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Simple Summary: Structure name standardization is a critical problem in Radiotherapy planning
systems to correctly identify the various Organs-at-Risk, Planning Target Volumes and ‘Other’ organs
for monitoring present and future medications. We propose a deep neural network-based approach on
the multimodal vision-language prostate cancer patient data that provides state-of-the-art results for
structure name standardization. Our framework considers for the first time, both the bony anatomy
along with radiation dose information and the textual physician-given names of the structures present
in the prostate of cancer patients. The pipeline presented here, helps in automatic standardization of
structure names given by physicians with high accuracy. Our pipeline can successfully standardize
the Organs-at-Risk and the Planning Target Volumes, which are of utmost interest to the clinicians and
simultaneously, performs very well on the ‘Other’ organs. We performed comprehensive experiments
by varying input data modalities to show that using masked images and masked dose data with text
outperforms the combination of other input modalities. We also undersampled the majority class, i.e.,
the ‘Other’ class, at different degrees and conducted extensive experiments to demonstrate that a small
amount of majority class undersampling is essential for superior performance. Overall, our proposed
integrated, deep neural network-based architecture for prostate structure name standardization can
solve several challenges associated with multimodal data.

Abstract: Physicians often label anatomical structure sets in Digital Imaging and Communications in
Medicine (DICOM) images with nonstandard random names. Hence, the standardization of these
names for the Organs at Risk (OARs), Planning Target Volumes (PTVs), and ‘Other’ organs is a vital
problem. This paper presents novel deep learning methods on structure sets by integrating multi-
modal data compiled from the radiotherapy centers of the US Veterans Health Administration (VHA)
and Virginia Commonwealth University (VCU). These de-identified data comprise 16,290 prostate
structures. Our method integrates the multimodal textual and imaging data with Convolutional Neu-
ral Network (CNN)-based deep learning approaches such as CNN, Visual Geometry Group (VGG)
network, and Residual Network (ResNet) and shows improved results in prostate radiotherapy
structure name standardization. Evaluation with macro-averaged F1 score shows that our model with
single-modal textual data usually performs better than previous studies. The models perform well on
textual data alone, while the addition of imaging data shows that deep neural networks achieve better
performance using information present in other modalities. Additionally, using masked images and
masked doses along with text leads to an overall performance improvement with the CNN-based
architectures than using all the modalities together. Undersampling the majority class leads to further
performance enhancement. The VGG network on the masked image-dose data combined with CNNs
on the text data performs the best and presents the state-of-the-art in this domain.
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1. Introduction

Radiation therapy (RT) is an effective cancer treatment therapy where high-intensity
radiation beams are used to kill cancerous tissues and cells, decreasing the size of the
malignant tumor. In the RT treatment workflow, radiation oncologists use the images
based on a Computed Tomography (CT) or Magnetic Resonance (MR) dataset saved in the
Digital Imaging and Communications in Medicine (DICOM) files to delineate or contour
the various anatomical regions or structures of the organ of interest in these imaging
datasets and provide appropriate structure names. These physician-identified structures
are either Organs at Risk (OARs), Planning Target Volume (PTV), Clinical Target Volume
(CTV), Gross Tumor Volume (GTV), or ‘Other’ (all the remaining structures). Based on the
particular disease site such as prostate or lung cancer, the radiation oncologist contours
all neighboring OARs such as bladder, rectum, bowel, femurs, etc., for prostate cases and
heart, spinal cord, both lungs, ribs, etc., for the lung cases. While defining these contours
and naming them, we observe a high level of variability in the recorded structure names,
which makes it hard to consistently gather data for the same structure contour type across
a large population of patients. Inconsistencies in the physician-given structure names are
primarily due to the personal choice of the physicians coupled with the variation in policies
and systems at different RT clinics.

This issue of disparity between the physician-given structure names is addressed by
the American Association of Physicists in Medicine (AAPM), and the American Society for
Radiation Oncology (ASTRO) [1–3]. It mainly addressed the key challenges in the Radiation
structure name standardization process and has released a Task Group 263 (TG-263) report
where the standard names for the structures are mentioned. With the availability of the
standard structure names, there rises the need to automate the standardization of the
structure names. It takes huge amounts of time and labour to manually standardize the
structure names which presents a challenge in the clinical world that requires rapid decision-
making depending upon the criticality of cancer patients. Hence, automatic prediction
of standard structure names is a vital problem to solve both from a clinician’s and an
informatician’s point of view. However, there have been limited attempts to automate
the structure name standardization process using artificial intelligence (AI) and machine
learning (ML) related techniques. Extensive experimentation with various data models and
networks is required to elevate the current state-of-the-art in this domain.

From a clinical perspective, our framework has the potential to enable the construction
of data pooling tools that can reuse retrospective patient imaging and contouring datasets
for tracking patient outcomes, building data registries and clinical trials. Standardized
structure names help ensure that all members of the radiation oncology team, including
physicians, dosimetrists, and therapists, are using consistent and accurate terminology
when identifying and contouring anatomical structures. Furthermore, consistent and
accurate contouring of anatomical structures is critical for achieving optimal treatment
outcomes in radiation oncology. Standardized structure names can help ensure that all
team members are working on the same page, which can help improve treatment accuracy
and efficacy.

1.1. Related Works

AI/ML is a popular topic in many clinical and biomedical processes, including Ra-
diation Oncology [4–6]. Natural Language Processing (NLP)-based tasks on clinical and
biomedical texts have also gained immense popularity [7–10]. ML models can be used for
automation, value prediction, classification, or other tasks in radiation oncology. A few
prior works in standardizing the structure names for organs such as prostate, lung, and head
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and neck have proposed automated ML models. It has been shown that the standardization
of structure names can be done reliably by using neural networks on the head and neck
imaging data [11,12]. This model reported good results but only considered a limited
number of OARs for prediction; they also did not consider the non-OARs. Hence, this
method is unsuitable for real-world clinical datasets as non-OAR structures usually form
most of the structure-naming datasets.

