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Abstract: Myocardial Infarction (MI) is the death of the heart muscle caused by lack of oxygenated
blood flow to the heart muscle. It has been the main cause of death worldwide. The fastest way
to detect MI is by using an electrocardiogram (ECG) device, which generates graphs of heartbeats
morphology over a certain period of time. Patients with MI need fast intervention as delay will
lead to worsening heart conditions or failure. To improve MI diagnosis, much research has been
carried out to come up with a fast and reliable system to aid automatic MI detection and prediction
from ECG readings. Recurrent Neural Network (RNN) with memory has produced more accurate
results in predicting time series problems. Convolutional neural networks have also shown good
results in terms of solving prediction problems. However, CNN models do not have the capability
of remembering temporal information. This research proposes hybrid models of CNN and RNN
techniques to predict MI. Specifically, CNN-LSTM and CNN-BILSTM models have been developed.
The PTB XL dataset is used to train the models. The models predict ECG input as representing
MI symptoms, healthy heart conditions or other cardiovascular diseases. Deep learning models
offer automatic feature extraction, and our models take advantage of automatic feature extraction.
The other superior models used their own feature extraction algorithm. This research proposed a
straightforward architecture that depends mostly on the capability of the deep learning model to
learn the data. Performance evaluation of the models shows overall accuracy of 89% for CNN LSTM
and 91% for the CNN BILSTM model.

Keywords: deep learning; convolutional neural network; long short-term memory; bidirectional long
short-term memory; myocardial infarction

1. Introduction

According to the World Health Organization (WHO), cardiovascular disease has
become the primary cause of death worldwide. From this, four of five cardiovascular
disease death were due to myocardial infarction (MI) and stroke [1] MI or heart attack is a
condition that occurs from decreasing oxygenated blood flow to a part of the heart resulting
in the damage or death of the part. This mostly occurs due to coronary artery disease,
which is also known as coronary heart disease. Unhealthy diet, physical inactivity, tobacco
use, and the harmful use of alcohol are the main important risk factors that eventually
lead to the disease [1] In the US, the American Heart Association state that every 40 s, an
American will have a MI. Electrocardiogram (ECG) and cardiac enzyme tests can be used
to detect MI. However, the cardiac enzyme can only be detected several hours after the
attack and may show incorrect results if tested earlier. On the other hand, ECG provides
faster results and helps in early intervention before further tests can be performed.

An ECG is a device that measures the electrical activity of the heartbeat. Cardiologists
can detect abnormal conditions in some parts of the heart by measuring the amount of
electrical activity passing through the heart muscle [2] The P wave is produced from the
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sinoatrial node, which is the pacemaker of the heart and indicates atrial depolarization or
atrial contraction [3]. The QRS wave represents the atrioventricular node and indicates
ventricular depolarization or the contraction of the ventricle. The presence of the T wave
shows ventricle relaxing or ventricular repolarization [3]. In the presence of MI, the ECG
morphology would have a long ST interval, ST-segment elevation or depression and
changes in the shapes of the T waves. The ST segment starts from the upward stroke called
the J point after the S wave and ends at the start of the T wave. Figure 1 shows the ECG
morphology of a normal or healthy heart.
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Manual analyses of ECG results by cardiologists are time-consuming and error-prone.
In recent years, many attempts have been made to automatically detect MI from ECG
signals. Various machine learning models have been used, such as K Nearest Neighbor [5,6],
support vector machine [7–9], decision tree [6] and random forest [6]. Even though the
results show good performance in predicting MI, the machine learning methods need
handcrafted feature extraction, which requires high engineering and relies fully on expert
knowledge to manually adjust the parameters [10].

