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Abstract: Artificial intelligence is gaining interest among clinicians, but its results are difficult to be
interpreted, especially when dealing with survival outcomes and censored observations. Explain-
able machine learning (XAI) has been recently extended to this context to improve explainability,
interpretability and transparency for modeling results. A cohort of 231 patients undergoing an
allogeneic bone marrow transplantation was analyzed by XAI for survival by two different uni- and
multi-variate survival models, proportional hazard regression and random survival forest, having
as the main outcome the overall survival (OS) and its main determinants, using the survex package
for R. Both models’ performances were investigated using the integrated Brier score, the integrated
Cumulative/Dynamic AUC and the concordance C-index. Global explanation for the whole cohort
was performed using the time-dependent variable importance and the partial dependence survival
plot. The local explanation for each single patient was obtained via the SurvSHAP(t) and SurvLIME
plots and the ceteris paribus survival profile. The survex package common interface ensured a good
feasibility of XAI for survival, and the advanced graphical options allowed us to easily explore,
explain and compare OS results coming from the two survival models. Before the modeling results
to be suitable for clinical use, understandability, clinical relevance and computational efficiency
were the most important criteria ensured by this XAI for survival approach, in adherence to clinical
XAI guidelines.

Keywords: artificial intelligence; machine learning; explainable machine learning (XAI);
shapley additive explanations (SHAP); local interpretable model-agnostic explanations (LIME); partial
dependence profiles (PDP); proportional hazard regression model; random survival forest; survival
analysis; allogeneic bone marrow transplantation

1. Introduction

Machine learning (ML) techniques are gaining an increased interest among cancer
clinicians, mainly due to the availability of classification algorithms for automatic computer-
assisted diagnosis [1]. At the same time, these techniques need to be deeply adapted to
censored observations and time-to-event outcomes like overall survival (OS), a classical
endpoint in oncohematology and allogeneic bone marrow transplantation (BMT) trials [2–4].
Actually, survival ML modeling is still limited not only by the availability of dedicated
algorithms and software, but even more so by the critical interpretation of its results. In
the last years, several explainable machine learning (XAI) algorithms have been introduced
by different authors, stating three main principles: XAI should improve explainability,
interpretability and transparency for ML modeling results. The XAI algorithms’ goal is then
to convert “black-box” dark ML predictions into more interpretable “white-box” glass ones;
doing so, physicians could more easily translate the complex information deriving from
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ML models into reliable, daily clinical choices [5–9]. Very recently, the XAI approach has
been extended to survival models too [10–12]. This study aims to test this approach in a
real-world evidence context, estimating the OS and its determinants for a cohort of patients
undergoing allogeneic BMT, using two different survival models: the Cox proportional
hazard regression model (PH) and the random survival forest [13,14].

2. Materials and Methods

The clinical trial took place at the Stem Cell Transplantation Center of the Città della
Salute e della Scienza Hospital of Torino-I and enrolled 231 patients from 2008 to 2021,
receiving an allogeneic stem cell transplantation from unrelated donors (MUD) and all
being treated with a fixed dose (5 mg/kg) of anti-thymocyte globulin (ATG) as Graft-versus-
Host Disease (GVHD) prophylaxis [15]. Acute and chronic GvHD, as well treatment-related
adverse events and systemic infections, are the most severe toxicities after BMT, being
the main causes of death for relapse-free patients (NRM, Non Relapse Mortality). This
research is a reanalysis of the original dataset, in light of the recent scenario opened
by the introduction of XAI for survival; clinical history and treatment decisions for all
patients have not been changed following the current results. Due to the retrospective
observational nature of this trial and according to Italian law (Agenzia Italiana del Farmaco-
AIFA, Guidelines for observational studies, 20 March 2008), no formal approval from the
local Institutional Review Board/Independent Ethics Committee was needed.

Statistical Analysis

The primary outcome was the OS, defined as the time from BMT to death from any
cause/last follow-up; the median follow-up for the surviving subjects was 56 (IQR 30–81)
months. The OS was analyzed using either the proportional hazards regression model
(coxph) or the random survival forest (rfsrc), using XAI for survival to explore and explain
their results.

From the pool of the original study dataset (consisting of 18 covariates, Table 1), we
selected eight for the current research: those being statistically significant predictors at the
original multivariate OS Cox PH model. These eight features were tested as potential OS
risk factors: recipient age (≥60 vs. 40–60 vs. <40 years), recipient gender (male vs. female),
cytogenetic risk (intermediate/high vs. low), recipient CMV status (positive vs. negative),
Sorror Comorbidity Index (HCT-CI, ≥3 vs. 0–2), conditioning regimen (reduced intensity
(RIC) vs. myeloablative (MAC)), chronic GVHD (moderate/severe vs. no/mild) occurrence
and year of BMT (2018–2021 vs. 2013–2017 vs. 2008–2012). At first, missing values were
replaced using the Multiple Imputation by Chained Equations procedure: cytogenetic risk
was unknown for 82 subjects, HCT-CI for 57 and recipient CMV status for 10, while the
other five covariates had no missing values.

