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Abstract: Breast cancer is the most prevalent form of cancer and the primary cause of cancer-related
mortality among women globally. Breast cancer diagnosis involves multiple variables, making it
a complex process. Therefore, the accurate estimation of features for diagnosing breast cancer is
of great importance. The present study used a dataset of 21 patients with carcinoma breast cancer.
Polynomial regression analysis was used to non-invasively estimate six impedance features for
the diagnosis of breast cancer, including the phase angle at 500 KHz (PA500), impedance distance
between spectral ends (DA), area normalized by DA (A/DA), maximum of the spectrum (Max IP),
the distance between impedivity (ohm) at zero frequency and the real part of the maximum frequency
point (DR), and length of the spectral curve (P). The results indicated that the polynomial degrees
needed to estimate the PA500, DA, A/DA, Max IP, DR, and P features based on tumor size were 2,
2, 3, 3, 2, and 2, respectively. Additionally, we utilized a nonlinear constrained optimization (NCO)
analysis to calculate the eight threshold levels for the classification of the impedance features. The
deduction of eight classifications for each feature may also be an effective tool for decision-making
in breast cancer. These findings may help oncologists to estimate the impedance features for breast
cancer diagnosis non-invasively.
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1. Introduction

Breast cancer is the most common type of cancer and the leading cause of cancer-
related death for women worldwide [1]. In the United States, breast cancer is the second
leading cause of cancer death after lung cancer [2]. The most effective way to reduce the
mortality rate of breast cancer is through correct and early diagnosis of cancer. Therefore,
clarifying any ambiguities in the screening and diagnosis of breast cancer is of great
importance. Various factors are involved in the diagnosis and development of breast cancer,
including patient characteristics, the presence of proliferative breast lesions with atypia,
genetic factors, and lifestyle [3]. These multivariable parameters have a prominent role in
the complexities of breast cancer diagnosis. There are various diagnostic tools available to
clarify these complexities for accurate decision-making about breast cancer.

Medical imaging is a common diagnostic tool for healthcare professionals. Computed
tomography (CT), magnetic resonance imaging (MRI), positron emission tomography
(PET), single-photon emission computed tomography (SPECT), ultrasonography (US),
and X-ray mammography (XRM) are the most common imaging techniques used to di-
agnose breast cancer. The primary method used by physicians to diagnose breast cancer
is based on the interpretation of medical images that are qualitative and visual in nature.
However, image processing of these images has opened new windows for quantitative
diagnosis of breast cancer [4]. There are still many contradictions and conflicts about the
accuracy of the diagnosis of breast cancer based on medical images. For example, the XRM
method’s efficiency in breast cancer diagnosis is only 4–10% [5,6]. Molecular biotechnology
examinations are an additional diagnostic tool for breast cancer, utilizing classifications
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at the molecular level. These examinations include a real-time fluorescence quantitative
polymerase chain reaction system, acid hybridization system, protein hybridization system,
needle biopsy, flow cytometer, and immunohistochemistry. They can work earlier than
medical images to diagnose breast cancer [7]. However, concerning the valuable clinical
data of medical images, molecular biotechnology examinations can only be an auxiliary
method for breast cancer diagnosis. Circulating tumor cells (CTCs) and circulating tu-
mor deoxyribonucleic acid (ctDNA) are the next parameters that can serve as diagnostic
biomarkers for early cancer screening and establishing cancer staging [8]. Long noncoding
ribonucleic acid (lncRNA) and circular RNAs (circRNAs) are also emerging biomarkers to
initiate breast cancer diagnosis. These new biomarkers can be diagnostic tools for breast
cancer. However, there are many ambiguities about their actual function and effectiveness
for breast cancer diagnosis.

1.1. Related Work

Bioinformatics methods, such as machine learning and deep learning, have been
shown to be powerful tools for accurately classifying cancer in various types of diseases
and have been extensively applied in recent studies. Hrizi et al. demonstrated that the
optimized machine learning model outperformed traditional diagnostic methods and has
the potential to be used as an effective tool for tuberculosis diagnosis [9]. Ammar et al.
showed a hybrid optimal deep learning-based model for tuberculosis disease recognition
using MRI images [10]. Yao et al. used a machine learning analysis technique to predict
survival in pancreatic cancer patients [11]. The model was trained using gene expression
data and clinical features and achieved high accuracy in predicting patient survival. Shan
presented a machine-learning approach for predicting lymph node metastasis in patients
with early stage cervical cancer [12]. They used a random forest model to improve the
performance of the neutrophil-to-lymphocyte ratio.