There has also been notable research using deep learning to automatically detect MI.
The use of deep learning models allows some pre-processing and feature extraction steps
to be skipped as the model can learn the features by itself from the environment and
its past mistakes [11]. This reduces the error and the time consumed when performed
manually [12]. Several researchers have used a convolutional neural network (CNN) that
automatically extracts spatial features [13–17] and long short-term memory (LSTM) that
extracts temporal features [18,19]. In addition to that, there is also research that uses a
hybrid of CNN and LSTM [20–22] to utilize the benefits of both features. There is also
research [23,24] that combines CNN with Bidirectional LSTM, which is an improved version
of LSTM that can capture the temporal features from the forward and backward of a time
step.

Although previous research shows encouraging results, there is still room for improve-
ment. Most research on MI detection produces outputs of binary classification. In real-life
situations, patients may be diagnosed as having other cardiovascular diseases (CVD) in-
stead of MI or free-from CVD. There is still less research that uses multiclass classification.
The previous research with multiclass output includes additional processes to improve
the performance, such as stacking decoding that uses more computational resources and
manually provides feature extraction, which defeats the purpose of using deep learning to
automate feature extraction. Thus, this research focuses on developing and comparing two
hybrid models of CNN and RNN, which are CNN LSTM and CNN BILSTM models for
automatic MI detection with multiclass classification output. No denoising technique and
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signal modification were carried out on the raw ECG data. Therefore, the result depends
on the deep learning models’ capabilities to learn the pattern that differentiates the classes.
In addition to CNN, which is well known for its ability to recognize spatial features, LSTM
and BILSTM will help with processing the temporal features of the ECG data.

The contributions of this study are as follows:

• Identification of most relevant leads for MI detection from the PTB XL dataset for
efficient use of computational resources in model development and training.

• Proposed models with straightforward architecture that better use the inherent capa-
bilities of CNN and LSTM/BILSTM.

• Development of CNN LSTM and CNN BILSTM models to predict MI with three
outputs: MI, Healthy and Other CVD.

To the best of our knowledge, this is the first study on MI detection with multiclass
output using the PTB XL dataset rather than the PTB dataset, which is smaller in size. The
rest of the manuscript is structured as follows: The related works are in Section 2. The
material and method used are addressed in Section 3, followed by the results in Section 4.
Section 5 contains the discussion, and Section 6 concludes this study.

2. Related Works

In this section, previous related works are discussed. The research [13] produces
output classifications to 10 types of MI and a healthy control class using CNN utilizing
15 leads from the PTB dataset. The data were denoised using Discrete Wavelet Transform
(DWT) and then fed to three CNN layers. A study by [14] also uses the PTB dataset with
12 leads and is classified into MI and healthy control classes. The ECG data were denoised
using a moving wavelet filter, higher-order statistics, and morphological filtering to attend
to different types of noises. After that, the data went through a feature extractor network,
which consists of three layers of CNN for each lead. Then, all of the feature maps were
combined and went through a feature aggregator network that consisted of one CNN layer
for classification. Ref. [15] use only lead II of the PTB dataset as input to 11 layers of CNN
and was classified into MI and healthy control. It also compared models with and without
denoising techniques. In addition to that, ref. [16] uses 12 leads from the ECG-ViEW II
dataset to classify MI and non-MI. The research used Synthetic Minority Oversampling
Technique (SMOTE) to overcome data imbalance. The data were fed to a CNN and an
RNN model for classification, with the CNN model showing better accuracy than the
RNN model. In addition, to fit wearable ECG, a study by [17] used CNN to classify MI
from healthy control using a single lead (lead I) from the PTB dataset. The research uses
generative adversarial networks (GAN) to generate synthetic ECG data to overcome data
imbalance and then fed the data into a CNN for binary classification of the MI and healthy
control.

In [18], LSTM is used to classify anterior MI, inferior MI, and healthy control. This
study used eight leads from the PTB dataset. All of the data went through denoising using
a median filtering algorithm, a notch filter, and Chebyshev digital low-pass filter to remove
different types of noises. Ref. [19] use LSTM to classify MI and healthy control using the
PTB XL dataset lead II. The research first removed noise using a low pass filter and then
went through four layers of LSTM.