Table 1. Main patients’ characteristics of the whole cohort.

Characteristics All Patients

Age at transplant, median (IQR), years 51 (43–60)

Gender
Male 126 (54.5%)
Female 105 (45.5%)

HCT-CI
Low/intermediate (0–2) 119 (68.4%)
High (>3) 55 (31.6%)

Cytogenetics
Low risk 53 (35.6%)
Intermediate/High risk 96 (64.4%)
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Table 1. Cont.

Characteristics All Patients

CMV Recipient status
negative 67 (30.3%)
positive 154 (69.7%)

Conditioning regimen
MAC 199 (86.1%)
RIC 32 (13.9%)

Year of transplant
2008–2012 47 (20.3%)
2013–2017 98 (42.4%)
2018–2021 86 (37.3%)

Chronic GvHD
absent/mild 131 (68.6%)
moderate/severe 60 (31.4%)

Overall Survival
alive 133 (57.6%)
dead 98 (42.4%)

Abbreviations: HCT-CI hematopoietic cell transplantation-comorbidity index, CMV cytomegalovirus, IQR in-
ter quartile range, MAC myeloablative conditioning, RIC reduced intensity conditioning, GvHD graft versus
host disease.

For both approaches (coxph and rfsrc), model performance was investigated using
the integrated Brier score, the integrated Cumulative/Dynamic AUC and the concordance
C-index. Global explanation for the whole cohort was then performed using the time-
dependent variable importance and the partial dependence survival plot. Finally, the local
explanation for a single statistical unit (that is to say, a single patient) was obtained from the
SurvSHAP(t) and SurvLIME plots and the ceteris paribus survival profile. In all graphics,
the x-axis reported the time from BMT to death from any cause/last follow-up; event times
are marked in red, censor times in grey.

Patient characteristics were estimated using the Fisher’s exact test for the categorical
variables and the Mann–Whitney test for the continuous ones, reporting them as median
[interquartile range (IQR)]. All p-values were obtained using the two-sided exact method,
at the conventional 5% significance level. Data were analyzed as of June 2023 by R 4.3.0,
survex, randomForestSRC and mice packages (R Foundation for Statistical Computing,
Vienna-A, http://www.R-project.org, accessed on 15 August 2023).

3. Results

The results of XAI for survival using the survex R package have to follow a dedicated
and specific workflow, as reported in the diagram. The first step implies a model perfor-
mance estimation, both for coxph and rfsrc. In case of acceptable results, it is possible to
move on at the second step, using XAI for survival to explain the OS estimation for the
whole cohort (231 subjects). The third and final step allows for a reply to the OS estimation
process for each single patient: this is a notable advantage, comparing to the classical
survival modeling.

1—Model performance for the whole cohort
2a—Global explanation: time-dependent feature importance for the whole cohort
2b—Global explanation: partial dependence survival profile (PDP) for the whole cohort
3a—Local explanation: SurvSHAP(t) plot per single patient
3b—Local explanation: SurvLIME plot per single patient
3c—Local explanation: ceteris paribus survival profile per single patient

http://www.R-project.org
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3.1. Model Performance for the Whole Cohort

A set of performance measures on model quality was estimated using the Brier score
(the lower, the better), the C/D AUC (the higher, the better) and the C-index (the higher,
the better); all these metrics were reported on the y-axis. Random survival forest generally
overperformed coxph in each metric (Figure 1, XAI as bar plots) and during the whole
follow-up (Figure 2, XAI as time-dependent estimations): the longest observation occurred
at 163 mos after BMT. Brier score was 0.180 vs. 0.193, C/D AUC was 0.668 vs. 0.623, while
C-index was 0.775 vs. 0.743 for rfsrc vs. coxph, respectively. The better prediction power
of rfsrc had a limitation in its more difficult interpretability, compared to coxph; Table 2
reports the classical uni- and multi-variate Cox proportional hazards model results for OS,
as a complement to the graphical XAI.
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Table 2. Univariate and multivariate Cox proportional hazard models for Overall Survival after
allogeneic HSCT.

