TRS) on selected transcription factors and target genes for three mouse time
points: an initial fibroblast timepoint (day 0), an early intermediate timepoint (day 3), and a final
pluripotent timepoint. Transcription factors and target genes indicated on the axes are clustered
by their association with fibroblast or pluripotent cell type. (B) Heatmap of the normalized trans-
regulatory score (TRS) on selected transcription factors and target genes for three human time points,
an initial fibroblast timepoint (day 0), an early intermediate timepoint (day 3), and a final pluripotent
timepoint (day 21). (C,D) Mean expression pattern of transcription factors (shown in red) and the
target genes they are predicted to regulate (shown in blue), represented as a log2 + 1 transformation
of the transcripts per million (TPM) values for mouse (B) and human (D). Error bars indicate the
standard error.

3.3.2. Paired Expression and Chromatin Accessibility Analysis Reveals Dynamic
TF–TG Networks

Multi-timepoint networks containing between 244,978 and 328,433 unique TF–TG in-
teractions were identified in mouse, and between 146,134 and 373,283 interactions in human.
Network centrality analysis was conducted on full PECA-generated networks containing
thousands of transcription factor and target gene interactions in order to better under-
stand the function and regulatory relationships of each gene (Supplemental Tables S1–S4).
Reprogramming networks were contrasted with the control fibroblast networks, and com-
mon genes were removed from the analysis to identify pathways that were specific to
the reprogramming and pluripotent stages. Multiple centralities, including bottleneck
(B.N.), closeness, betweenness, and stress, were calculated for each gene to identify cen-
tral elements of the networks and infer the importance of nodes in each network. Tables
containing topological and centrality analysis are provided for each network, ordered by
bottleneck centrality.

For both species, the 15 most critical gene–gene interactions as calculated by PECA’s
model included hub transcription factors Oct4, Sox2, and Nanog and their most highly
scored gene targets (Figure 8). PECA score was inferred from paired transcriptional and
epigenetic information, including the fold change and predicted activity of the interaction
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compared to control cellular contexts. For mouse, other critical hubs with high degree and
bottleneck centrality included Pouf31, Sox21, Gsx1, and Zfp42. High-ranking pluripotency-
associated target genes included Insm1, L1td1, Unc5d, Fbxo15, Tdh, and Asxl3. Novel
target genes in simplified networks for which involvement in reprogramming has not
been fully investigated included Fez1, Megf10, and Igfbpl1, which are associated with
anti-apoptotic effects in embryonic stem cells (ESCs) [79].
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each species. Networks include the highest gene–gene interaction scores inferred by PECA, where
a higher PECA score value indicates a higher probability of regulation. Each network contains the
top 15 to 16 nodes associated with the highest interaction scores from differential network files
created with the PECA_compare function, in addition to other lower scored edges associated with
the top 15 nodes. To create differential networks with PECA_compare, each time point was compared
to the fibroblast network as a control to create a timepoint-specific network, which was used for
further analysis in Cytoscape. PECA score is represented by edge thickness and gene expression by
node color. Tables including several kinds of centralities calculated by the application Cytohubba
are supplied for each timepoint, including the number of degrees or connections a gene has, and
bottleneck (B.N.) centrality, which calculates how much information flows through a given node.
Centralities were calculated using full networks containing thousands of genes.

For naïve human cells, the other critical hubs included TFAP2C and SOX21. Target
genes associated with pluripotency included PRDM14, which represses Dnmt3a/b methyla-
tion and differentiation-inducing Fgfr signaling [80], NODAL which is required for human
stem cell self-renewal [81], and the pluripotent markers GDF3 and LIN28A [82]. Other
important target genes not previously highlighted in the human reprogramming networks
included HHLA1 and KLRG2, a TEAD4 target [14].