Ref. [20] uses a hybrid model of CNN and LSTM, which produces a multiclass classifi-
cation of MI for portable ECG devices using lead I from the PTB dataset and AF Challenge
dataset. To remove noise, they used a Savitzky Golay filter. The study builds 35 layers
of CNN and substitutes one of its fully connected layers with LSTM. It classifies the data
into four classes, healthy control, MI, other CVD, and noisy class, for better classification
that reflects the real-life situation. The accuracy result shows improvement after including
stacking decoding, but unfortunately, stacking decoding increases the computational cost
quadratically. Ref. [21] also used lead I of the PTB dataset with the aim of producing a
portable ECG. The study consists of 16 layers of CNN, with LSTM as one of the layers. To
overcome noise in the data, the study used the wavelet transform technique. It classifies
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the data into healthy control and MI. Ref. [22] compares three deep learning techniques,
CNN, LSTM and a hybrid of CNN and LSTM, using 12-lead ECG data from the Hospital of
Sun Yat-sen University. In this study, CNN-LSTM ontained the best accuracy in classifying
MI and healthy control as compared to the other two techniques. Ref. [23] developed a
CNN-BILSTM using 12 leads of the PTB dataset and classified them as MI and the healthy
control. BILSTM is formed by combining two LSTMs that capture the temporal features
from forward and backwards at a specific time. In the research, they created a feature
branch where each lead has a branch of feature extraction consisting of seven layers. Then,
it goes through the lead random mask (LRM) for regularization to alleviate the effect of
overfitting. Then, each branch will be fed into BILSTM, which has the same number of
layers as the feature branch. Research by [24] use CNN BILSTM to classify a 12-lead PTB
dataset into healthy, MI and non-MI classes. The data were first denoised using numerous
filters. Then, the R peak and the other fiducial points were detected. The study extracted
21 features from the 12 leads of the ECG to help the system differentiate between the fea-
tures of the different classes. This will also help to reduce the bias present in an imbalanced
dataset. Then, the data were fed into a model with a layer of a CNN and a layer of BILSTM.

In summary, several deep learning models have been developed to detect MI. However,
further studies should be undertaken to investigate the efficiency when some preprocessing
steps are skipped, automatic feature extraction is utilized, different ECG leads are used,
and a larger dataset is used, such as the PTB XL dataset.

3. Materials and Methods

In this section, the sequencing process of the model is discussed. The flowchart is as
shown in Figure 2.
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3.1. Dataset

Several datasets are publicly available for use in terms of MI detection research, such
as the ECG-ViEW II dataset, the PTB Diagnostic ECG dataset, and the PTB-XL dataset.

The dataset used in this research is the PTB XL dataset from the PhysioNet archive.
The dataset is a large public dataset that contains 21,801 clinical 12-lead ECGs from
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18,869 patients of 10-s length. The genders covered in this record are balanced, with
52% male and 48% female, and the age range is from 0 to 95 years. The dataset is reliable as
all of the records were validated by a technical expert focusing on the signal characteristics
and a cardiologist, with a large fraction of the records also validated by a second cardi-
ologist. It is available for the public at a 16-bit precision with sampling rates of 100 and
500 Hz, depending on users’ convenience. PTB XL was recorded using devices obtained
from Schiller AG in a long-term project at the Physikalisch Technische Bundesanstalt (PTB)
between October 1989 and June 1996. There are five superclasses in the dataset: normal
ECG, MI, ST/T change, conduction disturbance, and hypertrophy [25]. The PTB XL dataset
can be accessed from the PhysioNet website.

In this research, three selected leads of the ECG from the PTB XL of 10-s length were
used. The leads are selected based on their relevance to MI detection. The chosen sampling
rate is 100 Hz to fit the limited resources provided by the free version of the Google Colab
Notebook. In addition to that, there are three classes used in this research, which are
healthy (normal superclass), MI (MI superclass) and other CVD (combines the remaining
3 superclasses).