Handcrafted 1D features with reduced dimensions were extracted from the imaging
data with singular value decomposition (SVD) [13] based on the bony, non-bony, and com-
bined anatomy. These 1D features were used to build a model that identifies the TG-263
labels [14] where automated ML methods were proposed. The methods were evaluated
with weighted F1-Score (best performances of 87.38% on VHA and 90.10% on VCU non-
curated datasets) which skewed the performance towards the majority class. Furthermore,
an ML model was built based on the textual physician-given structure name data by using
a supervised FastText algorithm to create a disease-dependent structure name standard-
ization model [15]. However, both the handcrafted imaging features and the text data
were considered together for the first time with traditional ML-based algorithms where
two different integration techniques were discussed [16]; it showed decent performance
(macro-averaged F1-Score of 87.9% on VHA data and F1-Score of 75.4% on VCU data
with intermediate integration). All these approaches have only applied traditional ML
algorithms as they used handcrafted 1D vectors with reduced dimensions from the ge-
ometric data. However, it is important to train the whole 3D vision-dose dataset with a
learning model for minimum information loss. Due to the huge dimensionality of the
vision-dose data, traditional methods face challenges. This motivates the use of deep learn-
ing (DL)-based models for automation on the 3D image and dose data with/without text.
Furthermore, combining both the VHA and VCU datasets provides additional avenues for
performance enhancement which has not yet been explored. DL models are gradient-based
computational methods with many processing layers to learn data representation with
multiple levels of abstraction [17]. Hence, DL algorithms have the potential to serve as
better learning algorithms than standard ML algorithms for the structure name standard-
ization problem. DL methods on this dataset were first proposed by Bose et al. [18] and
Sleeman et al. [19] earlier in 2021. Sleeman et al. (2021) [19] proposed a DL-based approach
in this context while considering the multimodal geometric data and the radiation dose
data where both the data types are numbers. Bose et al. [18] proposed a CNN architec-
ture on the text data and handcrafted geometric features showing improved performance
over the previous ML-based network on geometric and FastText-based textual features.
ChemProps [20] was introduced in 2021 for composite polymer name standardization.
Furthermore, organ at risk delineation and standardization in radiotherapy were studied
in 2021 [21] and 2023 [22,23]. However, for radiotherapy breast structure standardiza-
tion [23], accuracy was mostly used to evaluate the performances which is biased towards
the majority class.

1.2. Purpose of Study

No detailed prior work exists in standardizing the TG-263 structure names by consid-
ering both the textual and 3D vision-dose data with DL models. In this paper, we present
the first deep neural network (DNN)-based architecture on the text and the complex 3D
vision-dose data for prostate patient structure name standardization. Integrating textual
and geometric data for the multi-class classification problem while considering the various
integration techniques is an interesting problem with multiple challenges as both data
types are different: text and numbers. Hence, there is a need to point out these challenges
associated with multimodal DL. By including both the bony anatomy of the structures
along with radiation dose information and the textual physician-given structure names
of the structures present in the various organs in the prostate of cancer patients, we pro-
pose a DNN-based approach on this multimodal data that provides state-of-the-art results.
We also perform rigorous experiments with varying input data modalities to show that
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using masked images and masked dose data with text clearly has the edge over other
data models. Furthermore, this model requires less memory space to create and store the
data and train the networks compared to the model with text data, bitmaps, delineated
images, and doses. We also undersample the majority class, i.e., the ‘Other’ class, at dif-
ferent degrees and conduct extensive experiments to demonstrate that a small amount of
majority class undersampling can be essential for superior performance. Hence, we eval-
uate our integrated, automated, CNN-based approaches by comparing the performance
of the networks based on varying data modalities and the degree of undersampling in
the context of challenges associated with multimodal DL with varying data types. Our
3D VGG network on masked vision-dose data and 1D CNN on the textual data with a
little amount of majority class undersampling provided the best results in this case thereby,
improving the current state-of-the-art.

2. Dataset

The textual physician-given structure names [15] and the 3D DICOM CT geometric
data [14] are considered in our multimodal dataset. The DICOM CT image data show
that physicians identify the anatomical structures of interest that should be irradiated or
avoided during treatment. The physicians then use a Treatment Planning System (TPS)
to delineate the border around these structures. This process was implemented for all the
relevant imaging slices, producing several enclosed polygons for each structure. These
structure data for a particular patient were stored in DICOM format. The clinical dataset
used here was collected from 759 prostate cancer patients by the VHA RT centers and VCU
radiation oncology department. The count of the various organ structures for prostate
cancer patients is shown in Table 1. Out of the 759 prostate cancer patients, the total count
of the physician-given structure names was 16,290, and the standard structure names
consisted of 6 OARs (Femur_L, Femur_R, Bowel_Large, Bowel_Small, Bladder, Rectum),
Target (PTV) and ‘Other’ (all the remaining) prostate structures. From the original dataset,
there was some data loss with time due to corruption, a shift in technologies and platforms,
etc. Finally, the dataset consists of 9723 samples or structures, out of which 7803 samples
were used for training and 1920 samples for testing.

Table 1. Distribution of the Organ structure for the Prostate Cancer Patients.

Standard
Names

VHA Physician
Given Name

Counts

VCU Physician
Given Name

Counts

Total Physician
Given Name

Counts

Available
Given Name

Counts

Bladder 609 50 659 519
Rectum 719 50 769 517

PTV (Target) 714 38 752 522
Femur_L 694 29 723 508
Femur_R 700 29 729 515

SmallBowel 250 49 299 145
LargeBowel 341 0 341 234

‘Other’ 11,038 980 12,018 6763

Prostate Total 15,065 1225 16,290 9723

• VHA Dataset: There are 40 RT centers under VHA that are spread nationwide. Hence,
there is a need to evaluate the quality of treatments across these centers. To ensure this,
VHA had implemented a clinical informatics initiative called the Radiation Oncology
Quality Surveillance Program (VA-ROQS) [24]. The maximum number of prostate
cancer patients considered for each center was 20. The patients were selected per
the criteria mentioned in Hagan et al. [24] that ultimately helped store the data of
709 prostate cancer patients for analysis. Next, the physicians manually labeled the
organ structures using TG-263 nomenclature for building the models.
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• VCU Dataset: A dataset was prepared from the DICOM CT geometric data from a
random cohort of 50 prostate cancer patients from the Radiation Oncology department
at VCU. The physicians manually labeled the structures, similar to the VHA dataset.

3. Methods

In this section, we outline our computational pipeline and different techniques applied
during the creation of our models. Ethical review and approval for using the dataset were
waived because this study was considered secondary data analysis and declared exempt
by the US Veteran’s Health Administration IRB.

