
Citation: Burse, R.; Bertolotto, M.;

McArdle, G. Enhancing Semantic

Web Technologies Using Lexical

Auditing Techniques for Quality

Assurance of Biomedical Ontologies.

BioMedInformatics 2023, 3, 962–984.

https://doi.org/10.3390/

biomedinformatics3040059

Academic Editors: Jörn Lötsch and

Alexandre G. De Brevern

Received: 12 July 2023

Revised: 13 August 2023

Accepted: 20 October 2023

Published: 1 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Enhancing Semantic Web Technologies Using Lexical Auditing
Techniques for Quality Assurance of Biomedical Ontologies
Rashmi Burse *, Michela Bertolotto and Gavin McArdle

School of Computer Science, University College Dublin, Belfield, D04V1W8 Dublin, Ireland
* Correspondence: rashmi.burse@ucdconnect.ie

Abstract: Semantic web technologies (SWT) represent data in a format that is easier for machines
to understand. Validating the knowledge in data graphs created using SWT is critical to ensure
that the axioms accurately represent the so-called “real” world. However, data graph validation is
a significant challenge in the semantic web domain. The Shapes Constraint Language (SHACL) is
the latest W3C standard developed with the goal of validating data-graphs. SHACL (pronounced
as shackle) is a relatively new standard and hitherto has predominantly been employed to validate
generic data graphs like WikiData and DBPedia. In generic data graphs, the name of a class does
not affect the shape of a class, but this is not the case with biomedical ontology data graphs. The
shapes of classes in biomedical ontology data graphs are highly influenced by the names of the
classes, and the SHACL shape creation methods developed for generic data graphs fail to consider
this characteristic difference. Thus, the existing SHACL shape creation methods do not perform well
for domain-specific biomedical ontology data graphs. Maintaining the quality of biomedical ontology
data graphs is crucial to ensure accurate analysis in safety-critical applications like Electronic Health
Record (EHR) systems referencing such data graphs. Thus, in this work, we present a novel method
to create enhanced SHACL shapes that consider the aforementioned characteristic difference to
better validate biomedical ontology data graphs. We leverage the knowledge available from lexical
auditing techniques for biomedical ontologies and incorporate this knowledge to create smart SHACL
shapes. We also create SHACL shapes (baseline SHACL graph) without incorporating the lexical
knowledge of the class names, as is performed by existing methods, and compare the performance
of our enhanced SHACL shapes with the baseline SHACL shapes. The results demonstrate that
the enhanced SHACL shapes augmented with lexical knowledge of the class names identified
176 violations which the baseline SHACL shapes, void of this lexical knowledge, failed to detect.
Thus, the enhanced SHACL shapes presented in this work significantly improve the validation
performance of biomedical ontology data graphs, thereby reducing the errors present in such data
graphs and ensuring safe use in the life-critical applications referencing them.

Keywords: semantic web technologies; SHACL; biomedical ontology; SNOMED-CT; data graph
validation; quality assurance; lexical auditing techniques

1. Introduction

Semantic web technologies (SWT), like the Web Ontology Language (OWL) and
Resource Description Framework (RDF) [1], represent data in a format that is easy for
machines to understand and interpret. This allows machines to process data intelligently
and derive new information. Given these benefits, information systems are increasingly rep-
resenting their data in SWT-compliant RDF and OWL data graphs. The healthcare domain
has also adopted the use of SWT for efficient information exchange and improved semantic
interoperability. For example, biomedical ontologies that represent clinical information
about diseases, procedures, diagnoses, etc. have found SWT to be quite beneficial. The
Systematized Nomenclature Of Medicine–Clinical Terms (SNOMED-CT) [2], which is one
of the most widely adopted biomedical ontologies in the world and consists of more than
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300,000 biomedical concepts, has also released an SWT-complaint version: SNOMED-CT
OWL [3].

Validating the knowledge represented in these data graphs is critical, ensuring that
the RDF and OWL statements are accurate and correspond to the so-called “real” world.
However, data graph validation is a significant challenge in the semantic web domain [4].
SWT (like OWL and RDF) were developed with the goal of inferring new data rather
than validating existing ones, and therefore using them as validation technologies is not
a straightforward task. Using OWL as a validation technology requires employing many
counterintuitive mechanisms, which were developed originally for inferring and modifying
them to perform the task of validation, which is not very straightforward [5]. For example,
OWL restrictions are not used to constrain data but rather used to make inferences from the
existing data. This leads to many unexpected results when employing OWL restrictions as
a validation mechanism. For example, if we assume that the restriction owl:maxCardinality
1 states that a person can only have one value for the property hasFather, then the as-
sumption would be incorrect. Instead if a person is assigned two values for the property
hasFather, then the OWL processor would assume that both these values represent the
same real world entity. Figure 1 illustrates this with the help of an example. In the figure,
if an OWL ontology states that the rdfs:range of the property hasFather is the class Person,
and a data graph only contains a triple stating John hasFather Bob, then the OWL processor
will not assume that Bob is not an instance of class Person. In fact, the processor will assume
the opposite and automatically infer the triple Bob rdf:type Person instead of reporting this
as a violation. This happens because OWL was developed with the goal of inferring rather
than validating. This is the reason why OWL cannot be directly employed in the task of
validation, as this may lead to unexpected outcomes. OWL is based on the open-world
assumption (OWA) and does not assume the absence of a statement as a violation or a false
statement. Instead, it infers the missing statement from the existing statement. This can be
counterintuitive and lead to unwanted outcomes in validation tasks.

Figure 1. OWL (OWA) vs. SHACL (CWA).

In the absence of a dedicated validation standard for SWT, the counterintuitive mecha-
nisms of OWL, developed for inferring, were employed in the validation of data graphs [5].
For example, OWL and RDF data graphs were validated by writing SPARQL queries that
tested for the presence or absence of certain triples by expressing relevant conditions in
the WHERE clause of the SPARQL query. However, this process was ad hoc and lacked
structure. Given these pitfalls, W3C developed the Shapes and Constraint Language
(SHACL) [1], a dedicated standard with the predominant goal of validation. SHACL (pro-
nounced as shackle) is based on the closed-world assumption (CWA), and whenever a
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statement is absent, it assumes the statement to be false instead of inferring a new triple (as
is performed by OWL), and it reports this as a violation in the data graph (see Figure 1).
This makes SHACL highly suitable for validation. A SHACL processor takes a data graph
and a shapes graph as the input and outputs a validation report, which reports violations if
any of the constraints mentioned in the shapes graph are not followed by the data graph.
Figure 2 illustrates the process of SHACL validation with the help of an example. As can
be seen from the figure, a SHACL shapes graph (on the left side) provides a shape for
the class Person by listing all properties along with the restrictions for that class. In the
data graph (on the right side), it can be seen that the birthdate of Robert, who belongs to
the class Person, violates the SHACL constraint for the property birth date, sh:lessThan
schema:deathDate, and therefore is reported as a violation in the validation report (at
the bottom).

 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

@prefix schema: <http://schema.org/> . 

@prefix sh: <http://www.w3.org/ns/shacl#> . 