The mesenchymal signature genes that were prominent in the fibroblast stage network
such as AR, PRRX-encoding genes and FOSL2 were no longer present in reprogramming
networks. The interactions of mesenchymal markers SNAI1, SNAI2, and ZEB2 shifted
from a large somatic TF network in day 3 (containing FOSB-SP2-MAFG-MAFB), to a lim-
ited number of negatively correlated interactions with pluripotency factors NANOG and
CTCF on day 7 and were no longer present from day 13 onwards (Supplemental Table S4).
The fibroblast marker ANPEP, primarily regulated by fibroblast hubs, showed a negative
Pearson’s correlation with SOX2, SOX21, and NANOG from day 7 onward. The extended
network in fibroblasts contained cell cycle regulators including cyclin-dependent kinase
inhibitors such as CDKN1A and CDKN2B, primarily regulated by somatic transcription fac-
tors such as FOSL2. Fibroblast networks also included target genes involved in extracellular
matrix organization and collagen catabolic processes—such as MMP1 and PHLDA2, which,
when down-regulated, promote epithelial-to-mesenchymal transition (EMT) via the Wnt
pathway [83], and numerous collagen components which act as barriers to reprogramming
including COL1A1, COL1A1, and COL6A3 [84] (Supplemental Table S4).

In extended networks not limited to the top 15 scores, the epithelial gene E-Cadherin
(CDH1), necessary for establishing cell–cell contacts characteristic of the iPSC pheno-
type [85], formed an increasing number of regulatory interactions with hub regulators,
most notably GATA3, NANOG, SOX15, and CTCF, from day 7 onwards, alongside other ep-
ithelial genes like EPCAM. Early changes in the network surrounding the down-regulated
CDH2 (N-Cadherin), which serves as a switch between focal adhesion and cell–cell ad-
hesion during EMT [86], from somatic to pluripotent factors also indicated a shift from
mesenchymal to epithelial adhesion morphology [87]. Other interactions in extended net-
works included TFAP2C, SOX21, CTCF, and MYCN regulation of EZH2, which is required
for reprogramming. Late-pluripotency transcription factors ZIC3 and REST, as well as
the pre-implantation, naïve-associated marker TFCP2L1, were regulated by pluripotency
master regulators in later timepoints. Tables of extended networks generated are included
in Supplemental Table S4.

3.3.3. Trans-Regulatory Networks Involved in Reprogramming Efficiency

Successfully reprogramming cells and refractory cells that fail to yield iPSC colonies
were compared in the interest of identifying network differences that may elucidate why
reprogramming is often inefficient and unsuccessful for a majority of the cell population.
Therefore, differential TF–TG networks contrasting day 6 reprogramming and refractory
cells were created (Figure 9). Refractory cells retained TF–TG interactions that were present
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in fibroblast stages, including Jdp2, Fosl2, Fosb, and Maff interactions with somatic genes
such as Serpine1, a p53 target that is associated with senescence [88] and acts a roadblock
during the reprogramming process [89]. In addition, refractory cells lacked interactions
found in reprogramming cells, including Pou3f1-, Sox21-, and Sox2-mediated interactions
targeting key genes such as Insm1 and Unc5d. Refractory cells did, however, have some
reprogramming-associated factors present in the network, including Tead4 and Tcf7l1.
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Figure 9. Mouse refractory versus reprogramming network comparison. Differential networks
between mouse refractory and reprogramming cells from day 6 were compared. Networks include
the highest gene–gene interaction scores inferred by PECA. Differential network files created by
comparing the refractory and successfully reprogramming samples using the PECA_compare func-
tion. PECA regulatory score is represented by edge thickness and gene expression by node color.
Tables including several kinds of centralities calculated by the Cytoscape application Cytohubba are
supplied for each timepoint, including node degree and bottleneck (B.N.) centrality.

Differential networks of primed and naïve cells were also contrasted for the human
dataset (Figure 10). Primed cells exhibited certain interactions that were not present
in naïve cell networks, including the neuro-ectodermal/ epiblast factor SOX3 which is
indicative of priming [90] as well as PTPRZ1 and ZIC2 interactions. Specifically, SOX3
interacted with late pluripotency signature LIN28A, SFRP2, and early reprogramming
marker SALL4. POU5F1 and SOX2 interacted with ZIC2 and PTPRZ1, which function
in cellular proliferation, adhesion, and migration, as well as epithelial-to-mesenchymal
transition, suggesting primed pluripotent cells retain certain mesenchymal features. In
contrast, naïve cells had certain TFAP2C, Nanog, and Sox21 interactions in their networks
were not present in primed cell networks. This included SOX21 interacting with LIN28B, an
early pluripotency signature, KLRG2, ZFP42, and WIPF3, as well as early embryogenesis
and primitive endodermal factors GDF3 and NANOG.
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Figure 10. Human primed versus naïve reprogramming network comparison. Differential networks
between human naive and primed cells from day 21 were compared. Networks include the highest
gene–gene interaction scores inferred by PECA. Differential network files created by comparing the
naive and primed samples using the PECA_compare function. PECA regulatory score is represented
by edge thickness and gene expression by node color. Tables including several kinds of centralities
calculated by the application Cytohubba are supplied for each timepoint, including node degree and
bottleneck centrality.