Univariate Models Multivariate Model
HR (95% CI) p HR (95%CI) p

Age 0.080 0.262
(40–60 vs. <40 years) 1.30 (0.73–2.31) 0.369 0.56 (0.23–1.38) 0.210
(>60 vs. <40 years) 1.93 (1.04–3.59) 0.038 0.91 (0.37–2.25) 0.839

Gender (male vs. female) 1.30 (0.87–1.95) 0.201 2.25 (1.18–4.29) 0.014

HCT-CI (≥3 vs. 0–2) 3.11 (1.86–5.21) <0.001 3.10 (1.70–5.65) <0.001

Cytogenetics (interm/high vs. low risk) 1.80 (1.02–3.20) 0.044 1.54 (0.81–2.92) 0.191

CMV recipient status (positive vs. negative) 1.69 (1.04–2.76) 0.035 1.04 (0.47–2.32) 0.925

Conditioning (RIC vs. MAC) 1.71 (1.02–2.90) 0.044 1.04 (0.44–2.47) 0.933

Year of transplant 0.007 0.382
(2013–2017 vs. 2008–2012) 0.51 (0.32–0.82) 0.005 1.64 (0.38–6.99) 0.506
(2018–2021 vs. 2008–2012) 0.49 (0.29–0.82) 0.007 1.04 (0.24–4.56) 0.959

Chronic GvHD moderate-severe (yes vs. no) * 0.19 (0.09–0.40) <0.001 0.22 (0.09–0.53) <0.001

* Treated as time-dependent variable. Abbreviations: HR hazard ratio, CI confidence interval, HCT-CI hematopoi-
etic cell transplantation-comorbidity index, CMV cytomegalovirus, RIC reduced intensity conditioning, MAC
myeloablative conditioning, GvHD graft versus host disease.

3.2. Global Explanation: Time-Dependent Feature Importance for the Whole Cohort

Time-dependent variable importance for the whole cohort has been investigated using
two different approaches, the Brier score loss after permutation (Figure 3) and the C/D
AUC loss after permutation (Figure 4), both for coxph and rfsrc. The y-axis now represents
the change in the loss function after permuting each covariate: variable importance does
change over time and the highest increases in the loss function were associated with the
most significant determinants for OS. Coxph and rfsrc showed quite similar results: HCT-CI
(labelled as sorror) was the worst independent risk factor for OS, having a more marked
time-dependent effect by the Brier score loss. On the other hand, either a chronic GVHD
occurrence (due to its well-known graft-versus-leukemia effect) or a more recent year of
transplantation played a protective role on OS, influencing model predictions especially for
long-survivor patients.

3.3. Global Explanation: Partial Dependence Survival Profile for the Whole Cohort

Figures 5 and 6 report the partial dependence survival profiles (PDP) for coxph and
rfsrc models, respectively. Survival function values for any covariate are on the y-axis;
the wider their difference between/among the levels of a factor, the larger the impact that
the same factor played on OS. PDPs show how OS would change for the whole cohort,
changing the value of a single determinant but keeping unchanged all the other ones. As
for categorical determinants, cGVHD occurrence (coded 1 on the plot), HCT-CI ≥3 (high
comorbidities, coded 1) and early years of BMT were the most significant unfavorable
predictors, both in coxph and rfsrc; the other categorical risk factors had no role on OS. Of
note, while coxph identified three time periods with different survival, rfsrc picked up two,
clustering together the two oldest time frames (2018–2021 vs. 2008–2017). As for continuous
covariates, the progressive drop in survival function for recipient age is better modeled
by coxph: age appears to be stratified in 5 classes, associated with a different survival,
the youngest one to the longest OS. Interestingly, moving to a different modeling strategy
and using the maximally selected rank statistics to estimate potential optimal cutpoints
for continuous covariates, an age equal to 36 years would allow us to stratify OS in two
asymmetrical subgroups (up to 36 years, 26 patients; over 36 years, 205 patients).
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loss after permutation.

3.4. Local Explanation: SurvSHAP(t) Plot per Single Patient

Moving from the predictions for the whole cohort to those for a single statistical unit
(single observation), XAI for survival has been used to explain the modeling results for
a randomly selected patient (pt#10): woman, aged 62 years at BMT, low-risk cytogenetic
profile, positive CMV status, HCT-CI 0–2 (low/intermediate comorbidities), who received a
myeloablative conditioning regimen BMT in 2011, who was not affected by chronic GVHD
and who died in 2019, 102 months after BMT. SurvSHAP(t) plots allow the study that the
time-dependent survival contribute exerted on OS by each risk factor for a selected case:
positive SurvSHAP(t) values, plotted for each covariate on the y-axis, were associated with
a shorter OS, while negative ones with a longer OS. Thus, the time-dependent estimation
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of SurvSHAP(t) values referred to this patient were reported in Figure 7. Unlike the whole
cohort, age and sex emerged as unfavorable prognostic factors, both for coxph and rfsrc.
Overall survival takes into account death for any cause, and this female patient died for
breast cancer (second cancer?): indeed, SurvSHAP(t) identified as main OS determinants
age and female gender, rather than the other classical hematological and transplant-related
risk factors.
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3.5. Local Explanation: SurvLIME Plot per Single Patient