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 

 

schema:PersonShape 

    a sh:NodeShape ; 

    sh:targetClass schema:Person ; 

    sh:property [ 

        sh:path schema:givenName ; 

        sh:datatype xsd:string ; 

        sh:name "given name" ; 

    ] ; 

    sh:property [ 

        sh:path schema:birthDate ; 

        sh:lessThan schema:deathDate ; 

        sh:maxCount 1 ; 

    ] ; 

    sh:property [ 

        sh:path schema:gender ; 

        sh:in ( "female" "male" ) ; 

    ] ; 

    sh:property [ 

        sh:path schema:address ; 

        sh:node schema:AddressShape ; 

    ] . 

schema:AddressShape 

    a sh:NodeShape ; 

    sh:closed true ; 

    sh:property [ 

        sh:path schema:streetAddress ; 

        sh:datatype xsd:string ; 

    ] ; 

    sh:property [ 

        sh:path schema:postalCode ; 

        sh:or ( [ sh:datatype xsd:string ] [ sh:datatype xsd:integer ] ) ; 

        sh:minInclusive 10000 ; 

        sh:maxInclusive 99999 ; 

    ] . 

{ 

    "@context": { "@vocab": "http://schema.org/" }, 

 

    "@id": "http://example.org/ns#Bob", 

    "@type": "Person", 

    "givenName": "Robert", 

    "familyName": "Junior", 

    "birthDate": "1971-07-07", 

    "deathDate": "1968-09-10", 

    "address": { 

        "@id": "http://example.org/ns#BobsAddress", 

        "streetAddress": "1600 Amphitheatre Pkway", 

        "postalCode": 94004 

    } 

} 

Shapes Graph 

Data Graph 

[ 

 a sh:ValidationResult ; 

 sh:resultSeverity sh:Violation ; 

 sh:sourceConstraintComponent 

sh:LessThanConstraintComponent ; 

 sh:sourceShape _:n126 ; 

 sh:focusNode <http://example.org/ns#Bob> ; 

 sh:resultPath schema:birthDate ; 

 sh:value "1971-07-07" ; 

 sh:resultMessage "Value is not < value of 

schema:deathDate" ; 

] . 

Validation Report 

Figure 2. Validation using Shapes and Constraint Language (SHACL).

Despite the availability of a dedicated validation standard for data graphs, given the
volume and variety of existing data graphs, generating effective SHACL shapes that iden-
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tify inaccurate or missing statements in a data graph is a challenging task [6]. Furthermore,
SHACL is a relatively new standard and has hitherto been predominantly applied to generic
data graphs. There is a need to develop effective SHACL shape creation methods and
test the technology for domain-specific data graphs representing specialized knowledge.
Domain-specific data graphs, like biomedical ontology data graphs, are inherently different
from generic data graphs (WikiData, DBpedia, etc.) and have specific requirements which
need to be satisfied in order to successfully validate their knowledge. Furthermore, main-
taining the quality of biomedical ontology data graphs to the highest standard is crucial
as they are referenced by safety-critical applications like Hospital Information Systems
(HISs), automated decision-making systems, and EHR systems. Erroneous representation
of clinical concepts in biomedical ontology data graphs can lead to inaccurate analysis
and serious consequences in such safety-critical applications. Given this indispensability,
in this paper, we present a novel SHACL shape creation method explicitly catering to the
characteristic needs of domain-specific data graphs representing biomedical ontologies.
The presented method aids SHACL shape creation for a biomedical ontology data graph by
leveraging the lexical features and hidden semantics present in biomedical ontology data
graph class names. Incorporating this lexical knowledge in SHACL shapes helps to create
enhanced SHACL shapes which are better suited to validating domain-specific biomedical
ontology data graphs. We also compare the enhanced shapes created by our method with
the shapes created using existing methods that do not incorporate the lexical knowledge
into SHACL shapes. The results of the comparison demonstrate that the proposed approach
significantly improved the validation performance for domain-specific biomedical ontol-
ogy data graphs by identifying 176 violations which could not be identified by a baseline
SHACL shape graph created using existing methods for generic data graphs. Thus, our
enhanced SHACL shapes helped reduce the errors present in biomedical ontology data
graphs, thereby ensuring safe use in life-critical applications referencing them.

2. Related Work

Many techniques have been developed to create good-quality SHACL shape graphs
which are effective at catching violations in a data graph. The majority of the existing meth-
ods employed in the creation of SHACL shapes either convert ontology constraints (OWL
axioms) into SHACL constraints [7–9] or use data-driven approaches that use machine
learning (ML) algorithms to predict the cardinalities of properties and then convert these
cardinalities into SHACL (sh:minCount/sh:maxCount) constraints [9]. Some methods
employ semantic profiling tools that combine data-driven and statistical approaches [10].
Finally, in cases where SHACL shapes cannot be predicted a priori, the “data graph first,
shapes graph later” approach is used, which creates a shapes graph from an existing RDF
data graph [11–13]. To address the challenge of automation in SHACL shape creation,
Cimmino et al. [6] presented a tool (named Astrea) that refers to a knowledge base of
ontology constraint patterns mapped to SHACL constraints in order to automatically create
SHACL shapes for a data graph. Detailed summaries of the existing SHACL shape creation
methods and their comparison based on parameters like whether the shapes are extracted
from data (data-driven or semantic profiling approach) or extracted from ontology (using
ontology axioms) and whether or not the method creates SHACL shapes automatically
is available in the literature [6,14]. The majority of the aforementioned papers as well as
the works studied in these literature reviews involve creating SHACL shapes for generic
data graphs. As a result, the techniques mentioned above follow a data-driven or statisti-
cal approach to predicting cardinalities, and therefore, the SHACL constraints are solely
created using the external features of a class in a data graph (In this work, we refer to
OWL and RDF axioms representing the properties of a class as external features and the
lexical features of a class name as internal features.). Despite these differences, one of the
limitations identified by Rabbani et al. [14] states that complete SHACL shapes are not
created by any of the existing methods, and the semantics of the object properties are often
not reflected in the SHACL constraints unless they are explicitly present as OWL axioms in
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the ontology (e.g., to indicate that objects for “takes course” should be of the literal type
“Course”). This supports our hypothesis that the semantics of class names and property
names contain valuable information that can be used to create richer and more effective
SHACL shapes.

As stated earlier, SHACL is a relatively new standard [1] (developed in 2017) and has
mainly been tested on generic data graphs like DBpedia and WikiData [11,13]. Very few
initiatives exist in creating SHACL shapes for biomedical data graphs, and they mainly
focus on data graphs representing Electronic Health Record (EHR) models [15] and patient
information [16]. Other clinical use cases for SHACL shapes include validating medical
guidelines to integrate Fast Healthcare Interoperability Resources (FHIR) into decision-
making systems [17], validating medical reports to identify missing data [18], and validating
clinical trial study data to detect missing values, wrong cardinalities, and incorrect values
that do not adhere to a predefined set [16]. However, these biomedical data graphs are not
as sensitive to class name semantics as biomedical ontology data graphs. Thus, the nature
of SHACL shape creation methods employed in these studies is similar to generic data
graphs, which include Ontology Design Patterns (ODPs) and existing clinical reference
model constraints being converted to SHACL shape constraints. For example, the authors
of [16] derived SHACL shapes to regulate the values for fields like gender, study ID, and
study type in a clinical trial report. Developing SHACL shapes for such fields is mainly
focused on constraining the data types and values for such fields rather than ensuring the
presence of missing properties in a class based on the semantics of the class name, which is
the case with biomedical ontology data graphs.