Given the importance of bioinformatic methods in the diagnosis and management of
cancer, several studies have focused on utilizing these methods for breast cancer. Some
studies identified crucial genes associated with breast cancer using integrated bioinfor-
matic analysis [13–15]. They suggested some novel genes using bioinformatic methods to
diagnose breast cancer. Wu et al. also used a machine learning algorithm to classify triple
negative and non-triple negative breast cancer types [16]. Omondiagbe et al. used a new
reduced feature dataset to support vector machines to classify breast cancer by linear dis-
criminant analysis [17]. Amrane et al. compared the efficiency of Naive Bayes and k-nearest
neighbor to find a more accurate classifier for breast cancer [18]. Assiri et al. proposed a
novel ensemble classification method for breast cancer using various machine-learning
algorithms [19]. They utilized three classifiers and examined five unweighted voting
mechanisms. They found that majority-based voting outperformed the others. Islam et al.
found that artificial neural networks are the most accurate and machine-learning modeling
method for diagnosing breast cancer [19].

In bioinformatics, deep learning has emerged as a powerful tool for the diagnosis
of breast cancer in recent years. This approach involves using artificial neural networks
with multiple layers to automatically learn and extract relevant features from complex
data [20–22]. Zhou et al. have provided a comprehensive evaluation of the various methods
employed in breast cancer diagnosis through histological image analysis based on different
designs of convolutional neural networks (CNNs) [20]. Their findings suggest that CNNs
are highly beneficial for the early identification and treatment of breast cancer, resulting
in more successful therapy. Jiang et al. strove to evaluate the effectiveness of a deep
learning model based on CNN in determining molecular subtypes of breast cancer using
US images [22]. The results showed that the CNN model achieved an acceptable accuracy
in determining breast cancer molecular subtypes, which is comparable to the accuracy of
human radiologists. Allugunti et al. utilized deep learning techniques trained end-to-end to
achieve high-accuracy diagnosis and screening the breast cancer [21]. Ghiasi et al. explored
the use of deep learning algorithms to classify breast cancer based on uniformity of cell
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size, bland chromatin, mitoses, and clump thickness [23]. Their results indicate that the
proposed methods offer accurate classification and diagnostic performance compared to
previous methods. In addition, some studies have focused on biostatistical methods to
extract effective features of breast cancer [24]. Terry et al. used concordance statistics to
predict breast cancer risk [25]. Despite significant progress in computer-aided diagnosis
methods, there are still many unknown points in the diagnosis of breast cancer using these
methods [26–28]. Hence, breast cancer diagnosis using these methods is still controversial
and challenging.

1.2. Aims and Objectives

Many researchers have attempted to improve bioinformatic and biostatistical methods
to suggest more accurate biomarkers. This study aims to develop diagnostic tools for the
management of breast cancer. The approach involves using polynomial regression analysis
to estimate six impedance features for diagnosis and nonlinear constrained optimization
(NCO) to determine the threshold level of each feature.

2. Materials and Methods

We utilized the database of a study conducted by Thirumalai et al., which includes
21 patients with breast cancer (Table 1) [29]. It should be noted that the present database
belongs to the carcinoma category, which is one of the most common categories, as cancer
develops from the epithelial cell lining [22]. We employed polynomial regression analysis to
estimate six impedance features for the diagnosis of breast cancer without minimal-invasive
electrical impedance spectroscopy. In addition, we tried to dedicate eight classes for breast
cancer using the NCO method. Furthermore, using the NCO method, we attempted to
classify breast cancer into eight categories.

Table 1. Database of women with carcinoma breast cancer.