3.1. Data Modality and Multimodal Learning

The information can come from various input channels; for example, images are made
up of tags and captions, videos are associated with visual and audio signals, and so on [25].
Modality of data is often used in data science to refer to the measurement method used to
obtain the data. Each modality, whether independent of other modalities or dependent on
other modalities, has unique information that, when added together, may improve model
performance. Although combining complementary data from multiple modalities may
improve the performance of learning-based approaches, they are accompanied by practical
challenges of fully leveraging the various modalities such as noise, conflicts between
modalities, etc. [26]. A multimodal dataset contains data of different modalities where the
data-types are similar across different modalities, i.e., homogeneous multimodal data or
the data-types can vary across different modalities, i.e., heterogeneous multimodal data.
For example, multimodal neuroimaging data consisting of magnetic resonance imaging
(MRI) data and positron emission tomography (PET) data used for effective Alzheimer’s
disease diagnosis [27] is a multimodal data system where the data types of the various
modalities are the same as images are either 2-D/3-D arrays of numbers. On the other
hand, images and text were both considered for learning with multimodal data where the
data types vary; images are number arrays, whereas text is strings [16,25]. Multimodal
learning has been addressed many times across various domains [28–30] including the
clinical and the biomedical field [31–33]. However, in most of these cases, the data types
are similar across different modalities. The additional modalities were either originally
present in the dataset or have been synthesized from a particular modality. In such cases,
the conflicts between modalities is likely to be less unlike multimodal data with varying
data-types where the data for various modalities are physically collected.

3.2. Data Pre-Processing

In this case, the multimodal data consisted of numeric vision-dose data and the ran-
domized physician-given textual structure names. The textual names, being unstructured,
have to be first converted into numbers before they are fed into the learning framework.
On the other hand, vision-dose data are 3D arrays of numbers in each case. Due to the
varying nature of the input data modalities, both the modalities require different types
of pre-processing. We next discuss the data pre-processing techniques for the different
data modalities.

3.2.1. Textual Data

The textual features are the physician-given structure names. The maximum length of
the given names and the characters used in them depends upon the system used by the
particular vendor. The distribution of the physician-given structure names of three random
prostates is shown in Table 2. Notably, in the case of the ‘Other’ structures, a wide variation
in the given names is observed for prostate cancer patients. Furthermore, some physicians
annotate some ‘Other’ type structures as PTV, but the term ‘PTV’ is always associated with
the Target type structures. This is a challenge for any ML algorithm to predict whether
the term ‘PTV’ falls under the Target class or ‘Other’ class. The inconsistencies in the
physician-given names of the structures are shown in Table 2. Although a wide variation
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can be noticed in the structure naming procedures in general, the overall character set is
limited. Since the ‘Other’ class consists of all the contoured structures except the OARs and
the Target, it is the highest occurring structure. A high level of data imbalance was also
observed between the ‘Other’ class and all the remaining classes.

Table 2. Distribution of the Physician Given Structure Names for the Prostate Cancer Patients.

Structure Type Standard Name Patient 1 Patient 2 Patient 3

OAR LargeBowel Colon_Sigmoid - -
OAR Femur_R Femur_Head_R RtFemHead Hip Right
OAR Femur_L Femur_Head_L LtFemHead Hip Left
OAR Bladder Bladder bladder Bladder
OAR Rectum Rectum rectum Rectum
OAR SmallBowel - bowel -

Target PTV PTV_7920 PTV45Gy PTV 2
‘Other’ “Other” z post rectum ptv4cm Rectum − PTV
‘Other’ “Other” Body nodalCTVfinal Prostate + SV
‘Other’ “Other” CTVp NONPTVBlad PTV 1
‘Other’ “Other” CouchInterior CTVProsSV Bladder − PTV
‘Other’ “Other” PenileBulb External Seminal Vesicles
‘Other’ “Other” Prostate FinalISO Seed Marker 1
‘Other’ “Other” z_rectuminptv MarkedISO Dose 104 [%]
‘Other’ “Other” z_dosedec CTVBst Seed Marker 3

Text preprocessing techniques need to be wisely chosen so that important details are
not missed, which may result in poor model performance. To avoid this, we restricted our-
selves to minimal text-based preprocessing, which consisted of replacing all the characters
except alphabets and digits by the space character and then lowercasing the alphabets. This
helped us in removing symbols such as ‘_’, ‘−’, ‘+’, etc., which only add a little value to the
textual information.

It is vital to choose the precise tokenization algorithm so that most of the terms
are present in the vocabulary of the tokenizer. Our dataset contains clinical data; hence,
selecting a medical domain tokenizer is very relevant. Here, we have used a recent tokenizer
that is strong in the biological domain, BioBERT [34]. This tokenizer breaks up a single word
into multiple tokens. For example, after preprocessing, the BioBERT tokenizer tokenizes
the physician given names ’nodalCTVfinal’ and ‘z_dosedec into ‘nod’, ‘##al’, ‘##CT’, ‘##V’,
’##final’ and ‘z’, ‘_’, ‘dose’, ‘##de’, ‘##c’, respectively.

After tokenization, the next goal is to produce the feature vectors from the text.
We have followed two ways of generating the feature vectors: (a) based on our corpus
and (b) using the pre-trained word embeddings. The tokens were converted into the
token-ids, and the feature vector was generated based on our corpus. Corpus-based
embedding creates the embedding vector based on the count of a particular word in our
corpus and we then train the weights to the embedding vector. In our case, corpus-based
embedding performed better than some of the pre-trained word embeddings. We varied
the embedding dimensions keeping the network unchanged and the embedding dimension
of 256 produced the best results for prostate cancer patients and that layer was fed to a 1D
CNN with 256 filters. BioBERT-based pre-trained word embeddings are also generated.
Both these embeddings represent contextualized word embeddings that train a BERT [35]
based model over a biomedical and clinical corpus. In our case, the feature vectors based on
our corpus provided excellent results compared to the pre-trained word embeddings, as the
physician-given structure names are not context-dependent. These word embeddings are
used as input to the deep learning model.

3.2.2. Vision-Dose Data

As part of the treatment planning process, physicians annotate regions of interest
in the planning CT image using a manual or semi-automated contouring tool. These
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annotations are saved in the DICOM-RT structure set format, which includes the name
of each contoured structure and the 3D coordinate location of each drawn point. Custom
software used in our prior work by Sleeman et al. [14] who extracted these individual
points from the training structure set files and connected them for each corresponding
CT image slice to create a number of 2D hollow bitmaps. Each bitmap was then made
solid with a flood fill algorithm and then combined to create a single volumetric bitmap
for each delineated structure. Each planning image was resized to 96 × 96 × 48 voxels,
and the resulting structure bitmaps were interpolated on this same grid. In addition to the
structure set data, the corresponding planning CT image was filtered to create a bitmap
of the bony anatomy, which was also converted into a feature vector. Figure 1a shows the
delineation of a bladder over the corresponding planning CT image, and Figure 1b–d shows
the resulting bitmap representations. The dose data are also introduced by recording the
dose values in the respective voxels for the particular structure set in the organ. The voxels
inside PTV reasonably receive the highest amount of dose, whereas OARs and ‘Other’
structures receive a much smaller amount of dose. Thus, the dose values provide significant
information on top of the delineated images for pointing out the structure-classes based on
the magnitude of the dose received.