3.3.4. Inter-Species Conservation of Trans-Regulatory Networks

In order to determine how many of these TF–TG interactions were conserved between
timepoints and between species, the content of networks was compared (Figure 11A).
During human reprogramming, regulatory networks became increasingly similar to each
other and to the pluripotent endpoint as reprogramming progressed. A similar pattern was
observed in the mouse reprogramming experiment, where modules became increasingly
similar to the penultimate day 12 timepoint, however, intermediates shared less similarity
with the pluripotent timepoint. Mouse refractory cells closely resembled day 0 fibroblast
cells and shared some similarity with successfully reprogramming cells at early stages,
though this similarity decreased as reprogramming progressed. Human primed cells most
closely resembled day 13 naïve cells, however, the similarity between the naïve and primed
modules decreased as reprogramming continued. There was some interspecies overlap
between mouse and human reprogramming intermediates, however, more overlap was
found in the fibroblast and endpoint pluripotent stages.

Gene ontology analysis of the networks confirmed the presence of pluripotency terms
at the endpoints and fibroblast terms at the initial timepoints in both species (Figure 11B).
Transitioning terms were also identified at intermediate timepoints, including early re-
programming signatures such as Wnt and mesenchymal-to-epithelial transition (MET)
signaling. Wnt/B-catenin signaling was enriched in both human and mouse reprogram-
ming networks, which is required for self-renewal [91] and to prevent mouse embryonic
stem cell differentiation [92]. Early steps involve an MET via silencing of Snail genes,
suppression of TGF-β signaling, and upregulating E-cadherin (CDH1) [87]. In concordance
with prior human studies [10], pathways related to mesenchymal to epithelial transition
(MET), a critical early event in mouse cell reprogramming [93], were also observed as
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enriched in human naïve modules at later timepoints, concomitant with the integration of
late core regulatory activity of NANOG and LIN28A markers in networks.
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Figure 11. Inter-species network comparison based on TF–TG pairs. (A) Inter-species comparison
of core regulatory network modules indicates the amount of similarity between human and mouse
reprogramming mechanisms. Schematic diagram where each node represents a module, or regulatory
unit, containing the most active transcription factors and target gene interactions at each timepoint.
Edge width indicates the Jaccard similarity between neighboring modules based on the number of
corresponding transcription factors and target genes. The Jaccard similarity index value is indicated
for edges between neighboring modules. The modules recapitulate the reprogramming steps for each
species as defined by paired expression and chromatin accessibility analysis (PECA2), integrating
information from both RNA and ATAC sequencing data. (B) Inter-species temporal ontology correla-
tion. Gene ontology (GO) analysis of top 200 genes in each network generated by Ingenuity Pathway
Analysis. GO term p-values are indicated by color scale.
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4. Discussion

Comparisons between human and mouse reprogramming previously presented numer-
ous difficulties because mouse and human cells reprogram differently, into pre-implantation
epiblast-like naïve cells and post-implantation epiblast primed cells, respectively [94].
Because human reprogramming has been less extensively studied than reprogramming
in mouse models and time-resolved accessibility data during human reprogramming is
comparatively scarce, the translatability of mouse reprogramming model findings for the
benefit of human stem cell applications in disease modeling and medicine is a primary
concern. With the advent of new methods to create naïve human iPSCs, inter-species com-
parisons during reprogramming using differential accessibility and epigenetic-inclusive
network analysis were feasible in this study.

Differential accessibility analysis indicated both species exhibited similar motif enrich-
ment profiles. While the percentage of accessible regions located in target gene promoters
diminished significantly, Oct4, Sox2, Tcf, and Nanog were found to act similarly in mouse
and human contexts to reprogram cells from distal enhancers, albeit with different kinetics.
These results are supported by previous findings that Oct4 and Sox2 initial binding events
occur predominantly in regions distal to gene promoters [95], and highlight the importance
of distal regulatory involvement in the reprogramming process in both species. Confirma-
tion of these findings in both species prompted further investigation into distal regulatory
activity of enhancers and their associated target genes.