Limited works exist where SHACL shapes were created for biomedical ontologies in
particular. For example, the Swiss Personalized Health Network (SPHN) [19,20] provides a
tool, named SHACLer, that caters toward validation of biomedical ontologies including
SNOMED-CT. SNOMED-CT shapes [21] are in another study that creates SHACL shapes
for SNOMED-CT, but the goal of this study was not validation but rather the representation
of SNOMED-CT in an SWT-compliant format, which is easier to integrate with health-
care applications and other biomedical ontologies. The existing OWL representation of
SNOMED-CT depicts properties as a combination of OWL intersections and restrictions,
which makes the ontology (data graph representation) too complex to query or integrate
with other biomedical ontologies [3]. The persistent demand of representing SNOMED-CT
in a simplified SWT-compliant format led to the development of SNOMED-CT shapes [21],
which creates a simplified representation of SNOMED-CT OWL and makes the ontology
easily integrable with other biomedical ontologies as well as healthcare applications that
refer to SNOMED-CT.

SNOMED-CT shapes [21] provide a feature for converting the simplified SNOMED-
CT RDF representation into SHACL shapes. However, since the main goal of developing
SNOMED-CT shapes was ease of interoperability with other biomedical ontologies and
ease of querying, the SHACL shapes created by [21] simply convert existing ontology
axioms into SHACL constraints. Similarly, SHACLer, the module responsible for creating
SHACL shape graphs in SPHN [19], again generates all shape constraints based on the
existing axioms of the class in RDF schema. Thus, all restrictions and cardinality constraints
are created based on the existing RDF schema. This leaves us with SHACL shapes that are
completely dependent on the richness of ontology axioms.

It has been demonstrated that biomedical ontologies are richer in natural language
content than OWL axioms and logical definitions [22]. Although auditing techniques are
working toward enriching OWL axioms with the lexical knowledge available in concept
names [23], this is a gradual process. Thus, the existing OWL axioms do not sufficiently
represent the lexical richness of concept names. As a result, the SHACL shapes created
by simply converting existing ontology axioms into SHACL constraints fail to capture the
lexical richness available in the class names (i.e., concept names). Furthermore, as stated
earlier in this section, SHACL is a relatively new technology and has not been sufficiently
tested on domain-specific data graphs representing biomedical ontology knowledge. While
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the exclusive conversion of ontology axioms into SHACL constraints may work for generic
data graphs like WikiData and DBpedia [11,13,24], data graphs representing biomedical
ontological knowledge are inherently different in nature.

For instance, consider the previous example of the class Person (see Figure 2). The name
of a person (i.e., the number of words or other lexical features appearing in a person’s name)
will not affect the shape of the Person class. Robert as well as any other name containing
any number of words will still have the same properties (name, age, gender, birth date,
and address). Now, consider the clinical concepts Burn of skin (disorder) and Burn caused
by fire (disorder) belonging to the Disorder class in a biomedical ontology. As one can see
in Figure 3, depending on the lexical features of the name of the disorder, the properties
(attribute relationships) appearing in the concept definition change (i.e., the shape of the
class) are dependent on the lexical features of the concept name. While the concept Burn
caused by fire (disorder) has the properties Associated morphology, Due to, and Causative
agent (owing to the stop word caused by in its name), the concept Burn of skin (disorder)
has the properties Associated morphology, Due to, and Finding site (given the presence of
a body structure in its name). This example illustrates the influence that class names have
on the properties and thereby the shape of a class in a biomedical ontology data graph.

  

(a) 

 

(b) 

 Figure 3. Example to illustrate the characteristic difference of a biomedical ontology data graph.
The shape of a disorder is dependent on the lexical features in its name. (a) Burn caused by fire
(disorder). (b) Burn of skin (disorder)

Owing to the novelty of the technology, SHACL has not been widely tested on biomed-
ical ontology data graphs. The limited biomedical data graphs validated using SHACL
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mainly represent clinical reports, EHR models, and FHIR resources, which (despite belong-
ing to the same domain) are not as heavily influenced by the semantics of a class name as
biomedical ontology data graphs. There is a need to test the new technology for validation
of biomedical ontologies, which form the backbone of the aforementioned clinical appli-
cations. Biomedical ontologies provide data to EHR systems and clinical reports. Thus,
validating biomedical ontology data graphs is crucial. The existing SHACL shape creation
methods created for generic data graphs, which do not consider the lexical features of a
class name while creating SHACL shapes, may not be sufficient for such domain-specific
biomedical ontology data graphs. We hypothesize that there is a need to devise a method
that creates enhanced SHACL shapes and is better suited for validation of biomedical
ontology data graphs, which take into consideration the lexical richness of class names and
effectively capture violations in biomedical ontologies.

3. Materials and Methods

In this work, we propose a novel approach for creating enhanced SHACL shapes that
reflect the internal features (i.e., hidden semantics) of a biomedical ontology data graph.
Our method is based on the hypothesis that, unlike generic data graphs, the shape of
a class in a biomedical ontology data graph is dependent on the lexical features of the
class name. To this end, our method creates SHACL shapes by augmenting the hidden
semantics of class names (referred to as internal features) along with OWL and RDF axioms
(referred to as external features) in the shape creation process. We refer to this graph as a
SHACLex graph (and the corresponding data graph as an RDFLex graph). To demonstrate
the benefits of our method, we also create a SHACL shape graph by exclusively converting
OWL and RDF axioms (external features) into SHACL constraints (without considering the
lexical features of the class names), as can be performed by existing methods [19,25]. We
refer to this graph as a SHACL graph (and the corresponding data graph as an RDF graph).
We then compare the validation performance of the SHACLex graph with the baseline
SHACL graph.

The manner in which hidden semantics affect the shape of a class in a biomedical
ontology data graph can be studied by analyzing the knowledge and insights gained from
decades of lexical auditing techniques available in the literature [26]. To demonstrate the
extensive nature of our proposed approach, we chose the knowledge gained from two
lexical auditing techniques [27,28]. These two methods are quite different in nature and
target different types of inconsistencies. More specifically, the method in [27] captures
violations in class shapes related to attribute relationships, whereas the one in [28] captures
violations related to hierarchical relationships (please refer to Appendix A for further details
about the two types of relationships). These diverse methods were chosen to demonstrate
the extensive nature of our approach and how it can be tailored to any of the existing
auditing techniques available in the literature to create more efficient SHACL shapes.
In particular, the authors of [27] showed that stop words in biomedical concept names
carry significant semantic information which can be used to identify missing attribute
relationships. Their work analyzed the semantic and lexical patterns of around 11 stop
words and provided a list of mandatory attribute relationships that should be present in
the concept definition, based on the presence of a stop word, to complete its definition.
To demonstrate this, the authors of [27] created 26 sample sets for 11 stop words (see
Table 1) which consisted of SNOMED-CT concepts that exhibited the same semantic and
lexical pattern and therefore demanded the presence of a mandatory attribute in its logical
definition. Table 1 lists all the sample sets along with the exhibited mandatory relationships,
which are used to build a knowledge base in this work. Likewise, the authors of [28]
stated that if a biomedical concept name consisted of an adjective followed by a noun
(ADJ NOUN), then that concept gave more information about the NOUN concept and,
as a result, demanded the presence of a hierarchical relationship between the two concepts
(please refer to Appendix A for the detailed steps involved in the two studies [27,28]).
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Table 1. Sample-sets and the corresponding mandatory attribute relationships from [27].