The SurvLIME plot approach is quite similar to the previous one, detecting the most
influential survival predictors for a single, selected patient: always pt#10, in our case.
Making survival predictions for this patient and attributing variable importance for OS,
the SurvLIME plot is divided into two parts (Figures 8 and 9, for coxph and rfsrc models,
respectively). The left one shows that increasing age and positive recipient CMV status
were the most unfavorable OS predictors for this woman, both by coxph and rfsrc: the
higher the SurvLIME local importance value, the lower the survival chances. The right one
compares either the coxph or rfsrc model predictions to those deriving from a surrogate
proportional hazard model at the local area: the closer they are, the more accurate the
survival estimation. Of note, since the median follow-up for the whole cohort was 56
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months, OS estimations became less accurate over the course of time, both for coxph
and rfsrc.
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3.6. Local Explanation: Ceteris Paribus Survival Profile per Single Patient

Figures 10 and 11 report the ceteris paribus survival profiles (CPP), always referring to
patient #10, for coxph and rfsrc, respectively: these graphics are equivalent to the PDP ones,
but related to a single observation. As with PDPs, even with CPPs survival function, lower
values (on y-axis) were associated with a poorer OS, and the most significant determinants
were those with the largest difference between/among the levels of the categorical variables.
Patient values for continuous covariates (pt#10 was 62 years old) are highlighted as a red
line. CPPs show how survival function would change for pt#10, changing the value of one
covariate and keeping unchanged all the other ones; in our case, most determinants affected
OS, except for cytogenetic risk, CMV status and conditioning regimen. Of note, the eventual
occurrence of a chronic GVHD would appear as a critical favorable OS determinant by
coxph (as clinically expected), while not by rfsrc.
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4. Discussion

The decision-making process in oncohematology does very often rely on survival
data, and it could benefit from the results of different ML models. At the same time,
exploring and explaining predictive survival models with censored observations is a hard
task: hence the added value of XAI for survival algorithms. The survex package for R
is a very interesting tool, coming from the Biecek group in Warsaw: it offers a large and
complete choice of ML model explainers. All analyses can be conducted under a common,
uniform interface; in our case, it allows to easily explore and compare results coming from
two different survival models for a bone marrow transplantation trial, the proportional
hazard regression model and the random survival forest.
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A correct workflow with survex has to start examining the model quality by measuring
its performance, both for coxph and rsfrc. Three different metric values are available (C-
index, integrated C/D AUC and integrated Brier score); of note, the x-axis reports the
scores’ variation over follow-up course. The metric performances are almost comparable;
the slight overperformance of rsfrc has a cost, namely its less immediate interpretation. As
usual, model performance is influenced by the global sample size: our trial had a median
dimension, in the field of BMT clinical research.

As a second step, a series of global explanations is dedicated to exploring model pre-
dictions for the whole patient cohort. The estimation of permutational variable importance
is a time-dependent process, which can be reported along a time course, using two different
loss functions (Brier score and 1—CD/AUC): the highest increase in the loss function, the
most importance for the covariate. Moreover, partial dependence survival profiles can
be plotted for any covariate, either categorical or continuous: this analysis shows the risk
factors contribute to the global model, changing the value of one determinant at a time.

Finally, another series of local explanations allows to explore a model’s prediction
for a single, selected observation. Thus, it is possible to estimate how any determinant
impacted on the OS for each patient, sometimes revealing dramatic, unexpected differences
among them: a notable improvement compared to classical survival models. Three local
explanations are available, with different visualizations. The SurvSHAP(t) function for any
risk factor decreases, when OS decreases; the SurvLIME function shows the most important
OS determinants and their favorable/unfavorable effect on time course. The ceteris paribus
survival profile, by analogy to the partial dependence survival plots for the whole cohort,
allows to graphically estimate the role on OS of each risk factor for any single observation.

A critical point in our research does depend on the lack of separate training/validation/
test datasets. This has been a forced choice, due to the population sample size, which did
not allow an effective dataset splitting. Indeed, more than on OS results’ confirmation,
this research focused on the feasibility of XAI for survival in oncohematology using the R
survex environment.

In conclusion, the survex package for R opens the door to a complete, direct and
intuitive interpretation of survival models, either for the entire population or for selected
patients. It allows one to compare results coming from different survival modeling ap-
proaches, like, e.g., the proportional hazards regression model and random survival forest,
using XAI for survival to explain their results.
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