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Abstract: The anesthetic dosing procedure is a key element of safe surgical practice, where it is
paramount to ensure sufficient dosing of the anesthetic agent to the patient in order to reach the
desired depth of sedation for the necessary procedure. One means of monitoring the depth of
anesthesia (DoA) involves the use of the bispectral index (BIS), which decodes electroencephalography
(EEG) signals acquired from the frontal cortex in a continuous fashion. The shortcomings of this
include the complexity of the decoding of EEG signals, insensitivity to certain anesthetic agents, and
the costly nature of the technology, which limits its adoption in resource-constrained settings. In this
paper, we investigate an alternative source of physiological measurement modalities that can track
DoA sufficiently while being much more affordable. Thus, we investigate this notion with the use of
the University of Queensland database, which comprises EEG-EMG-ECG physiological data from
patients going through a variety of surgical procedures. As part of this, select patient datasets were
utilized in addition to a variety of signal decomposition and machine learning models—which totaled
around 200 simulations—in order to investigate the most optimal combination of algorithms to track
DoA using different physiological measurement modalities. The results showed that under certain
algorithmic combinations and modeling processes, the ECG measurement (a ubiquitous monitor in
anesthetic practice) can rival and occasionally surpass the accuracy of the EEG for DoA monitoring.
In addition to this, we also propose a 2-phase modeling process that involves an algorithmic selection
stage followed by a model deployment stage. Subsequent work in this area is advised to involve the
acquisition of more physiological data from a broader mix of patients in order to further validate the
consistency of the findings made in this study.

Keywords: anesthesia; EEG; ECG; EMG; LSDL; wavelet; signal processing; AI

1. Introduction and Background

One of the key components of surgical processes is the dosing of anesthesia, which
is managed by anesthetists and allows for the surgery itself to take place in a relatively
painless fashion [1–4]. There are four recognized components of anesthesia: hypnosis,
analgesia, amnesia, and muscle relaxation. An applied state of general anesthesia chiefly
acts on the central nervous system, with the optimal dosing of the anesthetic agents being
of key importance [4]. The measurement of the depth of anesthesia (DoA) has been an area
for continued study amongst anesthesia researchers, where common metrics used for the
measurement include the bispectral index (BIS), entropy measurement, auditory evoked
potentials (AEP), and the surgical stress index. Other avenues for quantifying the degree of
pain include the analgesia nociception index (ANI) and the surgical pleth index (SPI) [2].
In the absence of specific DoA monitors, anesthesia dosing is based on the physiological
response of the patient, and due to physiological differences, there is substantial variation
of the sedation index amongst patients, making it difficult to foster a single index for the
measurement of the DoA and sedation level [4].
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Nevertheless, as part of safer surgical practices, continuous work has been conducted
in optimal monitoring and DoA tracking to prevent complications from over or under-
dosing of anesthesia [5–8]. The most widely used monitor is the BIS, whose full model
architecture is protected due to intellectual property and works with a combination of elec-
troencephalography (EEG) alongside what is believed to be a spectrum of high-order statis-
tics from the acquired EEG time series [5–8]. Indices spanning 0–100 (from isoelectric/low
brain activity to awake) are presented in real-time, and its introduction into the surgical the-
ater in 1996, when it received FDA clearance, has helped to significantly reduce anesthetic
dosing-related medical errors [5–8].

The BIS monitor uses fine-scale neural oscillations from the frontal cortex of the brain
as input for computing the DoA metrics, and with a more reflective DoA measure, better
recovery and wake-ups have now been noted after major surgery [9,10]. Nevertheless,
the BIS monitor itself is only as accurate as its physiological measurement source, which
in this case is EEG signals from the frontal cortex [11]. However, EEG has limitations,
including: complexity and being difficult to decode; being non-reflective of cognitive state
when drugs like ketamine and nitrous oxide are administered; sensitivity to interference;
and being generally more expensive than other forms of physiological sensors [4,9,10]. This
has prompted alternate exploration of physiological signals such as electrocardiograms
(ECG) for DoA monitoring, which has been investigated by a number of authors, from
whom it has been steadily observed that anesthetic information can be seen from rhythmic
to nonrhythmic observations from an accompanying ECG signal [12–18].

The appeal of this form of physiological measurement as an inference for DoA is
amplified by the fact that ECG signals and recording mechanisms are cheap to acquire
and not as complex to process, which makes the adoption of this modality appealing to
resource-constrained environments. However, previous studies have shown that the moni-
toring prowess and accuracy of ECG relative to EEG are slightly lower, which forms part
of the investigation in this work [4]. For the first time in the published literature, bespoke
advanced signal processing methods are adopted in the DoA prediction pipeline in an
attempt to enhance the prediction accuracy of the candidate model as part of a potential
low-cost anesthesia DoA monitoring platform. As part of this, we utilize physiological data
from patients under various depths of anesthesia to perform a comparison study amongst
modalities such as EEG, ECG, and an auxiliary physiological monitor, namely, electromyo-
graphy (EMG). Data from several patients are utilized alongside various advanced signal
processing methods using machine learning methods of different architectures [19,20].

The aforementioned advanced signal processing mechanism comprises a signal de-
composition preprocessing mechanism and is followed by the extraction of a select list of
features that form the core of a feature vector that is eventually used to train a machine
learning model that serves as the prediction model [20]. Signal decomposition methods
are a type of multiresolution approach typically utilized for the systematic separation of a
candidate signal into subcomponents in order to find an optimal region within the signal,
which minimizes noise and redundancies and boosts the modeling prowess of the signal.
Common examples that have been applied within the area of DoA include the empirical
mode decomposition and the wavelet decomposition, to name a few.

This work showcases, for the first time in the published literature, the application of the
metaheuristically driven linear series decomposition learner (LSDL) and the deep wavelet
scattering (DWS) method towards the decomposition of ECG and EMG physiological
signals for anesthesia depth estimation [21,22]. Despite both of these being decomposition
algorithms, they are underpinned by different decomposition configurations towards the
systematic separation of the signal into component parts; hence, their respective perfor-
mances are contrasted as part of the work done in this paper.