Features Patient # Tumor Size PA500 DA A/DA Max IP DR P

1 9.334 0.18 228 29.9 60.2 220 556
2 6.341 0.22 121 26.1 69.7 99 400
3 12.303 0.23 264 44.8 77.7 253 656
4 8.293 0.24 137 39.2 88.7 105 493
5 6.472 0.20 124 26.3 69.3 103 424
6 5.614 0.15 118 20.8 49.7 107 429
7 3.890 0.14 74 15.9 35.7 65 330
8 4.730 0.15 91 19.1 39.3 82 331
9 10.208 0.21 184 44.3 84.4 164 603
10 8.818 0.21 172 35.4 79.0 153 558
11 11.630 0.31 255 41.5 67.5 246 508
12 11.181 0.22 219 44.7 76.8 207 602
13 7.882 0.21 120 40.3 80.7 89 525
14 9.484 0.28 172 40.8 75.6 155 471
15 10.178 0.23 253 32.0 64.8 245 541
16 11.315 0.35 245 40.9 70.3 236 477
17 4.999 0.20 80 24.4 44.7 66 329
18 6.220 0.19 97 31.3 51.3 82 387
19 8.523 0.22 229 24.8 35.6 227 462
20 8.399 0.20 194 28.4 36.7 191 445
21 6.236 0.19 144 21.1 96.5 107 542

PA500: Phase angle at 500 KHz, DA: Impedance distance between spectral ends, A/DA: Area normalized by DA,
Max IP: Maximum of the spectrum, DR: Distance between I0 and real part of the maximum frequency point, P:
Length of the spectral curve.

There are three primary stages include preprocessing, regression, and optimization.
Figure 1 shows the workflow diagram of the system, illustrating the various components
and their relationships. In the stage of preprocessing, the normality test was conducted
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for the 21 observations by the Shapiro–Wilk test. The result of this test confirmed the
normal distribution of input data. In the model selection step, we examined many types
of fitting equations, such as exponential, logarithmic, polynomial, and power. The results
showed that the polynomial estimation made the best fitting with regard to R2 values. This
procedure is common in previous biological studies [30–32].
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2.1. Polynomial Regression Analysis

Polynomial regression is a specific form of the regression model which explain one vari-
able variation based on another variable. In this regression, the relationship between
the independent variable (tumor size = x), and the dependent variable (impedance fea-
tures = f (x)) is curvilinear. The general representation of the model is shown as [33]:

f (x) = a0 + a1x + a2x2 + a3x3 + . . . . + anxn + ε (1)

where n is the degree of a polynomial function, ai (i = 1 . . . n) is coefficients of the polyno-
mial terms, and ε is the residual error which is the average distance of the data from the
regression curve.

The determination of the model degree can be completed by examining the relation-
ship using a scatter plot and testing different degrees of the polynomial until the best fit is
achieved. It is worth mentioning that polynomial regression is sensitive to outliers. Prepro-
cessing of data is essential to ensure that the data used in the analysis is accurate, reliable,
and properly prepared for modeling. The most important step of regression analysis is
model validation. The model is validated by evaluating its performance using various
metrics, such as root mean squared error (RMSE) as follows [33]:

RMSE =

√√√√∑m
j=1

(
f̂ j − f j

)2

m
(2)

where f̂ j and f j represent the estimated and actual values, respectively, and m denotes the
number of data points. All of the calculations for regression analysis were performed using
IBM SPSS software, version 20.0, IBM Corp., Armonk, NY, USA.

2.2. Nonlinear Constrained Optimization

NCO is a mathematical technique used to find the optimal values of a set of decision
variables subject to a set of nonlinear constraints. Nonlinear constraint optimization can be
mathematically formulated as [34]:

Minimize f (x), Subject to c(x) ≤ 0, x ≥ 0 (3)

where x is the tumor size that is a decision variable; x = (x1, x2, . . . , xn). f (x) is the
objective function; f : Rn → R . The objective function represents one of six estimated
impedance features that should be optimized. c(x) represents a vector of constraints that x
must satisfy, in which c: Rn → Rm . n and m are the numbers of decision variables and the
number of constraints.



BioMedInformatics 2023, 3 373

The present study used the generalized reduced gradient (GRG) method to solve NOC.
GRG is commonly used for problems with continuous variables and smooth nonlinear func-
tions [35]. This method can be applied to problems that are more general than Equation (3).
An appropriate form for this problem is modeled in the following:

Minimize f (x),
lx ≤ x ≤ ux,

Subject to lc ≤ f (c) ≤ uc,
(4)

where lx and ux are lower and upper bounds of the decision variable (tumor size). lc, and
uc are the lower and upper bounds of optimized objective functions. The minimization
problem can be converted to a maximization problem by multiplying −1 in the objective
function. The basic idea of the GRG algorithm is to iteratively solve a series of linear
programming problems that approximate the original nonlinear problem while updating
the values of the decision variables in a way that reduces the objective function and satisfies
the constraints.