(a) (b) (c) (d)

Figure 1. Image and structure set data from a single CT slice: (a) Delineation of a bladder (in blue)
over the corresponding planning CT image (b) Bitmap representation of the bladder (c) Bony anatomy
of the same CT, created with a density-based filter (d) Combination of the structure set and bony
anatomy data

We masked each planning CT image with their respective bitmap structure represen-
tations for our final architecture using simple multiplication. Thus, the 3D integer image
arrays were converted to 3D float arrays after masking. Similarly, we also masked the
planning doses with their respective bitmap representation to obtain masked dose data.
For each structure set, the image and the dose arrays were concatenated into separate
channels, thereby stacking the image and dose information in a 3D array with two channels.
Masking the images and doses with their structure bitmaps is more memory efficient than
using both images and doses along with their respective structure bitmaps. Using all these
three modalities together requires more memory space and time to create, store and train
the data, with training being particularly computationally expensive. However, the masked
data contain all the information present in the three modalities and is significantly less com-
putationally expensive for training and storing. Hence, masking is highly recommended
in case of performance improvement or in case of marginal drop in performance. In our
case, masking improves the model performances to some extent, as shown in Section 4.2.
The computationally easy step of masking the images and doses with the help of the
corresponding structure bitmaps is shown in Figure 2a,b, respectively.

3.3. Deep Neural Network Architectures

We used CNN, or CNN-based architectures, on the 3D images and doses as CNNs
have previously demonstrated an edge over other deep neural networks (DNN) on vision
data [36]. Therefore, we build a naive 3D CNN, Residual Network (ResNet), and Vision
Geometry Group (VGG) Network on the masked vision-dose data. We have restricted
ourselves to these three networks that we have customized for our purpose. Although some
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other advanced and computationally heavy models have been proposed in recent years,
the community is still carrying out meaningful experiments using the models that we
have proposed here. In the future, we would explore such advanced models including
DenseNet [37], Squeeze Net [38], ENet [39] besides also some vision transformers [40]
and compare their performances. We have used 1D CNN on the pre-processed textual
data as CNN performed the best on the texts when compared with the performance of
Recurrent Neural Networks (RNNs) Our network architectures with 1D CNN on the text
and 3D CNN, 3D VGG network, and 3D ResNet on vision-dose are illustrated in Figure 3.
Although, the architectures of the three different networks are somewhat similar, it is
interesting to visualize the particular sequence of layers in each case. It provides a reference
to the readers for future replication purposes and enhances the clarity of the detailed
architecture. A CNN [41] is a DNN that uses convolution on the input and directs the result
of convoluting to the next layer. Although multi-layer perceptron neural networks can be
trained on textual data, their performances are often overshadowed by CNNs [42] that can
slide a window of user-defined size on the input data. CNN was first used for sentence
classification, i.e., a particular type of text classification task, in 2014 [43]. The hyper-
parameters used in CNNs are the number of input and output channels, convolutional
kernels, and filters. RNNs such as Simple Recurrent Unit (SRU), Long Short Term Memory
(LSTM) [44], etc., are a class of DNNs that work on the cyclical connections between nodes,
exhibiting temporal dynamic behavior. They are capable of using their internal state or
memory to train inputs of varying length sequences [45].

(a)

(b)

Figure 2. Pictorial Representation of our Masking Step in the case of (a) images, and (b) doses of
Prostate RT Patients.

Recurrent Networks perform well on contextual data as these learn to remember
the previous steps. Since, the textual data in our case contains random physician-given
names of the structures, there is not much context in our textual data. Due to the absence
of context, CNNs are more effective here. Hence, we have chosen CNNs over recurrent
networks in this case. We build a DNNs on these multimodal datasets with the mentioned
networks where the two features (vision-dose and text) are combined, intermediately and
fed through hidden layers before classifying the multi-classes using a classifier in the end.
We have used a batch size of 32, categorical cross-entropy as loss, 200 number of epochs
(except 50 epochs for the architectures with LeakyReLU activation as LeakyReLU converges
faster than ReLU [46]), and Adam as optimizer with an initial learning rate of 0.001 and
staircase decay steps of 10,000 at 0.96 decay rate, in training all our DNNs.
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(a)

(b) (c)

(d) (e)

Figure 3. Overview of our DNN architecture: (a) General architecture of our 3D Convolution-
based network on vision-dose data and 1D CNN on text data, (b) Customized 3D CNN on vision-
dose, (c) Customized 3D VGG network on vision-dose, (d) Customized 3D ResNet on vision-dose,
(e) Stacked customized 3D VGG Network blocks with nested 3D ResNet blocks inside each block on
vision-dose data.
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The general architecture of our model is shown in Figure 3a, where we vary the 3D
convolution-based network on the vision-dose data while keeping the other parts un-
changed. We used two consecutive 1D CNN layers of 256 and 128 filters, respectively, with
Rectified Linear Unit (ReLU) [47] activation function on text embeddings. We have used
1D max pooling after each convolution layer with a constant kernel size of 8. After these
two layers, the features are flattened into a 1D vector and concatenated with vision-dose
features for the multimodal model. In all the architectures, we have concatenated the
textual and vision-dose features in this intermediate stage.

3.3.1. CNN

Our 3D CNN architecture on vision-dose data consists of several convolution blocks
in sequence, as shown in Figure 3b. Each convolution block consists of 3D convolution
layer with ReLU activation function, 3D max-pooling layer, a spatial 3D dropout layer with
20% dropout, and finally, a batch-normalization layer. The three convolution blocks first
consist of a 3D convolution layer where the number of output channels or convolution
filters increases with the increase in the number of convolution blocks, i.e., the increase in
the model depth. The convolution kernel size is chosen as 3 except for the first block, where
the kernel size is 9. A global 3D average-pooling is performed at the end of the convolution
blocks for feature reduction based on the global features. These features, passed through
a fully connected layer are finally concatenated with textual features and fed to the final
classifying layer with Softmax [48] activation function through subsequent hidden layers.