Prior studies in human data have primarily focused on detecting enhancers through
histone methylation marks such as H3K4me1, H3K4me2, and H3K27ac [10,11]. However,
conducting functional experiments to confirm whether the called region does in fact demon-
strate regulatory activity is time-intensive and not easily scalable. By implementing an
alternative approach using a paired expression and chromatin accessibility (PECA) concep-
tual model, we generated a ranked list of experimentally validated enhancers involved in
reprogramming, as well as their downstream targets and upstream regulators.

The enhancers identified by PECA2 exhibited similar dynamics, locations, and motifs
matching the profile of previously established enhancer mechanics during pluripotency.
The sharp loss of fibroblast-associated enhancers interacting with transcription factors Fosb
and Jdp2 is consistent with early silencing of the somatic program described in earlier
works [96]. Examining the temporal kinetics of enhancer accessibility showed more imme-
diate remodeling in mouse cells versus delayed remodeling in human cells, suggesting that
differences in chromatin rewiring may be a rate-limiting factor in reprogramming efficiency.
The majority of enhancers involved in the most highly scored regulatory interactions at
each timepoint predominately interacted with both Sox2 and Oct4, consistent with the coop-
erative binding of transcription factors during reprogramming [7] Importantly, enhancers
interacting with other transcription factors not as commonly assessed with ChIP-seq, such
as the pluripotency hubs TFAP2C, MYCN, and GATA3 (Supplemental Tables S1 and S2)
were also identified, sorted by predicted regulatory strength, and linked to associated
target genes.

Using the information contained within the identified cis-regulatory interactions, we
then proceeded to create transcription factor–target gene reprogramming networks. Multi-
timepoint network analysis of human reprogramming has been previously performed
mainly using expression analysis [14]. However, the majority of TF–TG interactions (68.26%)
detected by paired chromatin and expression analysis were not found to have highly
correlated expression, and were not detectable by co-expression analysis alone [29]. While
precise correlations between TF–TG interactions and their mediating enhancers are not
available from co-expression networks, multiple consistencies were observed between
prior expression-based reprogramming networks, and networks identified by this study
incorporating accessibility information. For example, cell cycle-associated genes were
present in extended early-stage reprogramming networks and primarily regulated by
somatic transcription factors, confirming increased proliferation rate as a hallmark of early
reprogramming, consistent with prior studies. Mesenchymal-to-epithelial transition (MET)
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is another early reprogramming hallmark in mouse cells, but, due to differences in kinetics,
MET is a more extended process in human reprogramming [10]. Supporting this finding
from prior studies [14], we observed MET ontology in top tier TF–TG regulatory interactions
later, rather than earlier, in human reprogramming networks, from day 7 onwards. We
similarly observed diminished regulatory influence of mesenchymal genes in early human
reprogramming networks, whereas the majority of epithelial genes such as EPCAM and
the endpoint of MET, E-Cadherin (CDH1), formed hub regulatory interactions at the later
stages of human reprogramming [93], corroborating previous findings that reprogramming
factors suppress mesenchymal and activate epithelial transcriptional programs [97]. We
also observed a hallmark pivot from a FOSL1 to TEAD4 network during reprogramming in
human cells, where 16.99% genes in endpoint pluripotent human network were previously
identified TEAD4 targets [14], and paralogs FOSL2 and TEAD1/3 were also observed as
hub regulators in fibroblast and reprogramming networks. While FOSL1/2 exhibited a
high degree of centrality in somatic cells, TEAD4 exhibited less centrality and regulatory
interactions in reprogramming networks in comparison to the chromatin regulator CTCF,
which mediates long-distance enhancer–promoter interactions of pluripotency-associated
genes and coordinates the silencing of the somatic transcriptional program [98].

In conclusion, we propose an integrative model for reprogramming that is robustly
supported by other independent findings, wherein the main transcription factors identified
through motif enrichment analysis operate through select enhancers located by integrative
cis-regulatory analyses, to regulate pluripotency target genes present in trans-regulatory
networks. In addition, we submit that the mechanism of reprogramming can be accurately
modeled as integrative time-series networks that capture significant events at each time-
point. We present these regulatory networks as a resource to inform future functional
studies in dissecting the regulatory mechanisms underlying reprogramming.
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