Once the features are extracted from a signal, a machine-learning model is typically
utilized for the pattern recognition of the input data in association with an output label. In
medicine, machine learning has played the role of data-driven prediction machines, which
have been applied and deployed in various capacities. Machine learning models span
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various architectures, from statistically driven discriminant analysis and logistic regression
to decision tree and nearest neighbor models, all the way to models with more complex
architectures such as support vector machines and deep learning models, to name a few [14].
A variety of these models have been researched and applied to serve as decision support in
areas such as diabetes care, psychiatry, oncology, pregnancy care, and, of course, anesthesia
DoA, where the introduction of these models has contributed towards a human-machine
interaction platform that allows for enhanced clinical decision making and better patient
care [23–26].

With respect to the work being presented in this paper, machine learning modeling
represents the final stage of the signal processing pipeline where metrics and predictions are
output and are meaningfully comprehensible to the end operator and clinician. In this work,
seven different machine learning models were trained and utilized for the analysis in order
to understand which combination of physiological sensing modality/signal decomposition
method/machine learning yields optimal DoA estimation performance. Thus, a cumulative
total of around 200 simulations were carried out as part of the work done in this study.

The contributions presented as part of this manuscript are as follows:

- Investigation of alternative physiological monitors that could contribute towards
forming a low-cost avenue towards DoA monitoring by comparing the performance
of ECG and EMG monitors with that of the traditionally used EEG;

- Premier use of signal decomposition methods such as the LSDL and DWS for the
preprocessing and decomposition of ECG and EMG signals from anesthetized patients,
with a view towards enhancing the DoA information that can be decoded and inferred
from the signal;

- Comparison of the DoA estimation prowess across multiple classification models of
varied model architecture complexities.

All the analytics yielded around 200 simulations across the pilot group of patients’
data, covering the various physiological measurement modalities. Given the proposed
contributions of the work, it is hypothesized that the groundwork would be laid for an
affordable pipeline for DoA monitoring comprising a physiological monitor as well as the
postprocessing algorithms and machine learning models. This would have a higher level
of appeal to developing nations as well as resource-constrained environments.

2. Materials and Methods
2.1. Dataset and Information

The dataset utilized as part of this paper is from the University of Queensland Vital
Signs Dataset, which has received ethical approval from both the Royal Adelaide Hospital
and the University of Queensland and has the goal of acquiring physiological measure-
ments from patients during various surgical procedures [27]. A number of supporting
modules were used as part of the data acquisition process, as can be seen in the source
publication, where data were acquired at what is believed to be around 100 Hz and stored
in CSV format. The acquisitions were cropped to ensure that the data recordings reflected
the commencement of the induction phase, while the end also reflected the removal of the
sensor from the head after emergence [27].

It needs to be mentioned that all cases recorded as part of the database represent
mostly minor surgeries with no traumatic events, while the effects of the prior medication
before the surgery and anesthetic procedure were not taken into consideration in order to
avoid a subjective view of the effect of the anesthetic agent on the patient [27].

Based on the research needs of the paper, three unique case studies were selected from
the data on the basis of the patient having spent a long enough time under anesthesia and
having data present for the BIS, EMG, ECG, and EEG. The BIS was selected as the ground
truth label to support all subsequent modeling activities in consistency with the authors’
prior work in this area. The classification case studies were then subsequently created, as
seen in Table 1.
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Table 1. Summary of classification case studies.

Case Study Signal Windowing Classification Exercise Total Time Utilized (Minutes)

Case 1 9000 samples × 19
(for all modalities) BIS Over 40 and Under 40 28.5

Case 2 6000 samples × 19
(for all modalities) BIS Over 20 and Under 20 19

Case 3 9000 samples × 19
(for all modalities) BIS Over 40 and Under 40 28.5

The windowing of the signal was chosen to be between 6000 and 9000 samples to
account for 60–90 s worth of anesthetic dosing time, which is considered to be a robust
window and segment time for all the modalities being considered. The classification
exercise was formulated based on the dynamic range of the BIS monitor in order to establish
a suitable DoA region where enough samples could be collected, all of which ensured
minutes’ worth of samples were used as part of all modeling exercises. A hierarchical flow
diagram of the various analytics done as part of the work presented in this paper for a
sample patient can be seen in Figure 1.
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Figure 1. A hierarchical flow diagram of the various analytics done as part of the work presented in
this paper for a sample patient.

Uncertainties: no patient demographic information; no details on the types of surgery
done; a relatively small BIS variation range; only a small list of patients met the selection criteria.
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2.2. Physiological Measurement Instrumentations

Although the work presented is not solely based upon theoretical simulations, the
underpinning mathematical physics models behind the anatomical and physiological
manifestations under certain given conditions are articulated and described as part of this
subsection. In essence, these models quantify mathematical extracellular action potentials,
which are acquired in a real-world scenario using physiological sensors.

2.2.1. EMG

The concept of electrophysiological signals is themed around a transient flow of bio-
electricity within a segment of muscle fibers. This flow is measured using a set of EMG
electrodes, which are typically placed some distance from the source.

Using the principles of biophysics, this electrophysiological manifestation can be
framed from the perspective of volume conduction and the 3-dimensional Ohm’s law
formulation in a biological tissue [28–31]. Given the conductivity σ, the 3-dimensional
acquisition point P0(x0, y0, z0), with uniform conductivity σi, from a source current Is, at
point P(x, y, z), can be formulated as Equation (1):

Vp0 =
1

4πσi

Is

ri
(1)

where Vp0 is a voltage potential, and ri is the shortest distance between P0 and P. From
Equation (1), an acquired voltage from a given point carries proportionality to the intensity
of the source current, with the voltage potential being particularly inhibited by the distance
and conductivity factors.