3.2. Data Cleaning and Selection of ECG Lead

Most research concerning MI detection uses 12-lead ECGs. According to [24], using
12-lead ECGs provides a better understanding of the inter-lead relationship and more
information concerning the different parts of the heart, generating more features for training.
However, there is research that used only certain leads and yielded good results. In this
research, we explore using fewer leads but that are still relevant to MI detection. This
is useful for modern ECG devices that are mobile, smaller in size, and have a wireless
connection, which do not incorporate all 12 leads.

To demonstrate the leads that are most relevant to detecting MI from the PTB XL
dataset, we ran the dataset through feature importance in random forest. Before the feature
importance process, the data that contain 2 or more superclasses and the data with no
superclass provided, were deleted from the dataset. After the cleaning process, the dataset
was filtered through the feature importance, and three leads were chosen based on the
results.

3.3. Data Balancing

After performing the data cleaning and lead selection processes, the amount of MI
data is in the minority, as shown in Figure 3.
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Data balancing is a technique used to reduce bias. There are several ways to perform
data balancing, as stated by [26], such as oversampling, undersampling and a hybrid of both
over and undersampling. In this study, SMOTEEN hybrid data sampling was used. The
minority data were first oversampled using SMOTE, and then the Edited Nearest Neighbor
(ENN) was applied to undersample the majority data by removing the overlapping data.
The overlapping data are chosen based on three of their nearest neighbors. If the data are
misclassified by the three nearest neighbors, the data will be deleted.

3.4. Proposed Model

The proposed model was built by combining two neural networks. The first model
combined CNN and LSTM, and the second model combined CNN and BILSTM to compare
and achieve the benefits of both algorithms. The models were created layer by layer,
starting from the CNN layer. After tuning the hyperparameters of the layer, the next CNN
layer was created, and the hyperparameters were tuned. Different numbers of kernels
ranging from 2 to 10 and different numbers of nodes with values of 16, 32, 64, 128, and
256 were experimented with to obtain the optimum values for the layer. After that, the
LSTM/BILSTM layer was created by also tuning the hyperparameter using different nodes.
To improve the performance of the model, we also experimented with the max-pooling
layer, batch normalization layer, and dense layer. To maintain regularization, dropout
layers experimented with values of 0.0 to 0.5 at different parts of the model. We also try to
include L2 regularization. The process repeats until the optimum number of layers with
the optimum hyperparameter is reached. We tried several configurations of CNN LSTM
and CNN BILSTM before coming out with the final layer.

3.4.1. CNN LSTM

CNN is a feed-forward network and shows excellent results in terms of extracting
spatial features and can thus be utilized to extract the short-term fluctuation features of ECG
signals. The major difference between a CNN compared to a traditional artificial neural
network (ANN) is that only the last layer of a CNN is fully connected for classification,
but in an ANN, each neuron is connected to every other neuron [27]. This increases the
tendency of an ANN to overfit when processing images due to the image size. Using a
CNN, the raw pixel intensity of the input image transforms into a flattened vector before
applying mathematical operation using an activation function on it in the hidden layers and
predicts the class or label probabilities during the output. The neurons will only connect to
a small region of neurons in the previous layer. In 1D CNN, the kernel slides along one
dimension and suits the ECG signal dimension. Through the layers of a CNN, the filters
are applied, and thus features from the basic to more complex of the ECG are learned. The
equation to obtain the convolution output, y, is as follows [28]:

ym = ∑p
k=−p xm−kwk (1)

where x is the input signal, w is the kernel, p is the length of the kernel, and m is the length
of the signal.

The model CNN LSTM contains 2 layers of 1D CNN with 32 and 64 nodes each. Both
used kernels that were fixed to 10. The ReLU activation function is applied, and each 1D
CNN layer is followed by a batch normalization and a 1D Maxpooling layer to reduce
overfitting. The output from the CNN is then fed into an LSTM layer as input with 8 nodes.