In the GRG algorithm, convergence testing is critical to ensure that the algorithm has
found the optimal solution [35]. Common convergence tests used in the GRG algorithm
include the objective function value, constraint satisfaction, reduced gradient norm, step
size, and change in decision variables. The convergence test on the objective functions
(six impedance features) is conducted with a precision of 0.0001.

3. Results and Discussion

Many effective parameters are involved in the diagnosis of breast cancer. Tumor size is
one of the morphometric parameters which is available in medical images. Many software
can measure tumor size easily, such as Mimics, 3D Slicer, ImageJ, OsiriX, and MIPAV.
In addition, there are also other effective and important indicators that are necessary
for oncologists in decision-making about breast cancer. For example, the impedance
distance between spectral ends (DA) and area normalized by DA (A/DA) are two important
features to classify non-fatty cancer tissues [36]. However, we can only measure these
features using electrical impedance spectroscopy. We aimed to calculate six impedance
features that can evaluate the capacitive characteristics of breast cancer tissues [37]. These
six impedance features are highly important clinically to the diagnosis of breast cancer in
the early stages [38]. These features include phase angle at 500 KHz (PA500), DA, A/DA,
maximum of the spectrum (Max IP), distance between impedivity (ohm) at zero frequency
and real part of the maximum frequency point (DR), and length of the spectral curve (P).
Some studies raised pieces of evidence about the risks of electrical impedance spectroscopy
for the health condition of patients [39]. Hence, the present study strove to use polynomial
regression analysis to non-invasively estimate the values of these six impedance features
without the electrical impedance spectroscopy method. We estimate these impedance
features based on the tumor size that is available data and physicians can measure this size
by common imaging methods. Regression analysis is a powerful statistical tool to estimate
necessary parameters for decision-making. The results of regression analysis are shown in
Figure 2. The present study used polynomial regression analysis to find the relationship
between these features and tumor size based on the reported data for our patients (see
Table 1). The results of Table 2 showed the estimated equations of PA500, DA, A/DA, Max
IP, DR, and P. It should be noted that R-values for all estimations are greater than 0.51.

There are many classifications for breast cancer, such as cancer stages (from 0–IV),
and type of tumor (benign and malignant). Estrela et al. suggested a threshold level
to classify impedance ratio (IO), one of the other impedance features [36]. One of the
important indicators is extracted from the results of a function that is defined based on
the proportions of metastases based on the time after treatment [40]. This indicator is
a common quantitative factor that dedicates eight classes for breast cancer. Koscielny
et al. revealed that there is a correlation between clinical volume and the percentage of
metastases diagnosed at the time of initial diagnosis or during later stages of the dis-
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ease [40]. Additionally, their results showed that there is a shorter median delay between
initial treatment and metastases appearance for larger tumors. Their finding suggested
eight classes include 1 ≤ size ≤ 2.5 (class 1), 2.5 < size ≤ 3.5 (class 2), 3.5 < size ≤ 4.5 (class
3), 4.5 < size ≤ 5.5 (class 4), 5.5 < size ≤ 6.5 (class 5), 6.5 < size ≤ 7.5 (class 6), 7.5 < si-
ze ≤ 8.5 (class 7), and size > 8.5 (class 8). However, the corresponding classifications based
on six impedance features (PA500, DA, A/DA, Max IP, DR, and P) are not available. This
means that oncologists cannot dedicate a class to these six impedance features. This study
used the NCO method to define the corresponding eight classes for the impedance features
based on the results of a study by Koscielny et al. [40]. The results of Table 3 indicate the
threshold levels of PA500, DA, A/DA, Max IP, DR, and P to classify breast cancer based
on the eight classes. It should be noted that minimum and maximum optimization results
are defined as lower and upper bounds of the threshold level for each class. There is
no comprehensive quantitative guideline in previous studies for clinical applications of
the impedance features. For example, there is no quantitative guideline to evaluate the
non-fatty level of breast cancer using DA and A/DA features. The results of Table 3 can
classify the non-fatty level of breast cancer quantitatively using the defined threshold levels
for DA and A/DA features. This approach is also extendable for all impedance features.
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Table 2. Estimated features using nonlinear regression analysis. “x” means tumor size.