The dipole is frequently used as a physics-based approximation to represent a source
generator, which is surrounded by a field of sorts [28–31]. For a fiber of length dx in the
range of a given action potential, as the current flows into an extracellular region with the
hypothetical focus of the magnitude being along the axis, this can be modeled as p−.dx,
where p− is the dipole current per unit length [28–31]. The source current permeates into
free space in a dipole propagation characteristic, which thus leads to Equation (2), which
can be said to hold for an extracellular potential:

d∅e =
1

4πσe
.
d
(

1
r

)
dx

.p−(x, t)dx (2)

where σe is the conductivity of the extracellular mechanism and r is the source distance
from the point of excitation to the instrumentation recording point P0. For an element p−.dx
along the coordinates (x, y, z) and P0 at (x0, y0, z0), the distance can then be formulated as
Equation (3):

r = [(x− x0)
2 + (y− y0)

2 + (z− z0)
2]

1
2 (3)

from which the total field can be estimated using the summations of the series of potentials
from the resulting dipole current element, as can be seen in Equation (4):

∅e(x0, y0, z0, t) =
x=∞∫

x=−∞

p−(x, t)

4πσe[(x− x0)
2 + y2

0 + z2
0]

3
2

dx (4)

where t is time.
Note that in reality, the excitation source is likely to comprise a series of dipoles from

a surface area, which represents an acquisition area.

2.2.2. EEG

EEG signals refer to mostly passive measurements that acquire electric field activi-
ties from the brain, which are said to encode information on the neurological state of the
patient [32,33]. The mathematical models used to quantitatively describe EEG manifes-
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tations are based on the forward problem, with assumptions made for the model for the
head and a conductivity overlay of the tissues within the skull [32,33]. As with the de-
scriptions of the EMG, dipoles are useful approximations for the theoretical modeling of
bio-electric manifestations within the brain. Using this basis and a series-based expansion
approach, a 3-dipole approximation in a homogenous sphere has been utilized for the
solution to a 4-layer spherical head model [32,33]. Thus, a multilayer head model L with
concentric spheres with radii spanning 0 < r1 < r2 . . . . . . rL, with anisotropic conductivities
σ1, . . . . . . σL. For a singular dipole at a point S within proximity of a sphere of a radius
rs < r1 with a moment q, an electric potential u measured at a point x, located at the farthest
sphere ||x|| = rL can thus be expressed as Equation (5):

u(r, q, x) =
∣∣|q|∣∣

4πσLr2
L

=
∞
∑

n=1

2n+1
n

(
rs
rL

)n−1
fn[ncosαPn(cosγ)

+cosβsinαP1
n(cos γ)]

(5)

where α is the angle between S and the measurement acquisition point x, and γ is an angle
between two planar vectors S and q on a specific side, and S and x on the other, while
Pn and P1

n are the Legendre polynomial coefficients in the series. The case of fn, which
corresponds to the nth element of the EEG measurement, can be calculated as seen in
Equation (6):

fn =
n

nm22 + (1 + n)m21
(6)

where the coefficients m22 and m21 of the matrix mij 1 ≤ I, j ≤ 2 can be obtained from
Equation (7): [

m11 m12
m21 m22

]

= 1
(2n+1)L−1

L−1
∏
i=1

 n + (n+1)σi
σi+1

(n + 1)
(

σi
σi+1
− 1
)(

rL
ri

)2n+1

n
(

σi
σi+1
− 1
)

(n + 1) + nσi
σi+1

 (7)

2.2.3. ECG

The ECG is a widely used tool for the recording of heart activity, but despite its
widespread use, there continue to be apparent areas of uncertainty centered around it. The
use of quantitative mathematical models has always provided an alternate insight into the
mathematical and biophysical descriptions of a particular phenomenon [34]. The process of
said quantitative modeling of a candidate set of ECGs is regarded as the forward modeling
process, for which three assumptions and components are considered, namely: a model
of the electrical activity of the heart; a model of the extracardiac regions of the torso; and
some heart–torso conditions [34]. The complexity of the subsequent mathematical models
hinges on the depth of the assumptions made as part of the forward modeling process. In
this work, a 12-lead ECG model is described based on the work done by Boulakia et al. [34].
The components of this model are bidomain equations, phenomenological cell models, and
generalized Laplacian equations to account for the torso [34].

- Heart Tissue

The electrical dynamics of the heart are accounted for using a bidomain model and
work with the postulation that, on a cellular scale, cardiac tissue acts as an ohmic con-
ducting medium that is separated by a cell membrane, both intracellular and extracellular,
comprising cardiac and the space between them, respectively [35–37]. All of this occupies a
whole volume ΩH , alongside intracellular and extracellular density ji and je, conductivity
tensors σi and σe, and electric potential ui and ue. The conservation of the electrical charge
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thus becomes div(ji + je) = 0 in ΩH , where the homogenous representation of the electrical
activity of the cell membrane is given as Am

(
Cm

∂Vm
∂t + Ion(Vm, w)

)
+ div(ji) = Am Iapp in

ΩH , with the Ohm’s law representation ji = −σi∇ui and je = −σe∇ue. Vm represents the
transmembrane potential represented as Vm = ui − ue.

Am represents a constant of the rate of membrane area per unit volume, and Cm is the
membrane, capacitance per unit area. Iion(Vm, w) is the ionic current across the membrane
and Iapp is a given applied current stimulus, both of which are measured in terms of the
membrane area unit [35–37]. The ionic current is a vectorized quantity w that fulfills a
system of ODEs of the format ∂w

∂t + g(Vm, w) = 0, in ΩH . g and Iion are dependent upon
the cell ionic current, where their levels of complexity are either phenomenological or
physiological [35–37].