Earlier, the recurrent neural network (RNN) was developed to specialize in extracting
the temporal features. In addition to learning forward, RNN also remembers things learned
from the prior output and allows the information to persist. However, RNN is exposed to
vanishing gradient problems when used in cases of long-term data. It is when the gradient
shrinks as it back-propagates through time and eventually stops learning. As for that, long
short-term memory (LSTM) is created, which is a version of RNN that is capable of learning
long-term dependencies. LSTM consists of gates, as shown in Figure 4, which are capable
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of learning which data in a sequence are needed or not, using the output of 0 and 1 from
the sigmoid function.
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There are three types of gates in LSTM, the Forget gate, the Input gate, and the
Output gate. Using that, relevant information will be passed through the long chain of the
sequences called cell states to make a prediction. The inputs of the Forget gate are (1) the
output (hidden state) from the previous cell and (2) the input from the current time step.
Weight matrices are multiplied by the inputs, and a bias is added. After that, the sigmoid
function is applied to the result. The output of the sigmoid function, which is between
0 and 1, will next be multiplied by the cell states. Through the forget gate, the output of
0 indicates that the piece of information is not needed and will be forgotten. In contrast,
1 indicates the information is needed and will be remembered. The Input gate is used to
update the new information. The process is the same as the Forget gate, where a sigmoid
function is applied to determine the new information that needs to be added. The tanh
function creates a vector to all possible values that can be added with an output value from
−1 to 1. Both outputs from sigmoid and tanh will be multiplied, and the result is added to
the cell state by an additional operation. Next, the Output gate is responsible for selecting
the best output from the cell gate, as not all information is suitable to be the output. The
Output gate creates a vector after applying the tanh function to the cell state by scaling
the value from −1 to 1. Using the sigmoid function, it creates a filter from the value of the
hidden state and current input, and then, the result is multiplied with the output of the
tanh function to regulate the values that need to be output from the vector. The output will
be sent as the final output of the cell and to the hidden state of the next cell [29].

After going through LSTM, the data were classified through the dense layer with the
Softmax activation function to three outputs which are: healthy, MI and other CVD. The
summary of the CNN LSTM model is shown in Figure 5. The details of each layer with the
parameters are shown in Table 1.
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Table 1. Details parameters of each layer in the CNN LSTM model.

Layer Type Output Shape Parameter

Conv1d-1 1000,32 992
Activation_1 1000,32 0

Batch_normalization_1 1000,32 128
Max_pooling1d_1 500,32 0

Conv1d_2 500,64 20,544
Activation_2 500,64 0

Batch_normalization_2 500,32 256
Max_pooling1d_2 250,64 0

Dropout_1 250,64 0
Time_distributed_1 250,64 0

LSTM 8 2336
Dense_1 3 27

Total params: 24,283
Trainable params: 24,091

Non-trainable params: 192

3.4.2. CNN BILSTM

For the second model, the CNN was combined with the bidirectional LSTM (BILSTM).
BILSTM functioned by connecting two LSTMs to capture the forward and backward
information of a sequence at every time step, as shown in Figure 6. It is by adding one
more layer of LSTM that catches information in the reverse flow. This helps capture future
features instead of only the past features. By that, the input sequence is trained using two
LSTMs where the first one with the normal LSTM and the other with the reverse copy of the
input sequence [30]. Both final outputs will then be concatenated to form the final vector.
This can provide further context to the network and result in quicker and deeper learning
of the problem. It also helps improve feature extraction of the sequential time-series signal
of an ECG.

The architecture of the CNN BILSTM model consists of 2 layers of CNN with 8 and
32 nodes each. The kernel was fixed at 10 for both. Each layer was followed by Maxpooling
and batch normalization. Then, the data went through the BILSTM with 16 nodes. Then,
Global Maxpooling was used to flatten the data to meet the size requirement of the dense
layer. The dense layer with Softmax activation function then classified the data into
3 classes: healthy, MI, and the other CVD class. The summary of the CNN BILSTM model
is shown in Figure 7. The details of each layer with the parameters are shown in Table 2.
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Table 2. Details parameters of each layer in the CNN BILSTM model.