3.3.2. VGG Network

The VGG network [49], developed by the Visual Geometry Group at Oxford University,
caters the first idea of using blocks. Blocks or the repeated structures in code with any
modern DL framework is very easy to implement and hence has gained immense popularity.
The VGG network comprises two different types of blocks, convolutional blocks with max-
pooling and fully connected dense blocks.

Instead of using pre-trained VGG network models, we define our customized VGG
architecture, where we can tweak the parameters freely. We took the 2D VGG network as
an inspiration to build the 3D VGG network in our case that can operate on 3D vision-dose
datasets, as shown in Figure 3c. The VGG network, firstly, consists of three VGG blocks
with 1, 2, and 4 number of convolutions, respectively, in the blocks in order. Each VGG
block consists of a defined number of 3D convolution layers with ReLU activation and a
kernel of size 3. 3D max-pooling with strides = 2 is then performed at the end of all the
convolutions in each VGG block. Next, the output of the three consecutive VGG blocks
is fed to a 3D global average-pooling layer. The features are then passed through a fully
connected layer and are integrated intermediately with the textual features and are finally
fed to the classifier like in the case of the CNN model. Since, VGGNet performed the best
on some combinations of the data as reported later, we further customized the VGGNet
model for experimentation. Firstly, we deepened the VGGNet by replacing the convolution
layers inside each block with ResNet layers (discussed in the next subsection), as shown
in Figure 3e. This particular architecture is inspired by the recently published model
in [50]. Secondly, we investigated the performance of initial VGGnet with ReLU activation
function in each convolutional layer and ultimately adding a LeakyReLU activation after
the max-pooling layer. However, these architectures were not effective in upgrading the
best performing results of the prior VGGNet model.

3.3.3. ResNet

A residual neural network (ResNet) is an artificial DNN that is based on skipping
connections or shortcuts to jump over some layers. ResNet [51] models have typically
been implemented with double- or triple-layer skips where a ReLU activation and batch
normalization layers are used in between. Prior to the invention of ResNet, the CNN
architecture continued going deeper and deeper where ImageNet [52], VGG network,
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and GoogleNet [53] had 5, 19, and 22 layers, respectively. However, deep networks are
often hard to train when the network depth is increased by simply stacking layers together.
These networks lead to overfitting, as in the case of back-propagation of the gradient
to earlier layers, repeated multiplications may potentially make the gradient very small.
Although GoogleNet was instrumental in adding an auxillary loss in a middle layer for an
added supervision, it was not much effective. Hence, the core idea of ResNet by introducing
shortcut connections represented a major breakthrough in this domain.

Similar to the case of VGG, we use our customized 3D ResNet architecture on vision-
dose data to tweak the parameters freely as shown in Figure 3d. Inspired by the 2D ResNet,
we also developed a 3D ResNet model with 3D convolutions and max-pooling that can
work on 3D data. ResNet model with Our ResNet architecture consists of a convolution
block, followed by three sequential ResNet blocks. The Convolution block consists of a
3D convolution layer with 32 filters, kernel size of 9 and a stride of 2, followed by batch
normalization, ReLU activation and 3D max-pooling. All our ResNet blocks consist of 2
residual blocks. Each residual block consists of a 3D convolution (kernel size: 3) with batch
normalization and ReLU activation, followed by another 3D convolution (kernel size: 3)
with batch normalization. The output of this is added to the input of each residual block
with ReLU activation and passed down to the next layer. We perform a 3D max-pooling,
followed by a 20% dropout after the residual blocks. In the first residual blocks of the last
two ResNet blocks, the output of the two subsequent 3D convolutions is added to the input
of the residual layer after convolution through a kernel of size 1 and hence, ReLU activation
is applied. We perform a 3D global average-pooling after the third ResNet block and pass it
through a fully connected layer for intermediate concatenation with textual features. Next,
classification is performed exactly in a similar way as mentioned in the previous two cases.

3.4. Sampling the ‘Other’ Classes

Data imbalance is a very important challenge in training DL architectures. It nega-
tively impacts the performance by biasing it towards the majority class depending upon
the level of imbalance although a number of studies have demonstrated that it might not
be a vital factor [6]. In the prostate cancer dataset, a high level of imbalance is observed,
which contains an extremely high representation of the ‘Other’ class, compared to PTV and
the other six OAR classes, as illustrated in Figure 4a. Our training dataset contains 416,
414, 418, 407, 412, 116, 188, and 5432 samples from ‘Bladder’, ‘Rectum’, ‘PTV’, ‘Femur_L’,
‘Femur_R’, ‘SmallBowel’, ‘LargeBowel’, and ‘Other’ classes, respectively, where the ma-
jority class, i.e., ‘Other’ has about thirteen times the number of samples present in the
largest minority class, i.e., ‘PTV’. It constitutes about 70% of the overall prostate structure
name standardization dataset, which clearly outnumbers the plethora of structures under
consideration in the prostate. Since the majority class presents a substantial amount of
imbalance, sampling is potentially very useful in this case.

Sampling comes in two types: undersampling and oversampling. In our case, we have
only one majority class and it is easier to undersample the majority class to prevent the
model from biasing towards the majority class. Plus, oversampling the minority class to
some extent will make the models bias towards these classes with high chances of overtrain-
ing them. Hence, we undersampled the majority class and randomly selected 500 samples
from that majority class in each case as the largest minority only contains 418 samples in
the training set. The DNNs performed roughly the same with or without undersampling
the ‘Other’ class and hence, used undersampling to compare the various DNNs for data
preparation and model selection. Next, we show the performance of the DNNs when
the amount of undersampling is varied. Since, we undersampled the majority classes to
500 samples initially, we show the performance of the DNNs when the majority class was
undersampled to 500 (about 90.8% undersampling), 1000 (about 81.6% undersampling),
1500 (about 72.4% undersampling) 2500 (about 54% undersampling), 3500 (about 35.6% un-
dersampling), 4500 (about 17.2% undersampling), and samples and not oversampled at all
as shown in Figure 4b. Without considering the last case, the percentage of undersampling
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ranges from 17.2% (4500 samples) to 90.8% (500 samples). Performances of the DNNs show
that there is a small trade-off between undersampling and model performance.

(a) (b)

Figure 4. Bar plots showing (a) the distribution of various data classes in the RT Prostate Structure
Naming Dataset, and (b) the variation in the number of samples from the ‘Other’ class in different
cases of consideration.