A scaled phenomenological 2-variable model is considered part of this model and
expressed as Equations (8) and (9):

Iion(Vm, w) = − w
τin

(Vm −Vmin)̂ 2(Vmax−Vin)

Vmax −Vmin
+

1
τout

Vin −Vmin
Vmax −Vmin

(8)

g(Vm, w) =


w

τopen
− 1

τopen(Vmax−Vmin)
2 i f Vm < Vgate

w
τclose

i f Vm > Vgate

(9)

where τin, τout, τopen, τclose, and Vgate are fixed parameters, while Vmin and Vmax represent
scaling constants. w, the gating variable, is stringent upon the Vgate voltage and associated
time constants τopen and τclose. The timing constants τin and τclose are linked to the length of
both the depolarization and repolarization stages [35–37]. Thus, the system of equations
that represents the electrical activity of the heart can be expressed as Equation (10):

Am

(
Cm

∂Vm
∂t + Iion(Vm, w)

)
−div(−σi∇Vm)− div(−σi∇ue) = Am Iapp, in ΩH

−div((σi + σe)∇ue)− div(σi∇Vm) = 0, in ΩH

∂Vm
∂t + g(Vm, w) = 0, in ΩH

(10)

As far as boundary conditions go, given V0
m and w0 for the transmembrane poten-

tial and gate variable respectively, an initial condition of the form Vm(x, 0) = V0
m(x),

w(x, 0) = w0(x)∀x ∈ ΩH would be in place. With regards to the boundary conditions at
the point ∑ = ∂ΩH , with the assumption that the intracellular current does not propagate
outside of the heart, we can then say ji.n = σi∇ui.n = 0, f or ∑, where n is the outward unit
to the normal of ΩH [35–37].

Figure 2 shows a summary of the various physiological organs, their basic operating
principles, and their physiological sensing modalities, along with the associated pros and
cons and a sample time series segment from a patient under anesthesia [38–40]. From the
time series, the different dynamics in their respective physiological measurements can be
noted. The EMG signal represents an enveloped variant of a raw EMG time series segment
characterized by discrete fluctuations. The ECG signal is characterized by overlapping
traditional QRS waveforms, which show the cyclical patterns of the human heart alongside
its biophysical tendencies to be regarded as a biological pump mechanism. The EEG time
series signal shows a continued series of neural oscillations that are highly superimposed,
largely due to the multitude of oscillatory frequencies that brainwaves span, where there
can also be seen to exist a high degree of noise as a result of the overall complexity of the
organ itself [38–40].
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Figure 2. Summary of the various physiological organs, their basic operating principles, and physio-
logical sensing modality, alongside the associated pros and cons, and a sample time series segment
from a patient under anesthesia [38–40].

The set of plots in Figure 3 show the waveforms for a candidate patient across the
various BIS values, i.e., over and under, where the left column represents the various time
series projections of the physiological signals and the right column showcases the time-
frequency view of the signals via the short time Fourier transform (STFT) spectrogram [41].
From the top down, the first two signals represent the ECG measurements, which are
characterized by a stream of overlapping sharp peaks in the time domain and are reflected
in the spectrogram as a cluster of information in the lower-mid frequency regions. From a
visual perspective of the ECG-based spectrogram, it can be assumed that the rich content of
the signal is in and around the earlier portion of the frequency spectrum. The subsequent
set of plots is for the EMG signals, where it can be noted that an enveloped variant of the
EMG signals was stored as opposed to the raw time series, which in general represents a
fairly high amplitude signal and whose STFT representation yields a very low frequency
transformation of the signal. Despite this, the resulting frequency representation appears
to reflect a manifestation that is typically adjourned in the signal processing literature, in
that the bulk of the frequency content related to neuromuscular EMG signals tends to be
very low-frequency-based.

The final set of plots belongs to the EEG signals, which can be seen to represent a
rather noisy and stochastic time series plot. This is largely due to the fact that the brain is
physiologically viewed as a more complex organ than both the heart and muscle tissue but
also operates on a varied set of frequency states that range from delta, theta, alpha, beta,
and gamma [42]. Thus, from an abstraction standpoint, a sample resulting EEG waveform
could comprise components and superpositions of the various brain states. Due to this, it
can be seen that the frequency manifestations of the signal mostly symbolize a broadband
phenomenon, which, although suggesting that a span of frequency components is a part of
the signal itself, also shows that the bulk of the signal’s frequency information is intensely
within the early portion of the frequency spectra.
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2.3. Signal Decomposition
2.3.1. LSDL

As mentioned, the use of signal decomposition methods aims towards the systematic
separation of a candidate signal into component parts as a way of boosting the overall
quality of a signal, where the LSDL is one that is embedded upon metaheuristic reasoning
from the area of artificial intelligence [43–45]. The process involves using a set of defined
heuristics as well as a linear basis function as part of the decomposition process to split the
signal into subsections, which are assessed using an embedded cost function [43–45]. The
application of the LSDL was initially for source separation of signals from powder mixtures,
from which it was seen that the performance of the LSDL superseded that of the classical
wavelet transform from both prediction accuracy and computational time perspectives
when decomposing highly nonlinear and stochastic signals [43–45]. Subsequent application
of the LSDL has seen its use as a key preprocessing tool in an array of areas within clinical
medicine where physiological time series are acquired, including rehabilitation, preterm
pregnancy, and psychiatric medicine; and very recently, it has also been applied to infrared
spectroscopy waveforms in the early prediction of reproductive cancers in both males and
females [25,46–48].

The LSDL comprises an in-built performance index that is able to assess the infor-
mation quality of each of the decomposed regions obtained from the heuristic-based
segmentation of the signal. The normalized Euclidean distance metric was utilized as the
embedded performance index of choice for the LSDL, for which, given two candidate sig-
nals from two distinct classes, the normalized Euclidean distance provides a dimensionless
metric that represents the distance and, therein, class separability between the two sample
sets [49]. A flow diagram of this can be seen in Figure 4, which showcases the various stages
involved in the LSDL’s optimal region selection phase. For a full list of the designated
heuristics as part of the LSDL, as well as the threshold parameters, Nsugbe et al. [46] and
Nsugbe and Sanusi [47] contain more details. n was selected as 3 for the work done in
this paper.
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2.3.2. Optimal Threshold Search Results

As patient-specific DoA estimation models were designed as part of this paper, a
specific DoA model was designed per patient, for which there were two physiological mea-
surement modalities as the EMG could not be decomposed with the LSDL due to the format
in which the data was recorded and captured. For each set of result tables, 12 optimization
simulations were carried out in order to yield six sets of threshold “goodness” metrics. This
was done for the two different measurement modalities to yield 24 optimization simulations
per patient, for a total of 72 across all three patients.