Layer Type Output Shape Parameter

Conv1d-1 1000,8 248
Activation_1 1000,8 0

Batch_normalization_1 1000,8 32
Max_pooling1d_1 500,8 0

Conv1d_2 500,32 2592
Activation_2 500,32 0

Batch_normalization_2 500,32 128
Max_pooling1d_2 250,32 0

Dropout_1 250,32 0
Time_distributed_1 250,32 0

Bidirectional_1 250,32 6272
Global_max_pooling1d_1 32 0

Dense_1 3 99

Total params: 9371
Trainable params: 9291

Non-trainable params: 80

3.5. Evaluation Metrics

The performance of the models was analyzed based on accuracy, precision, recall and
F1-score.

The calculations of each matrix are as follows:
Accuracy: is the calculation of how many instances are accurately classified

Accuracy = (TP + TN)/(TP + FP + FN+ TN) (2)
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Precision: is the portion of relevant instances retrieved among the retrieved instances

Precision = TP/(TP + FP) (3)

Recall: also known as sensitivity, is the measurement of how many relevant instances
from the dataset are retrieved. In medical field-based research, sensitivity is an important
matrix as it shows how much disease data the model is capable of detecting [31].

Recall = TP/(TP + FN) (4)

F1-score: shows the capability of the model to accurately classify instances based on
its class.

F1-score = 2 × (Precision × Recall)/Precision + Recall (5)

True positive (TP) means the model correctly predicts the positive class. True negative
(TN) means the model correctly predicts the negative class. False positive (FP) shows that
the model incorrectly predicts the positive class, and false negative (FN) shows that the
model incorrectly predicts a negative class.

4. Results

There are two models proposed in this research, the CNN LSTM model and the CNN
BILSTM model, which were developed to recognize the MI data from the healthy and the
other CVD data. Both models were trained on 100 epochs with 32 batch sizes. For the loss
function, categorical cross-entropy is used to match the multiclass output. Adam optimizer
with a 0.001 learning rate is used for network weight. The data were divided into an 80:20
training-to-testing ratio, with a total of 10,483 pieces of training data and 2621 pieces of
testing data. This section will cover the results of the training and testing.

4.1. Selection of ECG Leads

Concerning performing feature importance from a random forest, the results are
shown in Figure 8. From the results, the three most relevant leads were chosen based on
the highest position in the rank. The leads are V3, V4 and V6.
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4.2. Model Performance

The models were developed to differentiate MI from healthy and other CVD data
using the CNN LSTM and CNN BILSTM models. Both models were developed using the
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GPU of the Google Colaboratory (Colab) Jupyter Notebook. After training and validation,
Table 3 shows the testing result of each performance parameter in classifying MI from other
classes for both models. For CNN LSTM, the accuracy was shown to be 89%, and for CNN
BILSTM, the accuracy was shown to be 91%.

Table 3. Result of each performance parameter.

Performance Parameter CNN LSTM
Testing Result

CNN BILSTM
Testing Result

Accuracy 89% 91%

Recall
Healthy: 48% Healthy: 72%

MI: 97% MI: 96%
Other: 75% Other: 81%

Precision
Healthy: 52% Healthy: 60%

MI: 89% MI: 91%
Other: 92% Other: 91%

F1-score
Healthy: 50% Healthy: 65%

MI: 93% MI: 93%
Other: 83% Other: 86%

The confusion matrix of both models is shown in Figure 9. It shows the percentage of
instances that are correctly predicted compared to the incorrectly predicted instances. From
the result, in both models, each class has a high percentage of correct predictions, with MI
achieving the highest number of correct predictions. The models were developed layer by
layer with different hyperparameters compared until the optimum results were achieved.
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Figure 10 shows the accuracy and loss graph of the training and validation of the CNN
LSTM model. Figure 11 shows the difference in terms of the training and validation of
CNN BILSTM.
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5. Discussion

In this research, two models were developed focusing on MI classification using the
three most relevant ECG leads. The ECGs selected are V3, V4 and V6. After training
with both models, the testing result of CNN BILSTM shows better performance in terms
of classifying the data into the three classes. Despite both models showing comparable
performance in MI detection, the CNN LSTM shows a decreased ability to classify the other
two classes, especially the healthy class. This shows that the ability to learn from forward
and backward information of the ECG using the BILSTM provides more features for the
CNN BILSTM model to learn and results in better performance.