Stop Word Semantic Pattern Acronym
Identifier

SNOMED-CT
ID Mandatory Attribute Relationship

Of DIS-GEN-OF-BOD DOB 363698007 Finding site
DIS-GEN-OF-DIS DOD – –

DIS(Sequelae)-GEN-OF-DIS DODSEQ 255234002 After
DIS-GEN-OF-SUB DOS – –

DIS(Abuse)-GEN-OF-SUB DOSABS 47429007/246075003 Associated with/Causative agent
DIS(Overdose)-GEN-OF-SUB DOSOVR 246075003 Causative agent

Caused by DIS-GEN-CB-ORG DCBO 246075003 Causative agent
DIS-GEN-CB-PROC DCBP 246075003 Causative agent
DIS-GEN-CB-SUB DCBS 246075003 Causative agent

In DIS-GEN-IN-BOD DIB 116676008 Associated morphology
DIB 363698007 Finding site

DIS-GEN-IN-DIS DID 47429007 Associated with
SUB-GEN-IN-BOD SIB 116676008 Associated morphology

SIB 363698007 Finding site

Due to DIS-GEN-DT-DIS DdtD 42752001 Due to
DIS-GEN-DT-OBJ DdtO 42752001 Due to

DdtO 246075003 Causative agent
DIS-GEN-DT-PROC DdtP 42752001 Due to

Following DIS-GEN-FOLL-DIS DFD 255234002 After
DIS-GEN-FOLL-PROC DFP 255234002 After

Due to and
following DIS-GEN-DTAF-DIS DdtafD 255234002 After

DdtafD 42752001 Due to
DIS-GEN-DTAF-PROC DdtafP 255234002 After

DdtafP 42752001 Due to

From DIS-GEN-FROM-BOD DFrB 116676008 Associated morphology
DFrB 363698007 Finding site

DIS-GEN-FROM-PROC DFrP 116676008 Associated morphology
DFrP 363698007 Finding site

PROC-GEN-FROM-DIS PFrD 363698007 Finding site
PFrD 255234002 After

During DIS-GEN-DUR-PROC DDP 371881003 During

On DIS-GEN-ON-BOD DOnB 363698007 Finding site
DOnB 116676008 Associated morphology

To DIS-GEN-TO-BOD DTB 363698007 Finding site
DTB 116676008 Associated morphology

Into DIS-GEN-INTO-BOD DITB 363698007 Finding site
DITB 116676008 Associated morphology

In our method, we use the insights summarized from [27,28] to create enhanced
SHACL shapes for concepts conforming to the lexical patterns. As a part of this, we
follow the methodology presented in these two studies and obtain results that demonstrate
the influence of the lexical features of a concept name on the relationships present in its
definition (see Appendix A). The obtained results are then organized into a knowledge
base (KB) which is used by our method while constructing enhanced (SHACLex) shapes
for the SNOMED-CT concepts (see Figure 4b). The information from this KB is also
considered while creating RDFLex data graphs (see Figure 5), which will be explained
in detail in the next section. As stated earlier, we also create baseline (SHACL) shapes
by exclusively converting the existing RDF and OWL axioms into SHACL constraints
without augmenting the information gained from the created KB, as performed by the
existing methods [19,25] (see Figure 4a). We then compare the validation performance
of the SHACLex graph constructed using our method with the baseline SHACL graph.
Figure 4 provides an overview of the proposed approach, where (a) represents the baseline
method for SHACL and RDF graph creation and validation and (b) represents the proposed
method for SHACLex and RDFLex graph creation and validation, incorporating additional
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lexical knowledge from the auditing techniques. The remainder of this section explains the
experimentation and evaluation.

Figure 4. (a) SHACL validation process without considering internal lexical features of class names
(baseline). (b) SHACL validation process after augmenting internal lexical features of class names in
the SHACL shape construction.

Figure 5. (a) RDF data graph structure representing SNOMED-CT concepts targeted by non-
conjunctive stop word method. (b) RDFLex data graph structure representing SNOMED-CT concepts
targeted by non-conjunctive stop word method.

To assess the utility of our method, we used the Release Format 2 (RF2) files of the
January 2021 international version of SNOMED-CT [2], one of the world’s most widely
used biomedical ontologies. As per the requirements of [27,28], the Disorder hierarchy of
SNOMED-CT was used during this experimentation. To create a data graph, the records
in the RF2 files (tab-delimited) were converted into simple RDF triples. We used the
inferred relationship RF2 files while creating the data graphs. The rules from the SNOMED-
CT OWL guide were followed during this conversion. For example, each SNOMED-
CT concept was represented as an RDFS class. The name of the class consisted of the
prefix snomed followed by the SNOMED-CT identifier (SCTID) that uniquely identifies
a SNOMED-CT concept. Two RDF properties, attribute and hierarchical, were created.
All IS-A relationships (SCTID:116680003) were added as a subPropertyOf hierarchical,
and all other relationships, including roleGroup (SCTID:609096000), were added as a
subPropertyOf attribute. Within the concept definition, IS-A relationships were represented
using the rdfs:subClassOf property as stated in the SNOMED-CT OWL guide. Furthermore,
to simplify the data graph, only fully specified names (FSNs) of SNOMED-CT concepts
were added to the data graph (using rdfs:label), and synonyms were not included. Role
group information was represented in the RDF data graphs using the rdf:statement as a
reification approach [29]. The following subsections discuss in detail the three major steps
(Figure 4b) constituting our method.
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3.1. Lexical Knowledge Base Creation

Knowledge bases (KBs) were created that reflected the insights gained from both
studies [27,28]. The KB creation process representing the insights gained from [27] consisted
of designing two types of files:

1. A (tab-delimited) file containing information about which SNOMED-CT concept
belongs to which sample set. There were 11 such files, with one for each stop word
and columns organized as follows: sample-set, atomically annotated concept FSN,
and SCTID.

2. A (tab-delimited) file containing information about the mandatory attributes for each
sample set, organized as the stop word, semantic pattern, sample set, SCTID of the
mandatory attribute, and FSN of the mandatory attribute.

For example, Figure 6a illustrates the results of [27], with an example for the stop
word due to organized in the two KB files ((i) and (ii)) designed by us. To incorporate
the knowledge of this KB into graphs, 26 additional classes (one for each sample-set,
as discussed in Section 3) were created and included in the RDFLex and SHACLex graphs,
as explained later in this section.

Figure 6. (a) Knowledge base files representing the insights from [27]. (b) Knowledge base files
representing the insights from [28].