The LSDL optimization results for the various patients and their associated modalities
can be seen in Tables 2–7, from which it can be seen that the optimal decomposition
for all patients and all modalities appears to be within the 3rd iteration of the upper
threshold region, which indicates that the optimal information of the signal is within the
high amplitude and low-frequency region.

Case Study 1

Table 2. LSDL optimization results for ECG.

Threshold Region 1st Iteration 2nd Iteration 3rd Iteration

Upper Threshold
Region 2.0026 2.0093 2.2619

Lower Threshold
Region 2.0000 2.0002 2.0046

Table 3. LSDL optimization results for EEG.

Threshold Region 1st Iteration 2nd Iteration 3rd Iteration

Upper Threshold
Region 2.0092 2.0390 2.1723

Lower Threshold
Region 2.0212 2.0013 2.0066
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Case Study 2

Table 4. LSDL optimization results for ECG.

Threshold Region 1st Iteration 2nd Iteration 3rd Iteration

Upper Threshold
Region 2.5750 2.7190 2.8217

Lower Threshold
Region 2.0111 2.0020 2.0080

Table 5. LSDL optimization results for EEG.

Threshold Region 1st Iteration 2nd Iteration 3rd Iteration

Upper Threshold
Region 2.2981 2.4454 2.4794

Lower Threshold
Region 2.0371 2.0654 2.1704

Case Study 3

Table 6. LSDL optimization results for ECG.

Threshold Region 1st Iteration 2nd Iteration 3rd Iteration

Upper Threshold
Region 2.7864 2.7901 2.7996

Lower Threshold
Region 2.7040 2.6994 2.7071

Table 7. LSDL optimization results for EEG.

Threshold Region 1st Iteration 2nd Iteration 3rd Iteration

Upper Threshold
Region 2.5842 2.5956 2.6032

Lower Threshold
Region 2.2822 2.1494 2.0004

The threshold parameters used to obtain the optimal threshold regions shown in
Tables 2–7 were used to perform any subsequent decomposition performed, when the
LSDL algorithm was utilized.

- DWS

The DWS presents an unsupervised signal decomposition and multiresolution ap-
proach that uniquely combines characteristics from both the classical wavelet decompo-
sition and the deep learning architectures [50–52]. Its features are continuous as well as
robust to translations, with preset wavelets and filters as opposed to the traditional iterative
learning from data [50–52]. One of the strengths of the DWS is its ability to work with a
small set of data. Figure 5 shows a flow diagram summarizing the various sub-stages and
key properties of the DWS, which include convolutions via wavelets, modulus nonlinearity,
and averaging via a scaling function [50–52].
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For a signal f (t) being analyzed with Ø being a low pass filter and a wavelet function
of Ψ for filtering and decomposition, the wavelet family indices possess an octave frequency
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resolution Qk and are denoted as ∧k, alongside multiscale high pass filter banks
{

Ψjk

}
jk∈∧k

,

which are assembled via dilation of the wavelet Ψ, for which ØJ(t) represents a low pass
filter that is able to provide a localized translation invariance of the signal f (t) at a defined
T [50–52].

The DWS is typically implemented using a convolutional neural network (CNN)
which, based on its architecture, first performs convolutions through classical wavelets,
which are followed by a nonlinear modulus, and finally by the averaging process [50–52].
The convolutional process is indicated as S0 f (t) = f ∗ØJ(t), for which S0 represents
the zero-order scattering coefficients, which produce locally translation-invariant features
for the signal f, which initially conveys a loss in high-frequency information but is duly
recouped with the wavelet modulus |W1|, as expressed in Equation (11) [50–52]:

|W1| f =
{

S0 f (t),
∣∣ f ∗Ψj1(t)

∣∣}
j1∈∧1

(11)

In a hierarchical tree-like fashion, the first set of scattering coefficients emanates from
an averaging process of the wavelet modulus coefficient ØJ(t), as seen in Equation (12):

S1 f (t) =
{∣∣ f ∗Ψj1(t)

∣∣ ∗ØJ(t)
}

j1∈∧1
(12)

Information is lost due to the effect of the averaging process, but this can be subse-
quently recovered via the use of a wavelet modulus as part of the information recovery
process, as expressed in Equation (13):

|W2|
∣∣ f ∗Ψj1

∣∣ = {S1 f (t),
∣∣∣∣ f ∗Ψj1

∣∣∗Ψj2(t)
∣∣}

j2∈∧2
(13)

This is succeeded by the set of second-order coefficients, which can be defined as

S2 f (t) =
{∣∣∣∣∣ f ∗Ψj1

∣∣ ∗Ψj2

∣∣∣ ∗ØJ(t)
}

j1∈∧1
i = 1, 2, and continuously iterated via the de-

scribed process to yield Equation (14):

Um f (t) =
{∣∣| f ∗Ψj1| ∗ . . . . . . | ∗Ψjm

∣∣}
j1∈∧1

, i = 1, 2, . . . m. (14)

for which Um is an mth-order modulus. The mth order scattering coefficients for Um f (t)
with ØJ can be obtained via Equation (15):

Sm f (t) =
{∣∣| f ∗Ψj1| ∗ . . . . . . | ∗Ψjm

∣∣ ∗ØJ(t)
}

j1∈∧1
, i = 1, 2, . . . m (15)

The described approach is applied in an iterative fashion to obtain a final scatter matrix
S f (t) = {Sm f (t)}0≤m≤l , which represents a concatenation of all the prior scatter coeffi-
cients, as a means of characterizing the input signal, for which l indicates the maximum
decomposition level [50–52].

A tree-like visualization of the scattering decomposition network can be seen in
Figure 6.

Since the DWS is comprised of the dual characteristics of the classical wavelets and
the CNN, it is robust to translation invariance as well as stable to local deformations. The
main difference between the DWS and the CNN is that the final output of the DWS is a
combination of the output from a multitude of preceding layers and not primarily from an
output layer [50–53].