In developing automatic MI detection systems when using an ECG, much noticeable
research has been carried out and has yielded great results, but most of this research
concerns binary classification. However, in a real medical situation, the patient with a
complaint may have other types of CVD instead of MI. Table 4 shows a summary of
studies that include a class for other CVD on top of the MI and healthy classes. A study
by [20] used CNN-LSTM with stacking decoding to differentiate MI and achieved a 94.6%
F1-score in terms of MI detection, but without stacking decoding, the result shows 73%
in terms of F1-score. The study also included experiments using only CNN and CNN
with stacking decoding, showing lower results than the models with an additional LSTM.
Unfortunately, stacking decoding requires high computing power. In addition to that,
ref. [24] achieved 99.52% in terms of F1-score in MI detection using temporal features that



BioMedInformatics 2023, 3 490

were manually extracted from the 12 leads of an ECG to reduce redundancy and class
imbalance as input to a shallow CNN-BILSTM model. The extracted features also helped
to aid in the classification of different classes. While in this study, the CNN BILSTM model
was able to obtain a 93% F1-score in MI detection and is comparable to the other prior
study as this study uses a straightforward and simpler model with no denoising and R
peak detection, which is the same as real-time ECG data state. Therefore, it is much easier
to integrate the system into medical devices. The system was also capable of learning by
itself without any manual feature extraction process. This resulted in faster training time.
In addition to that, the high performance of the system is also affected by the selection of
ECG leads. Instead of random selection, selecting the most relevant leads provides better
features needed for the classification.

Table 4. Summary comparison of the proposed model with the other prior multiclass research.

No Study Architecture Dataset Additional
Process

ECG Leads
Used Denoising F1-Score

1 Hin Wan Lui
et al. [20] CNN PTB and AF

Challenge - Lead I Yes 59.70%

2 Hin Wan Lui
et al. [20]

CNN with
stacking
decoding

PTB and AF
Challenge

Stacking
decoding Lead I Yes 75.90%

3 Hin Wan Lui
et al. [20] CNN-LSTM PTB and AF

Challenge - Lead I Yes 73.00%

4 Hin Wan Lui
et al. [20]

CNN-LSTM
with stacking

decoding

PTB and AF
Challenge

Stacking
decoding Lead I Yes 94.60%

5 Monisha Dey
et al. [24]

CNN-
BILSTM PTB

Manual
feature

extraction
12 leads Yes 99.52%

6 Proposed
model

CNN-
BILSTM PTB XL - Lead V3, V4

V6 No 93%

6. Conclusions

MI is a deadly disease that requires fast treatment. Even though there are experts that
can diagnose it manually, it may be exposed to human error, and it is also time-consuming.
To aid medical experts, we proposed a CNN-BILSTM that helps differentiate MI from the
healthy class and the other CVD class. The data used were produced by selecting leads
that are most relevant for the MI detection from the PTB XL. The result shows significant
achievement, with an accuracy of 91% in terms of general classification in addition to
a recall of 96% and an F1-score of 93% in terms of MI detection. This study maintains
simplicity with no signal modification and denoising technique. For future studies, a higher
sampling rate can be used to improve the performance. In addition to that, implementing
it on a portable ECG and a cloud-based platform will help the development of portable MI
detectors and can be implemented in the IoT network in the future. The black box model
does not provide explanations to support prediction results. One possible future work
would be to improve the research using an explainable machine learning model. Another
possible future work is incorporating the functional data analysis technique [32–34] to add
results interpretability features.
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