To create a KB representing the insights from [28], we applied a part of speech (POS)
tagger to all one-word and two-word concept FSNs in the Disorder hierarchy of SNOMED-
CT. We used Spacy’s “en_core_sci_sm” model trained on biomedical datasets [30], which
is available in Python, to implement the POS tagger. The result of the POS tagger was
filtered to extract all two-word “ADJ NOUN” (Adjective Noun) concepts and one-word
“NOUN” concepts, which were segregated into two separate files. A randomly chosen set
of 200 “ADJ NOUN” concepts was selected to test the hypothesis. For each “ADJ NOUN”
concept, a recursive traversal was applied to record all Is-A relationships (all ancestors)
reachable from the “ADJ NOUN” concept, which constituted the KB representing the
insights from [28]. The KB was organized as follows:

1. A (tab-delimited) file which contained information about all Is-A relationships (SC-
TID:116680003) reachable from each “ADJ NOUN” concept. It consisted of the follow-
ing columns: the source SCTID, destination SCTID, source FSN, and destination FSN of
all Is-A relationships (SCTID:116680003) reachable from each “ADJ NOUN” concept.
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2. A (tab-delimited) file which consisted of one-word Disorder concepts tagged as
“NOUN” by the POS tagger, which were segregated earlier into a separate file.

For example, Figure 6b displays the results demonstrating the insights gained from [28]
organized in the two KB files ((i) and (ii)) designed by us. Both of these files were used in
combination to check if there were any potential “ADJ NOUN” concepts which had corre-
sponding “NOUN” concepts but were currently not linked to them via an Is-A (hierarchical)
relationship (see Algorithm 1).

Algorithm 1 SHACLex graph Generation algorithm for [28]

1: Write @prefixes to SHACLex file
2: for <all ADJ NOUN concepts> do
3: parentFound = 0;
4: Create a new NodeShape in SHACLex file
5: ancestors = Ancestors(ADJ NOUN concept);
6: for <all ancestors of ADJ NOUN concept> do
7: if ancestor is a direct parent of ADJ NOUN concept then
8: Add sh:property rdfs:subClassOf to NodeShape in SHACLex file
9: end if

10: if ADJ NOUN concept Is-A child of another ADJ NOUN concept then
11: parentFound = 1;
12: end if
13: if ADJ NOUN concept Is-A child of NOUN concept then
14: parentFound = 1;
15: end if
16: end for
17: if parentFound == 0 then . Parent not found
18: suggestParent = 0
19: for all single-word NOUN concepts do
20: if secondWord(ADJNOUNconceptName) == single-wordNOUNConcept

then
21: suggestParent = 1
22: break;
23: end if
24: end for
25: if parentFound == 0 and suggestParent == 1 then
26: Add sh:property rdfs:subClassOf to NodeShape in SHACLex file
27: end if
28: end if
29: end for

3.2. Graph Generation

To test the hypothesis that enhanced SHACL shapes can be created by taking into
consideration the internal features of biomedical class names, we generated two types of
RDF graphs (RDF and RDFLex) and two kinds of SHACL graphs (SHACL and SHACLex)
representing the SNOMED-CT concepts examined by each of the studies [27,28]. To rep-
resent the results of [27], 22 data graphs (11 RDF and 11 RDFLex) and 22 shape graphs
(11 SHACL and 11 SHACLex) for each stop word were constructed. The 11 RDF graphs
were created as described in Section 3. To demonstrate SHACLex creation representing the
results of [27], the lexical features of the class names, available from the constructed KB,
were incorporated into the RDFLex data graph using an additional lexical layer. Again,
11 such RDFLex graphs were created, with 1 for each stopword. The extra lexical layer
consisted of RDFS classes representing the sample sets extracted in the results of [27],
which consisted of the mandatory attributes (see Table 1) identified for that sample-set
as properties. All SNOMED-CT concept classes conforming to a particular semantic and
lexical pattern were made into instances (using rdf:type) of the respective sample set classes
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by referencing the constructed KB. Figure 5 displays the structure of the RDF and RDFLex
data graphs representing the SNOMED-CT concepts targeted by [27]. The SHACL and
SHACLex graphs were created using Python programming.

Algorithms 2 and 3 illustrate the steps involved in the creation of RDFLex and SHA-
CLex graphs, respectively, representing the results of [27]. The SHACL shape graph simply
converted the existing RDF axioms into SHACL constraints. By contrast, SHACLex in-
cluded additional information available from the developed KB and created shapes for
each of the sample set classes, which ensured the presence of the mandatory attributes in
all their instances [27]. Of note, in this method, for the purpose of demonstration, and to
increase the efficiency, we implemented additional classes representing lexical and semantic
patterns (i.e., sample sets) in the RDFLex graph. Creating sample set classes and making all
adhering SNOMED-CT concept classes instances of the sample set class allowed us to apply
the SHACL constraint to a single parent class and thereby all its children, thus avoiding
redundant constraints in each SNOMED-CT concept class. However, we understand that
this may not always be feasible when working with an actual ontology. In such cases,
simply creating additional constraints based on the KB information in the shape of each
SNOMED-CT concept class instead of applying the constraints through a parent sample set
class would also work.

Algorithm 2 RDFLex graph generation algorithm for [27]

1: Create an RDF graph (using rdflib)
2: for <all sample sets> do
3: Create a new rdf:class
4: Add mandatory attributes as properties of this class
5: end for
6: for <all stopword disorder concepts> do
7: Create a new rdf:class
8: Add attributes as properties of this class
9: Make this class an instance of the sample set class to which it belongs

10: end for

Algorithm 3 SHACLex graph generation algorithm for [27]

1: Write @prefixes to SHACLex file
2: for <all sample sets> do
3: Create a new NodeShape in SHACLex file
4: Add mandatory attributes as sh:property constraints
5: end for
6: for <all stopword disorder concepts> do
7: Create a new NodeShape in SHACLex file
8: Add attributes as sh:property constraints
9: end for

Similarly, to test the hypothesis by using the insights gained from [28], an RDF and
an RDFLex graph were created and validated against a SHACL and a SHACLex graph.
In this case, both the RDF graph and RDFLex graph were created normally, as mentioned in
Section 3. However, only hierarchical Is-A relationships (SCTID:116680003) were converted
into RDF triples to keep the data graph relevant to the experiment [28]. The SHACL
and SHACLex graphs were created using Python programming. Algorithm 1 illustrates
the steps followed to generate the SHACLex shape graph for the SNOMED-CT concepts
targeted by [28]. The SHACL shape graph simply converted the existing RDF axioms
into SHACL constraints, whereas SHACLex considered the information available from the
developed KB and included additional SHACL constraints for the property “subClassOf”.
Thus, the SHACLex graph ensured that missing hierarchical relationships were flagged and
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“ADJ NOUN” concepts were represented as children of the respective “NOUN” concepts in
the biomedical ontology data graph (see Algorithm 1).