The physics of the energy dissipation within the DWS networks suggest that the
energy attenuates with an increasing number of layers, which is why only the first two
layers within the network are utilized for modeling purposes and have thus been adopted
in this work [50–53]. The remainder of the configuration parameters used as part of the
DWS include the Gabor wavelet as the mother wavelet and basis function, an invariance
scale of 1 s, and 8 wavelets per octave in the primary filter bank, followed by 1 wavelet per
octave in the second filter bank [54].
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2.3.3. Feature Extraction

Several features were extracted from the EMG, ECG, and EEG signals, comprising a
unique ensemble and concatenation of linear and nonlinear features, which can contribute
towards the effective modeling of the various physiological signals [31]. The list of features
is as follows: mean absolute value (MAV), waveform length (WL), zero-crossing (ZC), slope
sign change (SSC), root mean square (RMS), fourth-order autoregression (AR), sample
entropy (SampEN), cepstrum (Ceps), maximum fractal length (MFL), median frequency
(MedFrq), peak frequency (PeakFrq), number of peaks (NP), simple squared integral (SSI),
and variance (VAR) [31]. A threshold of 1 µv was used for all features that required a
threshold, and the values of 2 and 0.2 were used for the m and r variables for the sample
entropy feature [31].

2.3.4. Machine Learning Models

Decision Tree (DT): refers to a class of gray-box models that hinge upon Boolean logic
as a systemic means towards class separation for the various sample sets in a hierarchical
flow fashion [55]. Due to the configuration of the model, its decision-making process carries
a degree of interpretability [55].

Logistic Regression (LR): is a form of statistically underpinned parametric model
that outputs class scores in the range of 0–1 and then interpolates based on a threshold
score to find out which class the sample set belongs to [56]. A sigmoidal function is used
for interpolation purposes and provides an extra layer of robustness when dealing with
outliers [56].

K-Nearest Neighbor (KNN): is a nonparametric classification model that utilizes a
combination of majority voting and nearest neighbor criteria for the assignment of samples
into various classes. In this work, the value for k was selected to be 1 in the interest of
computational efficiency, while the Euclidean distance was adopted as the distance metric
of choice [57].

Support Vector Machine (SVM): is based around the assumption that higher dimen-
sions are better suited for the class separation of data classes that are within proximity of
each other in a lower-dimensional space [58]. Class boundaries are placed in an iterative
fashion in a higher-dimensional subspace, and their boundary coordinates are retained
during the downscaling of the data projection, a feat regarded as a “kernel trick” [58].
The model is viewed as computationally intensive due to the requirement for coordinate
transformation and iterative fitting of class boundaries [58]. In this work, a number of
variants of the decision boundaries were used to separate the various classes, namely, linear
SVM-LSVM, quadratic SVM-QSVM, cubic SVM-CSVM, and fine Gaussian SVM-FGSVM.
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All models were built and validations were done using the MATLAB Classification
Learner Application, which tunes models for the most appropriate hyperparameters given
the pattern recognition task. All models were validated using the K-fold cross validation
method, with K chosen as 10.

3. Results and Discussion
3.1. Case Study 1
Classification Problem: BIS over 40 and under 40

Table 8 shows the results for the raw signal modeling for Case Study 1.

Table 8. Results for modeling with the raw signal for BIS over 40 and under 40.

Machine Learning Model Raw EMG
Accuracy (%)

Raw ECG
Accuracy (%)

Raw EEG
Accuracy (%)

Raw EMG-ECG-EEG
Accuracy (%)

Decision Tree 44.7 52.6 65.8 31.6

Logistic Regression 42.1 47.4 44.7 34.2

K-Nearest Neighbor 47.4 52.6 47.4 47.4

Linear Support Vector Machine 34.2 36.8 76.3 57.9

Quadratic Support Vector Machine 52.6 52.6 50.0 57.9

Cubic Support Vector Machine 44.7 34.2 65.8 60.5

Fine Gaussian Support Vector Machine 42.1 50.0 57.9 50.0

For the modeling with the raw signal, it can be seen for the EMG that the results are
fairly mediocre, with the best prediction accuracy being the QSVM model at 52.6%, while
the same trend appears to happen for the ECG, with the DT and QSVM providing the best
prediction performance. The EEG produced the best accuracy in this scenario, with an
accuracy metric of 76.3% for the LSVM, which was also seen to supersede the fusion of the
features from the three various modalities. Table 9 shows the results for the LSDL.

Table 9. Results for modeling with the LSDL for BIS over 40 and under 40.

Machine Learning Model LSDL ECG Accuracy (%) LSDL EEG Accuracy (%)

Decision Tree 55.3 60.5

Logistic Regression 89.5 86.8

K-Nearest Neighbor 47.4 76.3

Linear Support Vector Machine 44.7 73.7

Quadratic Support Vector Machine 44.7 78.9

Cubic Support Vector Machine 47.4 76.3

Fine Gaussian Support Vector Machine 26.3 65.8

For the LSDL, the ECG provided a best accuracy of 89.5%, while the EEG provided
86.8%, both for the logistic regression model, which further showcases the compatibility
between the LSDL and the logistic regression, as has been noted in a previous study [47].
However, it needs to be noted that although the ECG provided the best overall accuracy,
the mean of all classifiers across the board for the EEG was seen to be greater than the ECG.
Nevertheless, the combination of the LSDL for preprocessing and the logistic regression
model showed that the ECG produces an exceedingly better performance when compared
with that of the EEG. The results for the DWS can be seen in Table 10.
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Table 10. Results for modeling with the DWS for BIS over 40 and under 40.

Machine Learning Model DWS EMG
Accuracy (%)

DWS ECG
Accuracy (%)

DWS EEG
Accuracy (%)

Decision Tree 67.8 74.9 66.9

Logistic Regression 61.2 76.2 70.5

K-Nearest Neighbor 66.3 88.6 98.0

Linear Support Vector Machine 58.9 74.2 69.1

Quadratic Support Vector Machine 53.3 88.5 87.4

Cubic Support Vector
Machine 51.8 90.8 94.7

Fine Gaussian Support Vector Machine 59.5 84.2 85.8

The DWS provided better prediction accuracy for the EMG signal, as a best perfor-
mance metric of 67.8% was recorded. Strong metrics were seen to be provided for both the
ECG and EEG modalities at 90.8% and 98.0%, respectively, albeit for different models, i.e.,
CSVM and KNN. This provides strong evidence for the decomposition power of the DWS
when encountering physiological signals of this kind.