4. Results

In most cases, our architectures perform strongly on our final model on vision-dose
and text data with or without undersampling. Our models, which are built on both vision-
dose and text data, consist of two different neural network architectures: one for image
or dose or both and another for text. In all these cases, the first mentioned DNN is used
on the vision-dose data, and the latter one is used on the text data. So, a ‘3D CNN and 1D
CNN’ method means that a 3D CNN is used on images or doses or both, and 1D CNN
is applied to the text. We explain our evaluation metrics and analyze our results in the
subsections below.

4.1. Evaluation Metrics

In order to evaluate the models, we have used the following metrics: precision, recall,
and F1-score, as proposed by the earlier works on this data. These metrics can be macro-
averaged, i.e., independently calculating the values for each class and then averaging the
values across the different classes, or weighted averaged, i.e., independently calculating
the values across different classes and then doing a weighted average of the values of
different classes. In the case of a highly imbalanced data set, using weighted averaged
metrics will potentially skew the values towards the majority class/classes. Hence, we
used macro-averaged metrics across the multi classes (eight classes) instead of weighted
averaged metrics as we were particularly interested in seeing the models’ effectiveness
towards the minority classes. The evaluation metrics are formally expressed as follows:

Precision =
True Positive

True Positive + False Positive
(1)

Recall =
True Positive

True Positive + False Negative
(2)

F1 − score = 2 ∗ Precision ∗ Recall
Precision + Recall

(3)

4.2. Data Preparation and Selection

The performances of deep networks using both vision-dose and text data on prostate
cancer patients are shown in Table 3. The table shows the performance of CNNs on textual
data and CNNs, ResNet, and VGG network on the vision-dose data, where we vary the
nature of the input vision-dose data. In the first case, we input the bitmaps, delineated
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images, and doses as 3D arrays with three channels to the model along with texts. In the
second case, we input the masked images and doses (as mentioned above) as 3D arrays
with two channels to the model along with texts. This way, we made a comparison between
a time efficient and a not so time efficient case only to highlight that the time-efficient
case performs better than the other with respect to the prediction by the deep multimodal
network. These evaluated network performances reported in Table 3 substantiate this. This
is because the learning of a DNN becomes more challenging with large amounts of input
data, and in our second case, we present the same information to the neural network but
with less data space when compared to the first case.

Table 3. Performance of the CNN-based Models for the Prostate cancer patients during data selection.

Data Modality Method Precision (in %) Recall (in %) F1-Score (in %)

struc+ image+ dose+ text 3D CNN and 1D CNN 91.93 92.93 92.42
struc+ image+ dose+ text 3D ResNet and 1D CNN 92.72 93.74 93.2
struc+ image+ dose+ text 3D VGG and 1D CNN 93.51 92.99 93.19

masked image+ masked dose+ text 3D CNN and 1D CNN 93.65 93.29 93.4
masked image+ masked dose+ text 3D ResNet and 1D CNN 91.05 94.83 92.76
masked image+ masked dose+ text 3D VGG and 1D CNN 94.66 94.39 94.45

4.3. Model Selection

The performance of the various DNN architectures for the prostate cancer patients
when fitted on the masked vision-dose and text data are shown in Table 4. We experimented
with 3D CNN, 3D ResNet and 3D VGG Network architectures for the vision-dose data
while we used 1D CNN for the textual part. The 1D CNN on texts performs very well with
respect to the macro-averaged F1-Scores. It can be seen that the VGG network can learn
geometric features from the data very well (shown in the next paragraph) and the scope of
performance improvement in this case is much limited compared to other cases. ResNet
and simple 3D CNN also exhibit strong performances in some cases.

The performances of the various architectures for prostate cancer patients with varying
combinations of data modalities are shown in Table 4. It is evident from the first nine rows
of the table that the networks can learn the geometric features to a great extent from the
masked vision-dose data together, whereas their performance drops when either masked
image or masked dose is only considered. This establishes the fact that the addition of
relevant data modalities can lead to a significant leap in performance. With either of these
geomteric modalities, the networks report F1-Scores in the low 70s while, with both of
these geometric modalities the F1-Scores elevate to low 90s. The F1-Scores, as reported
in the table, point out that the performance of VGG and ResNet eclipses the performance
of CNN, consistently to some extent when either masked dose or masked image or both
masked dose-image data are considered. On the other hand, 1D CNNs exhibit a solid
performance of 93.17% F1-Score when trained on the textual data itself. When the text was
added on top of the image or dose data, the performance of VGG only improved over the
performances of other models. Thus, it shows that the 3D VGG network and 1D CNN
architecture can improve learning by adding data if the data contain information vital
for decision-making. With all these data modalities, 3D ResNet and 1D CNN also shows
improved performance with a small amount of majority class undersampling which is
discussed in the next subsection. This statement is further justified by the performance
of our final data model, where the DNNs further advanced their learning capability on
training on multimodal vision-dose and text data. The performances of the DNNs on this
final data model are reported in Table 3.
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Table 4. Model performances for the Prostate cancer patients with varying data modalities.

Masked Image Masked Dose Text Method Precision (in %) Recall (in %) F1-Score (in %)

X - - 3D CNN 71.75 74.81 72.99
X - - 3D ResNet 73.94 74.24 73.92
X - - 3D VGG 76.19 74.46 74.82
- X - 3D CNN 74.18 70.79 72.17
- X - 3D ResNet 74.01 62.94 66.39
- X - 3D VGG 81.53 77.98 79.45
X X - 3D CNN 93.6 91.52 91.93
X X - 3D ResNet 94.23 93.65 93.82
X X - 3D VGG 93.0 94.9 93.8
- - X 1D CNN 92.18 94.24 93.17
X - X 3D CNN and 1D CNN 93.31 92.49 92.83
X - X 3D ResNet and 1D CNN 91.33 95.18 93.15
X - X 3D VGG and 1D CNN 92.24 91.35 91.71
- X X 3D CNN and 1D CNN 91.86 93.66 92.61
- X X 3D ResNet and 1D CNN 90.13 94.97 92.29
- X X 3D VGG and 1D CNN 91.82 93.42 92.54
X X X 3D CNN and 1D CNN 93.65 93.29 93.4
X X X 3D ResNet and 1D CNN 91.05 94.83 92.76
X X X 3D VGG and 1D CNN 94.66 94.39 94.45