During a manual inspection of the experimentation results, several cases were iden-
tified as violations where an “ADJ NOUN” concept was linked to another “ADJ NOUN”
concept but not linked to a “NOUN” concept. For example, the concept Gonococcal peri-
carditis (SCTID:90428001) (ADJ NOUN) was flagged as a violation due to missing an Is-A
(hierarchical) relationship with the concept Pericarditis (SCTID:3238004) (NOUN). How-
ever, a more specific hierarchical relationship already existed with Bacterial pericarditis
(SCTID:233883000) (ADJ NOUN). In such cases, we believed that the existing relationship
between the two “ADJ NOUN” concepts superseded the proposed relationship between the
“ADJ NOUN” and “NOUN” concepts. As a result, the algorithm was modified, and such
cases were not flagged as violations by the final SHACLex graph (see Algorithm 1).

3.3. Graph Validation

The 11 RDF and RDFLex graphs, with 1 for each stop word [27], were validated
against the 11 SHACL and SHACLex graphs, respectively, using the validate() method
of the pySHACL library in Python. Similarly, the RDF and RDFLex graphs represent-
ing SNOMED-CT concepts targeted by [28] were also validated against the respective
SHACL and SHACLex graphs. The validation performance was compared by examining
the number of violations raised by the SHACL and SHACLex graphs for the same set of
SNOMED-CT concepts in the RDF and RDFLex graphs. The violations raised by the SHA-
CLex graphs were cross-verified with the results of the lexical auditing techniques [27,28],
which additionally substantiated the validation performance of the SHACLex shapes.

4. Results

We tested the hypothesis by comparing the validation performance of the SHACL and
SHACLex graphs to identify potentially inconsistent concepts in SNOMED-CT. As stated
earlier, the validation performance was compared on the basis of the number of violations
raised by each shape graph (SHACL and SHACLex) for the same set of SNOMED-CT
concepts represented in the data graphs. The raised violations were manually inspected
to ensure that they were congruous with the results of each study. The total number of
violations identified by the SHACLex graphs for the two studies combined was 176 (171
for [27] and 5 for [28]), whereas the total number of violations raised by the SHACL graphs
for the two studies combined was 0. This was expected since, in the SHACL shape graphs,
the existing OWL axioms were exclusively converted into SHACL constraints, and therefore
the shape graphs did not contain pertinent lexical information. As discussed earlier,
biomedical ontologies are richer in natural language content than OWL axioms or logical
definitions [22], and thus the SHACL shape graphs could not incorporate the semantic
knowledge available from the lexical features of class names into SHACL constraints (which
was essential to identify the violations) by exclusively using OWL axioms for shape creation.
Contrarily, the SHACLex shape graphs were augmented with the lexical knowledge of
class names in the biomedical ontologies by exploiting the insights gained from lexical
auditing techniques employed to enrich OWL axioms, and thus the SHACLex shape graphs
were able to identify all the missing properties in a class that could be derived from the
lexical features of the class name. This proves the hypothesis that the methods employed
in SHACL shape graph creation for generic data-graphs, in which class names do not
influence the shape of a class, are not sufficient for domain-specific biomedical ontology
data graphs, in which class names contain pertinent lexical information that influences the
shape of a class. The results clearly indicate that the SHACLex graphs outperformed the
SHACL graphs by raising 176 more violations corresponding to inconsistencies such as
missing relationships in biomedical concepts.

Figure 7 illustrates the validation performance of the SHACL and SHACLex shape
graphs using the SNOMED-CT concept Injury due to sword (SCTID:243051008) as an
example. As one can see from the FSN, the concept belongs to the lexical pattern “A due
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to B” and the semantic pattern “Disorder due to Object (DdtO)” and therefore demands
the presence of the mandatory attributes due to (SCTID:42752001) and causative agent
(SCTID:246075003) in its definition, according to the template created in [27] (see Table 1).
On the right side of the figure, one can see how the RDFLex data graph and SHACLex
shapes-graph incorporate this lexical information in the form of sample set classes, whereas
on the left side of the figure, the RDF data graph and SHACL shape graph fail to con-
sider the internal lexical features of the class name and therefore do not convert it into
SHACL constraints. Finally, from the validation results, we can see that SHACLex flagged
the concept as a violation due to missing the mandatory attribute relationships due to
(SCTID:42752001) and causative agent (SCTID:246075003) in its definition. In the figure,
the raised violation is depicted using a red color and the SCTID of Injury due to sword
(SCTID:243051008) is highlighted in the violation message using yellow and orange colors.
By contrast, the SHACL simply validated the concept as true.

Figure 7. SHACL vs. SHACLex validation report for the concept Injury due to sword (SC-
TID:243051008) belonging to the sample set “Disorder due to Object” (DdtO). Missing mandatory
attributes due to (SCTID:42752001) and causative agent (SCTID:246075003) were caught as violations
only by SHACLex.

Figure 8 illustrates the validation performance of the SHACL and SHACLex shape
graphs for the SNOMED-CT concepts targeted by [28], using Pulmonary hypostasis (SC-
TID:196116008) as an example. As one can see from the FSN, the concept belongs to the
lexical pattern “ADJ NOUN” and therefore demands the presence of a hierarchical relation-
ship with its parent concept Hypostasis (SCTID:72127003), having the POS tag “NOUN”,
according to the insight gained from [28]. On the right side of the figure, one can see how
the SHACLex shape graph incorporated this lexical information in the form of an additional
property, rdfs:subClassOf, with the designated “NOUN” concept in its sh:hasValue field
along with the sh:minCount constraint. On the left side of the figure, the SHACL shape
graph failed to consider the internal lexical features of the class name and therefore did
not convert it into SHACL constraints. Finally, the validation results show that SHACLex
flagged the concept as a violation due to the missing hierarchical relationship between the
concept Pulmonary hypostasis (SCTID:196116008) and Hypostasis (SCTID:72127003) in its
definition. In the figure, the raised violation is depicted using a red color and the FSN of
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Pulmonary hypostasis (SCTID:196116008) is highlighted in the violation message using
yellow and orange colors. By contrast, the SHACL simply validated the concept as true.

Figure 8. SHACL vs. SHACLex validation report for the concept Pulmonary hypostasis (SC-
TID:196116008) conforming to the POS pattern “ADJ NOUN”. Missing hierarchical relationship
with Hypostasis (SCTID:72127003) was caught as a violation only by SHACLex.

To demonstrate the validation performance of the SHACLex graphs against the SHACL
graphs, for cases where a sample set did not have any SNOMED-CT concepts with miss-
ing mandatory attributes (as per the results of [27]), we introduced deliberate errors by
removing the mandatory attributes from their definitions and creating new concepts with
fictitious SCTIDs in the data graph, which we refer to as negative test cases. For every
negative test case, a concept containing the mandatory attribute with a fictitious SCTID
was introduced in the data graph, which we refer to as a positive test case. The positive test
cases were added to ensure that SHACLex only flagged the negative test cases as violations.
Five such positive and negative test cases were added for each sample set that did not
exhibit any SNOMED-CT concepts with missing mandatory attributes in the biomedical
ontology. We then created RDF and RDFLex data graphs, including these newly added fic-
titious correct and incorrect concepts (positive and negative test cases) and validated them
against the SHACL and SHACLex shape graphs, respectively. Table 2 shows a comparative
evaluation of the violations caught by both the shape graphs in SNOMED-CT concepts
targeted by [27]. Zero violations indicate that the data graph conforms (conforms true) to
the shape graph. Violations >0 indicate that the data graph does not conform (conforms
false) to the shape graph and harbors inconsistencies, and N/A indicates that the sample
sets did not have any mandatory attributes whose presence or absence needed to be tested.