Table 11 shows a summary of the best prediction accuracies across the various pre-
processing approaches and classification models. It can be seen that for this patient and
under the observed conditions, the DWS was the optimal preprocessing mechanism, where
the ECG was within 10% of the EEG, which further shows its appeal and potential as a
low-cost anesthesia monitor, and also that the optimal classification model varied based on
the modality being used for the patient.

Table 11. Summary of the best prediction accuracies across the various preprocessing approaches
and classification models for Case Study 1.

Best Modality Best Prediction Accuracy (%)

EMG DWS DT: 67.8

ECG DWS CSVM: 90.8

EEG DWS KNN: 98.0

3.2. Case Study 2
Classification Problem: BIS over 20 and under 20

The results for the raw signal can be seen in Table 12, from which it can be noted
that the EMG prediction accuracy is a high value of 84.2% for the DT and is believed to
be largely due to the simplified classification problem relative to the prior patient’s case
study. Both the ECG and the EEG produced accuracies of 81.6% for the QSVM and DT,
respectively, while the case of the modality feature fusion produced an accuracy of 84.2%
for the DT model.

Table 12. Results for modeling with the raw signal for BIS over 20 and under 20.

Machine Learning Model Raw EMG
Accuracy (%)

Raw ECG
Accuracy (%)

Raw EEG
Accuracy (%)

Raw EMG-ECG-EEG
Accuracy (%)

Decision Tree 84.2 71.1 81.6 84.2

Logistic Regression 50.0 71.1 73.7 63.2

K-Nearest Neighbor 52.6 47.4 47.4 47.4

Linear Support Vector Machine 50.0 76.3 73.7 78.9

Quadratic Support Vector Machine 50.0 81.6 78.9 78.9
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Table 12. Cont.

Machine Learning Model Raw EMG
Accuracy (%)

Raw ECG
Accuracy (%)

Raw EEG
Accuracy (%)

Raw EMG-ECG-EEG
Accuracy (%)

Cubic Support Vector Machine 50.0 78.9 81.6 78.9

Fine Gaussian Support Vector Machine 50.0 73.7 71.1 47.4

The results for the LSDL (Table 13) showed comparable metrics between the ECG and
EEG, with the ECG delivering a slightly higher accuracy at 81.6% when compared with
the EEG at 78.9%. The optimal classification model for both the ECG and EEG was the
LR model.

Table 13. Results for modeling with the LSDL for BIS over 20 and under 20.

Machine Learning Model LSDL ECG Accuracy (%) LSDL EEG Accuracy (%)

Decision Tree 44.7 52.6

Logistic Regression 81.6 78.9

K-Nearest Neighbor 65.8 39.5

Linear Support Vector Machine 47.4 52.6

Quadratic Support Vector Machine 63.2 55.3

Cubic Support Vector Machine 65.8 65.8

Fine Gaussian Support Vector Machine 50.0 44.7

The results for the DWS can be seen in Table 14, showing a strong set of prediction
metrics across all three modalities and once again indicating the compatibility of the DWS
with these kinds of physiological datasets. The kernel-based SVM was the best-performing
classification model, with prediction accuracies of 89.8%, 99.7%, and 98.5% for the EMG,
ECG, and EEG modalities, respectively.

Table 14. Results for modeling with the DWS for BIS over 20 and under 20.

Machine Learning Model DWS EMG
Accuracy (%)

DWS ECG
Accuracy (%)

DWS EEG
Accuracy (%)

Decision Tree 85.7 96.5 90.6

Logistic Regression 73.7 98.8 93.0

K-Nearest Neighbor 87.4 98.8 98.0

Linear Support Vector Machine 89.8 95.9 93.6

Quadratic Support Vector
Machine 88.6 99.4 97.7

Cubic Support Vector Machine 88.6 99.7 98.5

Fine Gaussian Support Vector Machine 86.8 95.9 84.8

Table 15 shows a summary of the best prediction accuracies across the various pre-
processing approaches and classification models. It can be seen that the DWS was the
best-performing preprocessing algorithm, which produced a 90%+ classification accuracy
performance across all three measurement modalities, alongside the kernel-based SVM
model. Once again, it can be noted that the ECG performance is within range of the EEG,
thus showing its potential for being utilized to greater effect in this area, while the EMG also
showed a high prediction performance for the DWS at this level of a deep sedation state.
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Table 15. Summary of the best prediction accuracies across the various preprocessing approaches
and classification models for Case Study 2.

Best Modality Best Prediction Accuracy (%)

Best EMG DWS LSVM: 89.8

Best ECG DWS CSVM: 99.7

Best EEG DWS CSVM: 98.5

3.3. Case Study 3
Classification Problem: BIS over 40 and under 40

The results for this case study show a generally low value for the EMG prediction
accuracy, with the best performance being 55.3% for the case of the LSVM, as seen in
Table 16. The ECG and the EEG both provided a prediction accuracy of 71.1% for the DT
and CSVM, respectively, while the fusion of all modalities provided an accuracy of 76.3%.

Table 16. Results for modeling with the raw signal for BIS over 40 and under 40.

Machine Learning Model Raw EMG
Accuracy (%)

Raw ECG
Accuracy (%)

Raw EEG
Accuracy (%)

Raw EMG-ECG-EEG
Accuracy (%)

Decision Tree 42.1 71.1 60.5 52.6

Logistic Regression 42.1 52.6 60.5 55.3

K-Nearest Neighbor 42.1 60.5 63.2 76.3

Linear Support Vector Machine 55.3 42.1 57.9 50.0

Quadratic Support Vector Machine 47.4 47.4 68.4 71.1

Cubic Support Vector
Machine 47.4 50.0 71.1 76.3

Fine Gaussian Support Vector Machine 52.6 52.6 65.8 63.2

Table 17 shows that the LSDL provided a strong set of classification metrics for both
the ECG and EEG for this case study, with the best prediction accuracy being in the
region of 94.7% for the ECG, while the EEG produced a perfect 100% prediction accuracy
across a select number of classifiers. Due to the number of uncertainties about the dataset
itself, it remains unclear if the high metrics attained in this case were due to the patient
demographic, the kind of surgery, or anesthetic constituents.