4.4. Model Performance on Varying the Number of Majority Class Samples

The performance of the various DNN architectures for prostate cancer patients when
trained on a varying number of samples from ‘Other’ classes are shown in Table 5. The vari-
ation in performances of our architectures (3D CNN and 1D CNN, 3D ResNet and 1D CNN,
and 3D VGG network and 1D CNN) with the variation in number of samples from the
majority class is shown in Figure 5. The confusion matrices of the top three models by their
performances along with that of the top model for 3D CNN and 1D CNN are shown in
Figure 6. The architectures exhibit a strong performance with or without undersampling
the ‘Other’ class, although performances are slightly improved in most cases with varying
degrees of undersampling. The table displays the model performances when the ‘Other’
class was undersampled at 500, 1000, 1500, 2500, 3500, 4500 samples, respectively. The
F1-Scores provided by 3D CNN and 1D CNN vary between 90.97% and 93.46% at different
levels of undersampling, whereas in the case of 3D ResNet and 1D CNN, it varies between
90.34% and 94.35%. F1-Scores for 3D VGG network and 1D CNN varies between 92.05%
and 94.45%. The top three performances are recorded by 3D VGG network and 1D CNN
with majority classes undersampled at 5500 (Confusion matrix on test dataset shown in
Figure 6a), 4400 (confusion matrix on test dataset shown in Figure 6c), and 1100 samples,
respectively, followed by 3D ResNet and 1D CNN with majority classes undersampled at
550 samples (Confusion matrix on test dataset shown in Figure 6b) and finally the 3D CNN
and 1D CNN with majority classes undersampled at 5500 samples (confusion matrix on test
dataset shown in Figure 6d). Overall, it can be pointed out that the 3D VGG with 1D CNN
consistently performs well in all the cases and it either outperforms or performs at par with
3D ResNet and 1D CNN. These models have a slight edge over 3D CNN along with 1D
CNN on text. This is because VGG network and ResNet are deeper than just CNNs which
has the advantage of using more parameters to learn more from the dataset. Furthermore,
the idea of using residuals from a network performs well on its own and overshadows
the performance of 3D CNN. On the other hand, our VGG network or ResNet architecture
is neither too deep nor too shallow which is useful for effective training and minimizing
the chances of probable overtraining. The performances of the various DNNs vary with
the degree of undersampling. The performance of VGG network gives state-of-the-art
results (F1-Score: 94.45%) without the need for any undersampling although it increases
the training time to some extent. The performance of 3D ResNet reaches its crest when
the majority class is undersampled at 3500 samples (F1-Score: 94.35%), which requires less
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training time and at the same time obscures the performance of the other architectures.
The third best performance is also reported by 3D VGG and 1D CNN when the majority
class is undersampled at 2500 samples (F1-Score: 94.09%). When the majority class samples
are undersampled at 1500 samples, 3D CNN and 1D CNN records its best performance
with an F1-Score of 93.46%. In most cases, the 3D VGG network and ResNet successfully
eclipses the performance of CNN on the vision-dose data along with 1D CNNs on the
text, which establishes the superiority of deeper networks in learning the image and dose
features over others.

Table 5. Model performances for the Prostate cancer patients with variation in the majority class samples.

Total Samples from ‘Other’ Class Method Precision (in %) Recall (in %) F1-Score (in %)

500 3D CNN and 1D CNN 70.62 89.32 77.26
500 3D ResNet and 1D CNN 76.47 87.21 80.98
500 3D VGG and 1D CNN 71.71 83.61 76.33

1000 3D CNN and 1D CNN 90.99 94.24 92.54
1000 3D ResNet and 1D CNN 89.08 96.91 92.57
1000 3D VGG and 1D CNN 89.82 95.16 92.25
1500 3D CNN and 1D CNN 91.65 95.46 93.46
1500 3D ResNet and 1D CNN 86.63 95.3 90.34
1500 3D VGG and 1D CNN 88.79 96.35 92.05
2500 3D CNN and 1D CNN 87.82 94.7 90.97
2500 3D ResNet and 1D CNN 88.86 96.7 92.38
2500 3D VGG and 1D CNN 92.56 95.76 94.09
3500 3D CNN and 1D CNN 91.74 93.75 92.72
3500 3D ResNet and 1D CNN 93.6 95.47 94.35
3500 3D VGG and 1D CNN 92.48 95.36 93.83
4500 3D CNN and 1D CNN 92.34 92.56 92.38
4500 3D ResNet and 1D CNN 91.54 95.45 93.37
4500 3D VGG and 1D CNN 91.42 92.95 92.12

5432 (No Sampling) 3D CNN and 1D CNN 93.65 93.29 93.4
5432 (No Sampling) 3D ResNet and 1D CNN 91.05 94.83 92.76
5432 (No Sampling) 3D VGG and 1D CNN 94.66 94.39 94.45

Figure 5. Line curve showing the variation in F1-Scores of the model with variation in the number of
samples from the majority ‘Other’ class.
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(a) (b)

(c) (d)

Figure 6. Confusion Matrices of the best three predictions for the Prostate Cancer Patients by the
F1-Scores are shown in (a) 3D VGG network and 1D CNN without undersampling, (b) 3D ResNet and
1D CNN with 3500 majority class samples, and (c) 3D VGG network and 1D CNN with 2500 majority
class samples. Confusion Matrices of the best predictions of the architecture for the Prostate Cancer
Patients by the F1-Scores are shown in (d) 3D CNN and 1D CNN with 1500 majority class samples.

The performances on the further modifications of the initial VGGNet, i.e., 3D VGGNet
with nested ResNet and 3D VGGNet with LeakyReLU are reported in Table 6. The F1-Scores
do not show improvement over the best performance as reported by 3D VGGNet in Table 5
although the performances are comparable to that of other networks on the vision-dose
and text data. For the case where only 500 samples were selected from the majority class,
these two architectures show superior performances over the other architectures. In all our
architectures, it can be noted that Recall is higher than Precision in almost all cases which
shows that our architectures are effective in diminishing the effect of false negatives.

Further analysis of the top three model performances reveal that the architectures
with or without majority class undersampling perform decently across most of the classes.
However, the models show that it is harder for them to learn the ‘PTV’ and ‘Small Bowel’
classes compared to the ‘Other’ classes. One of the reasons behind the comparatively
poorer learning of the ‘PTV’ class is that the range of randomness in the physician-given
names is vast compared to the ‘Other’ classes. As for ‘Small Bowel’, it has the lowest
representation of samples in the dataset. Hence, the models find it tough to learn from
the infinitesimally smaller representation of the minority ‘Small Bowel’ class. For effective
learning, data augmentation or oversampling can be considered in the future. Apart from
these two classes, the models displayed a superior performance with a consistent F1-Score
of more than 90.0%. The class-wise performance of the top three models for the prostate
cancer patients are shown in Table 7.
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Table 6. Model performances with 3D VGG nested ResNet and 3D VGG with Leaky ReLU activation
for the Prostate cancer patients while varying the majority class samples.