Similarly, for validating the created RDF and RDFLex data graphs representing SNOMED-
CT concepts targeted by [28] against the SHACL and SHACLex shape graphs, we observed
five missing hierarchical relationships in the definitions of the “ADJ NOUN” concepts
as caught by SHACLex. Table 3 shows a comparative evaluation of the violations caught
by both the shape graphs in the SNOMED-CT concepts targeted by [28]. The results
indicate that the SHACLex graphs generated by considering additional lexical information
of class names in a data graph created better shapes that were able to capture violations
in a biomedical ontology data graph that could not be captured by the baseline SHACL
graph. Please note that the violations captured by the SHACLex graphs and the missing
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attribute relationships thereby suggested requiring manual evaluation by a domain expert.
The inconsistencies in the modeling of SNOMED-CT concepts were raised as violations
by the SHACLex graphs because they were congruous with the results of the auditing
methods. Thus, in Table 3, the concepts were flagged as violations because they were not
consistent with the principles mentioned in [28], and in Table 2, the concepts flagged as
violations because they were not consistent with other lexically and semantically similar
FD concepts [27].

Table 2. Comparative evaluation of SHACL vs. SHACLex validation performance for SNOMED-CT
concepts targeted by [27].

Stopword Sample Set Mandatory
Attributes

Inconsistent
SNOMED-CT

Concepts

Added
Positive

Testcases

Added
Negative
Testcases

SHACL
Violations

SHACLex
Violations

Of DOB 1 3 0 0 0 3
DOD 0 N/A N/A N/A N/A N/A

DODSEQ 1 0 5 5 0 5
DOS 0 N/A N/A N/A N/A N/A

DOSABS 1 2 0 0 0 2
DOSOVR 1 0 5 5 0 5

Caused by DCBO 1 0 5 5 0 5
DCBP 1 0 5 5 0 5
DCBS 1 0 5 5 0 5

In DIB 2 0 5 5 0 10
DID 1 9 0 0 0 9
SIB 2 0 5 5 0 10

Due to DdtD 1 4 0 0 0 4
DdtO 2 4 0 0 0 8
DdtP 1 5 0 0 0 5

Following DFD 1 0 5 5 0 5
DFP 1 0 5 5 0 5

Due to and following DdtafD 2 0 5 5 0 10
DdtafP 2 0 5 5 0 10

From DFrB 2 0 5 5 0 10
DFrP 2 0 5 5 0 10
PFrD 2 0 5 5 0 10

During DDP 1 0 5 5 0 5

On DOnB 2 0 5 5 0 10

To DTB 2 0 5 5 0 10

Into DITB 2 0 5 5 0 10

Table 3. Comparative evaluation of SHACL vs. SHACLex validation performance for SNOMED-CT
concepts targeted by [28].

ADJ NOUN Concept NOUN Concept (Suggested Parent) SHACL
Violations

SHACLex
Violations

Latent schizophrenia (SCTID: 191559008) Schizophrenia (SCTID: 58214004) 0 1
Schizoaffective schizophrenia (SCTID: 191567000) Schizophrenia (SCTID: 58214004) 0 1

Obsessional neurosis (SCTID: 191738003) Neurosis (SCTID: 111475002) 0 1
Compulsive neurosis (SCTID: 233764003) Neurosis (SCTID: 111475002) 0 1

Pulmonary hypostasis (SCTID: 196116008) Hypostasis (SCTID: 72127003) 0 1

5. Discussion

Biomedical ontologies provide resources to be used in all downstream applications like
EHR systems, clinical reports, and discharge summaries. Thus, it is crucial to ensure that
the highest quality information is represented in biomedical ontology data graphs. Failing
to do so would have adverse consequences not only in the aforementioned downstream
applications but also the tertiary, safety-critical, data analysis, and automated decision
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making systems relying those applications. While a handful of SHACL shape creation meth-
ods exist to validate these downstream applications, due to the novelty of the technology,
greatly limited research has been conducted on applying SHACL to validate biomedical
ontology data graphs.

Furthermore, the existing SHACL shape creation techniques created for generic data
graphs have been adopted in the biomedical domain without any modifications or con-
sideration of characteristic differences in the nature of the domain-specific data graphs
and the knowledge represented by them. As a result, research on the creation of SHACL
shapes for biomedical ontologies has also focused on exclusively converting TSV files or
OWL restrictions into SHACL shape constraints [19,25] as performed for the majority of
generic data graphs like WikiData and DBpedia [11,13,24]. SHACL shape graphs created
using such methods fail to consider the characteristic differences of biomedical ontology
data graphs. As stated earlier, in biomedical ontologies, the class names (internal features)
contain semantic information that can be exploited to create better SHACL shapes [25].
SHACL shape graphs, created using generic methods, convert OWL axioms devoid of
lexical richness of concept names into SHACL constraints. Therefore, they do not raise
any potential violations linked to the lexical structure of concept names in the data graph.
Tables 2 and 3 show the difference in the number of violations caught with and without
incorporating the internal features (i.e., the lexical information available in class names for
each of the studies) [27,28]. The SHACLex graphs caught 176 violations for the same set
of SNOMED-CT concepts by exploiting the hidden semantics of class names, whereas the
SHACL graphs failed to raise a single violation due to the lack of this knowledge in SHACL
constraints. The work presented here has addressed a crucial research gap that will improve
the validation performance of biomedical ontologies represented using SWT, like OWL and
RDF. In the absence of such a method, the existing methods (adopted from generic data
graphs) that rely solely on the quality of existing ontology axioms would continue to create
substandard SHACL shapes incapable of highlighting missing information in biomedical
ontology data graphs, which can be derived from the lexical structure of the class names
and impede the QA of biomedical ontology data graphs.

With the increase in the amount of data being produced every day, there is a need to
represent these data in intelligent machine-processable formats, such as those provided
by SWTs, and with that arises the need to improve the newly developed SWTs, like the
SHACL, which are focused on validation. The results of this research show the importance
of bespoke solutions in KG validation. They emphasize that all data graphs cannot be
treated alike, and creative solutions need to be developed for effective data validation
pertaining to each domain. Domain-specific data graphs should be scrutinized individually
to identify characteristic differences which can be exploited to create enhanced SHACL
shapes for improved data validation in each domain. The method presented in this chapter
can be adapted to other domains where the lexical knowledge of class names influences the
properties and, as a result, the shape of a class. The presented work can also be used as an
inspiration to identify other characteristic differences which can be exploited and included
in SHACL constraints.