Table 17. Results for modeling with the LSDL for BIS over 40 and under 40.

Machine Learning Model LSDL ECG Accuracy (%) LSDL EEG Accuracy (%)

Decision Tree 94.7 97.4

Logistic Regression 94.7 100

K-Nearest Neighbor 89.5 100

Linear Support Vector Machine 94.7 100

Quadratic Support Vector Machine 94.7 100

Cubic Support Vector Machine 92.1 100

Fine Gaussian Support Vector Machine 84.2 92.1

The DWS provided a best prediction accuracy of 64% for the EMG modality alongside
the DT model (see Table 18), while the ECG and EEG provided accuracies of 89.1% and
98.5%, respectively, showcasing high prediction accuracies for both modalities alongside
the LSDL.
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Table 18. Results for modeling with the DWS for BIS over 40 and under 40.

Machine Learning Model DWS EMG
Accuracy (%)

DWS ECG
Accuracy (%)

DWS EEG
Accuracy (%)

Decision Tree 64.0 72.3 68.0

Logistic Regression 57.1 75.7 71.7

K-Nearest Neighbor 63.4 89.1 98.5

Linear Support Vector Machine 56.8 76.5 69.8

Quadratic Support Vector
Machine 51.2 87.9 87.6

Cubic Support Vector Machine 50.4 50.2 95.1

Fine Gaussian Support Vector Machine 59.9 77.9 89.5

Table 19 shows the best performances across all three modalities for Case Study 3,
where it can be seen that the LSDL alongside the LR models prevail as the optimal means
of signal preprocessing and classification. In the case of the EMG, the best performance
was seen to be a combination of the DWS and DT.

Table 19. Summary of the best prediction accuracies across the various preprocessing approaches
and classification models for Case Study 3.

Best Modality Best Prediction Accuracy (%)

Best EMG DWS DT: 64.0

Best ECG LSDL Logistic Regression: 94.7

Best EEG LSDL Logistic Regression: 100

As mentioned, despite the classification problem for this case study being similar to
Case Study 1, the optimal processing and classification models appear to be different, as do
the accuracies. It remains unclear as to whether this is due to the anesthetic agents used
or the kind of surgery conducted, as it is difficult to comment in this direction due to the
uncertainties in the description of the dataset itself.

The results in the various case studies provide a degree of numerical and statistical
evidence that the ECG signals—when preprocessed and modeled with an effective pro-
cessing mechanism—can indeed provide a comparable accuracy to that of the traditionally
favored EEG monitor. However, it needs to be said that this inference has been made from
a relatively concise sample set, which contains uncertainties and sparse information around
the nature of the anesthetic dosing, the surgery, and the patients themselves. Nevertheless,
using a data-driven lens to interpret the results, the accuracy figures for the ECG and EEG
are proven to be comparable. While the EMG occasionally provides strong figures, it is
simply not sufficient to work as a primary DoA monitor given the requirements for things
in this setting.

Further insights from the results obtained suggest that, given the confines of the
investigations carried out, there does not appear to be a “one size fit all” in terms of the best
decomposition method and best model to utilize for the processing of the physiological
signals; thus, the proposition made involves a 2-phase, multi-stage process for an affordable
DoA monitoring platform. This is envisaged to have a strong level of appeal to developing
countries and under-resourced areas.

The modeling flow can be seen in Figure 7, for which, given a patient-specific anesthetic
DoA monitor, the first stage involves physiological data acquisition using an affordable
modality in the form of an ECG monitor, followed by the application of various signal
decomposition methods as part of the selection process, feature extraction, and then an
iterative sorting using the candidate machine learning models. Once this is complete, the
candidate modeling methods can then be deployed to perform a real-time DoA estimation
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using the candidate decomposition and machine learning models, as indicated in the
second phase of the flow diagram.
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4. Conclusions and Future Work

Sufficient depth of anesthesia is crucial for most surgical processes, where it is of
paramount importance to be able to infer and estimate the degree of patient sedation. This
is typically done with the use of physiological monitors, the EEG in particular, which
monitors brainwaves from the frontal cortex as part of the BIS model. Despite its wide array
of uses, EEG has limitations with regards to the ability to closely monitor sedation extent,
for example, when certain drugs are used, in addition to being expensive and complex to
decode. This has raised the appeal and potential of other modalities, such as EMG and ECG,
as surrogate and affordable means towards DoA monitoring. Thus, this work utilized a
physiological database from the University of Queensland [27], alongside an array of signal
decomposition algorithms and machine learning models, to observe the extent to which
other modalities compare to the likes of EEG when tasked with DoA monitoring. Around
200 simulations were run across three different patient datasets, alongside a comparative
use of various signal decomposition methods and machine learning models.

Different classification challenges were constructed for each of the three patients, while
the various associated physiological datasets were postprocessed. It was seen across the
three patients that a singular “one size fits all” algorithmic signal processing pipeline does
not exist for the postprocessing of the signals due to the varied physiological make-up of
each patient, the anesthetic agent, and surgery procedures. Nevertheless, it was seen on
multiple occasions that the ECG data was on par and within range of the EEG, providing
further evidence as to how this modality could serve as a potential physiological monitor
for DoA purposes in resource-constrained settings. The modeling and postprocessing
pipeline for the dataset itself includes a selection stage due to the lack of a single optimal
method across all patients.
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Due to the dataset itself, there continue to be a number of areas of uncertainty; despite
the results presented, there is no detailed information on the patient demographics, the
surgical process itself, or the anesthetic agents used. All of this, plus a concise sample set,
leads the authors to believe that more work would need to be done to validate the findings
from the paper, with emphasis on the areas highlighted.
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