Total Samples from ‘Other’ Class Method Precision (in %) Recall (in %) F1-Score (in %)

500 3D VGG with nested ResNet and 1D CNN 86.75 96.37 90.62

500 3D VGG with LeakyReLU and 1D CNN 85.57 96.28 89.74

1000 3D VGG with nested ResNet and 1D CNN 87.37 95.49 90.92

1000 3D VGG with LeakyReLU and 1D CNN 83.56 97.29 88.55

1500 3D VGG with nested ResNet and 1D CNN 89.67 96.27 92.64

1500 3D VGG with LeakyReLU and 1D CNN 91.66 95.4 93.44

2500 3D VGG with nested ResNet and 1D CNN 90.8 93.38 92.02

2500 3D VGG with LeakyReLU and 1D CNN 87.92 96.26 91.5

3500 3D VGG with nested ResNet and 1D CNN 90.57 4 95.6 92.89

3500 3D VGG with LeakyReLU and 1D CNN 88.56 94.75 91.44

4500 3D VGG with nested ResNet and 1D CNN 90.97 93.33 92.11

4500 3D VGG with LeakyReLU and 1D CNN 92.69 92.35 92.51

5432 (No Sampling) 3D VGG with nested ResNet and 1D CNN 92.19 94.71 93.36

5432 (No Sampling) 3D VGG with LeakyReLU and 1D CNN 91.95 94.29 93.04

Table 7. Class-wise performances of the top three Models for the Prostate cancer patients.

Class
VGG (with 5432 Majority Class Samples) ResNet (3500 Majority Class Samples) VGG (2500 Majority Class Samples)

Precision (in %) Recall (in %) F1-Score (in %) Precision (in %) Recall (in %) F1-Score (in %) Precision (in %) Recall (in %) F1-Score (in %)

Bladder 98.1 100 99.04 99.04 100 99.52 98.1 100 99.04

Rectum 97.17 100 98.56 97.17 100 98.56 97.17 100 98.56

PTV (Target) 89.0 85.58 87.25 75.59 92.31 83.12 82.35 94.23 87.89

Femur_L 97.09 99.01 98.04 95.28 100 97.58 95.28 100 97.58

Femur_R 96.26 100 98.1 93.58 99.03 96.23 94.44 99.03 96.68

Small Bowel 92.0 79.31 85.19 96.0 82.76 88.89 82.76 82.76 82.76

Large Bowel 89.58 93.48 91.49 93.48 93.48 93.48 91.49 93.48 92.47

‘Other’ 98.11 97.75 97.93 98.69 96.17 97.41 98.92 96.62 97.76

5. Conclusions

In this paper, we report the performances of various multimodal models for RT
prostate structure name standardization. Since all the data types of the multimodal data in
each case are not homogeneous, early integration of the overall data was not performed.
Instead, we performed early integration of the multimodal geometric data, i.e., vision and
dose. Textual data were first trained in parallel and then immediately integrated with the
geometric feature inside the DNN architecture. Undersampling the ‘Other’ structures to
a small extent boosted the performance of the DNNs trained on the entire vision-dose
and textual data. The degree of undersampling is also essential for tuning the model
performance, which establishes that an intermediate amount of undersampling works
best in the case of ResNet. In many cases, we observed that though the overall accuracy
decreases in the case of the multimodal models compared to the textual single view model,
the macro-averaged F1-Score increases, which shows better learning across the different
minority classes and less bias. One of the limitations of this research is the absence of
more recent deep learning models which will be addressed in our future work. These may
include experimenting with advanced models such as DenseNet, Squeeze Net, ENet or
some vision transformers and comparing their performances. That apart, we did not apply
any data augmentation methods which will be also explored in the future. We also plan
to explore how undersampling the majority samples or oversampling the minor samples
impacts the performance of these advanced models.
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It is established for the first time that an architecture considering the 3D masked image
and masked dose with text leads to an overall performance improvement of RT structure
name standardization over using the hand-crafted geometric features with text. In addition,
we are the first to show that using the masked image and masked dose is more time- and
performance-efficient when compared to using bitmaps, delineated images, and doses.
Although the performance of the 1D CNN on the textual data is quite good, the perfor-
mance enhancement by adding the geometric data still shows that the neural network
model can perform better with the help of information contained in the data from other
modalities. Interestingly, we also observed that using a 3D VGG network or 3D ResNet on
the vision-dose data and 1D CNN on the textual data offers a slight edge over other DNNs
for the respective modalities. The VGG architecture apparently overshadows the other
architectures without any amount of majority undersampling. Hence, we introduced 3D
VGGNet with nested ResNet and 3D VGGNet with LeakyReLU activation along with 1D
CNN on textual data to further investigate the scope of performance improvement. While
these architectures produced comparable results, they could not shroud the performance of
the initial VGGNet with 1D CNN. Hence, the 3D VGG network on the masked vision-dose
data and 1D CNNs on text exhibit the best performance without the majority class under-
sampling and establishes the state-of-the-art with a macro-averaged F1-Score of 94.45%
whereas, 3D ResNet and 1D CNN records the second best performance (F1-Score: 94.35%)
when the majority class is undersampled at 3500. Hence, our unique deep-learning-based
methods considering the heterogeneous multimodal data provide state-of-the-art results in
automating the prediction of standard prostate RT structure names.
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Abbreviations
The following abbreviations are used in this manuscript:

DICOM Digital Imaging and Communications in Medicine
OAR Organ at Risk
RT Radiotherapy
PTV Planning Target Volume
VHA Veterans Health Administration
VCU Virginia Commonwealth University
CT Computed Tomography
MR Magnetic Resonance
AAPM American Association of Physicists in Medicine
ASTRO American Society for Radiation Oncology
TG Task Group
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NLP Natural Language Processing
ML Machine Learning
AI Artificial Intelligence
IRB Institutional Review Board
TPS Treatment Planning System
ROQS Radiation Oncology Quality Surveillance Program
MRI Magnetic Resonance Imaging
PET Positron Emission Tomography
RT Radiation Therapy
BioBERT Bidirectional Encoder Representations from Transformers for Biomedical Text Mining
DNN Deep Neural Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network
SRU Simple Recurrent Unit
LSTM Long Short Term Memory
ResNet Residual Network
VGG Vision Geometry Group
NROP National Radiation Oncology Program
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