SHACL shapes created simply by adopting methods for generic data graphs with-
out any consideration for the domain-specific characteristics of biomedical ontology data
graphs also fail to utilize the knowledge available from decades of evolution of lexical
auditing techniques in the validation process [26]. The SHACL is a relatively new standard
developed in 2017 [1], whereas the auditing techniques employed in the quality assurance
(QA) of biomedical ontologies have existed and been perfected since the early 1980s [26].
There is a large gap in incorporating the knowledge of existing auditing techniques em-
ployed in the QA of biomedical ontologies into SHACL shape graph creation. The obtained
results demonstrate that the methods that work for generic data graphs are not sufficient
for biomedical ontology data graphs, and SHACL shape creation for domain-specific data
graphs like biomedical ontologies require additional knowledge augmentation to create
efficient SHACL shapes.
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The methodology presented here can also be used as a framework to design lexical
knowledge bases for a variety of lexical auditing techniques existing in the literature [26]
and then convert the lexical knowledge of biomedical class names into SHACL constraints
for improved validation of biomedical ontology data graphs. One of the major challenges in
accomplishing this is the variety of lexical auditing techniques and therefore the variation
in the structure of the created knowledge bases. Each auditing technique will require
the development of a unique approach to organize the hidden semantical knowledge
into a KB which can later be incorporated into RDFLex and SHACLex graphs, implying
that each method would demand bespoke solutions and programming only applicable
to that particular auditing technique. Thus, making seamless automation a challenge.
However, given the poor performance of the SHACL for biomedical ontology data graphs,
implementing SHACLex using bespoke solutions is the most feasible approach at the
moment to bridge the gap between SHACL shape creation methods and the existing
knowledge in the QA of biomedical ontologies. Although the variety in the results of lexical
auditing techniques makes it difficult to standardize the method, the proposed method can
be incorporated officially in the SNOMED-CT validation process by creating SHACLex
shapes for the description modeling templates provided by IHTSDO [31].

6. Conclusions

The SHACL is a relatively new technology, and the existing SHACL shape creation
methods are predominantly tested on generic data graphs, in which the name of a class
does not affect the shape of a class. In this work, we highlighted how domain-specific data
graphs can have different characteristics due to the nature of the information stored in
them and therefore may require additional resources to create efficient SHACL shapes for
accurate knowledge validation. We identified and addressed the requirement of testing the
relatively new validation technology, SHACL, for domain-specific data graphs. To this end,
we presented a novel method to create enhanced SHACL shapes better suited for biomedical
ontology data graphs by incorporating the internal features (i.e., lexical knowledge of class
names) into SHACL constraints. We also presented a comparative evaluation of the shapes
created by our method (SHACLex shapes) which incorporated lexical knowledge of class
names into SHACL constraints, with the shapes created using existing techniques (baseline
SHACL shapes) that exclusively convert existing ontology axioms into SHACL constraints.
The comparative evaluation demonstrated that the enhanced SHACLex shapes identified
176 violations which the baseline SHACL shapes, void of this lexical knowledge, failed
to detect. Thus, the validation performance for domain-specific biomedical ontology
data graphs significantly improved by creating enhanced SHACL shapes as proposed in
our novel approach. Thus, the work presented in this paper proved the hypothesis that,
unlike generic data graphs, biomedical ontology data graphs require additional knowledge
augmentation to create effective SHACL shapes. A promising direction for future work
would be devising methods that normalize the structure of KBs while incorporating the
knowledge of unique auditing techniques into SHACL shape creation to reduce the amount
of bespoke programming and increase the rate of automation. The results of this research
also encourage scrutinizing other domain-specific data graphs to identify characteristic
differences which can be exploited to create enhanced SHACL shapes catered to the data
validation requirements of specific domains.
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Appendix A. SNOMED-CT Structure and Lexical Auditing Technique Details

This appendix provides further details about the structure of SNOMED-CT to gain
a deeper understanding of the data graphs constructed in this study. We also provide a
detailed overview of the methodologies for the two lexical auditing studies [27,28] which
were used to create the knowledge bases referenced by our algorithms to develop the
enhanced SHACL shapes.

SNOMED-CT [2], due to its comprehensive nature, is the world’s most widely adopted
biomedical ontology. SNOMED-CT [2] categorizes biomedical information into 19 major
hierarchies. Each hierarchy contains concepts belonging to a particular semantic type. This
semantic category is mentioned as a hierarchy tag or semantic tag in parenthesis after
the name of the concept. Figure A1 displays a screenshot of the SNOMED-CT browser,
listing the 19 hierarchies of SNOMED-CT. The SNOMED-CT logical model consists of three
components: the concept, description, and relationship. Figure A2 illustrates the logical
model followed by SNOMED-CT. As illustrated in Figure A2, concepts in SNOMED are
represented using a unique identifier (SCTID) and a unique name called a Fully Specified
Name (FSN). Concepts are linked to each other using two types of relationships:

• Is-A relationships, which are hierarchical in nature and represent the subsumption
relationships between two concepts that belong to the same hierarchy.

• Attribute (lateral) relationships, which give more information about a concept by
linking it to concepts from other hierarchies based on the domain and range constraints
defined in the logical model of SNOMED-CT.

Figure A1. SNOMED-CT hierarchies [32].
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Figure A2. SNOMED-CT logical nodel [2].

Furthermore, SNOMED-CT contains two types of concepts: (1) Fully Defined (FD)
concepts [2], which are sufficiently defined to distinguish them from other concepts, and
(2) primitive or Partially Defined (PD) concepts, which are not sufficiently defined. There
are multiple reasons as to why a concept may be a PD concept [33]. One of the reasons is
that the attribute relationships that distinguish the concept from other concepts may not be
present in its definition. FD concepts are more suitable for machine processing because for
one, they are sufficiently differential (i.e., the concept has at least one sufficient definition
that distinguishes it from any concepts or expressions that are neither equivalent to nor
sub-types of the defined concept) [2], and secondly, FD concepts are manually inspected
by SNOMED authors [33] to attain the FD status and therefore are more reliable than PD
concepts. The higher the number of FD concepts in an ontology, the more reliable the
biomedical ontology is [34]. Thus, auditing techniques employed in the QA of biomedi-
cal ontologies strive to identify missing relationships which can be used to fully define
a concept.

As stated earlier, biomedical ontologies are richer in natural language content than
OWL axioms and logical definitions, and the existing lexical auditing techniques strive
to enrich the logical definitions of biomedical concepts with the hidden semantics [23]
available in the concept names. Despite this effort, the process is gradual, and the existing
OWL axioms do not represent all the necessary information available in the lexical structure
of concept names [22]. Figures A3 and A4 give an overview of the steps followed to obtain
the results of the two lexical auditing techniques ([27] and [28], respectively) used to create
knowledge bases in this study. In Figure A3, we used the output templates for mandatory
attribute relationships to create enhanced SHACL shapes (see Table 1). The templates check
for the presence of a stop word in a concept name and, based on that, provide information
about which attribute relationship (property in RDF terminology) should be present in the
class. This knowledge was incorporated as a constraint to create enhanced SHACL shapes.
In Figure A4, we mainly used the insight gained from [28] that a “NOUN” concept should
ideally be linked to an “ADJ NOUN” concept via a hierarchical (Is-A) relationship. Using
this insight, we checked for the presence of a hierarchical relationship (subclass property
in RDF terminology) between an existing “ADJ NOUN” concept and the corresponding
“NOUN” concept, and this knowledge was incorporated as a constraint to create enhanced
SHACL shapes.
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