Estimated Feature R2

PA500 = −0.0001x2 + 0.0165x + 0.0888 0.52
DA = 0.123x2 + 21.499x − 17.439 0.84

A/DA = 0.030x3 − 0.825x2 + 10.437x − 13.982 0.75
Max IP = 0.334x3 − 8.914x2 + 78.564x − 160.280 0.32

DR = 0.695x2 + 12.911x − 3.916 0.79
P = −2.226x2 + 67.198x + 91.157 0.68

PA500: Phase angle at 500 KHz, DA: Impedance distance between spectral ends, A/DA: Area normalized by DA,
Max IP: Maximum of the spectrum, DR: Distance between I0 and real part of the maximum frequency point, P:
Length of the spectral curve.

Table 3. Estimation of the threshold levels for classification of eight features based on tumor size
using nonlinear constrained optimization analysis.

Feature X (Size) PA500 DA A/DA Max IP DR P

Bounds Class lx ≤ x ≤ ux Lc Uc Lc Uc Lc Uc Lc Uc Lc Uc Lc Uc

1 1 ≤ x ≤ 2.5 0.105 0.129 4.183 37.078 4.340 7.420 90.296 14.366 9.689 32.703 156.128 245.236
2 2.5 < x ≤ 3.5 0.129 0.145 37.078 59.315 7.419 13.719 14.366 19.814 32.703 49.782 245.236 299.075
3 3.5 < x ≤ 4.5 0.145 0.161 59.315 81.799 13.719 18.994 19.814 43.179 49.782 68.251 299.075 348.461
4 4.5 < x ≤ 5.5 0.161 0.176 81.799 104.529 18.994 23.423 43.179 57.734 68.251 88.109 348.461 393.394
5 5.5 < x ≤ 6.5 0.176 0.192 104.529 127.505 23.423 27.186 57.734 65.482 88.109 109.356 393.394 433.874
6 6.5 < x ≤ 7.5 0.192 0.207 127.505 150.728 27.186 30.461 65.482 68.427 109.356 131.993 433.844 469.901
7 7.5 < x ≤ 8.5 0.207 0.222 150.728 174.196 30.461 33.427 68.427 68.726 131.993 156.019 496.901 501.475
8 x > 8.5 0.222 - 174.196 - 33.427 - 67.874 - 156.019 - 501.475 -

PA500: Phase angle at 500 KHz, DA: Impedance distance between spectral ends, A/DA: Area normalized by DA,
Max IP: Maximum of the spectrum, DR: Distance between I0 and real part of the maximum frequency point, P:
Length of the spectral curve, X: tumor size, Lc: Lower bound, Uc: Upper bound (Equation (4)).

Breast cancer is a complex disease, and its diagnosis depends on various features. The
present study focused on impedance features that are common to screen and diagnosing
breast cancer. However, for comprehensive diagnosis of breast cancer, it is recommended for
future studies to expand our findings by considering the interactional effects of the clinical,
cancer morphometrics, and molecular biotechnology features. Currently, the major effect
of big data is approved in improving the accuracy and precision of predicted results using
increasing the volume, velocity, and variety of data [41]. One potential limitation of the
present study is the possibility of biases being introduced due to the small size of the dataset
used. To mitigate this, future studies may consider using a larger dataset to improve the
accuracy of the estimated equations presented in Table 2. Another limitation of the present
study is the challenge of interpreting the results generated by the polynomial regression
models. To address this, future studies could explore the use of alternative regression
models, such as logistic regression. Additionally, to enhance the quality of estimations
and classifications, future studies may consider utilizing feature selection algorithms to
identify the most important features in the dataset. By doing so, the predictive power of the
models can be improved, and the insights gained may be more informative and actionable.
Taken together, this study has established a basis to open a window in the non-invasive
measurement of impedance features. Future studies can explore the potential of using a
machine learning algorithm with a larger database based on our insight to further enhance
estimation and classification accuracy.

4. Conclusions

The present study utilized a database of women with carcinoma breast cancer to
estimate six impedance features for breast cancer diagnosis. Polynomial regression analysis
was used to estimate these features. Additionally, NCO analysis was performed to compute
the threshold values of each impedance feature, which were utilized to establish eight clas-
sifications of breast cancer for every feature. These classifications serve as effective tools
for decision-making in breast cancer diagnosis. This finding may provide oncologists with
valuable data to help estimate and classify the effective features for breast cancer diagnosis.
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Future studies can leverage larger databases and machine learning algorithms to improve
estimation and classification accuracy.
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