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Abstract: The self-organizing maps portraying has been proven to be a powerful approach for
analysis of transcriptomic, genomic, epigenetic, single-cell, and pathway-level data as well as for
“multi-omic” integrative analyses. However, the SOM method has a major disadvantage: it requires
the retraining of the entire dataset once a new sample is added, which can be resource- and time-
demanding. It also shifts the gene landscape, thus complicating the interpretation and comparison
of results. To overcome this issue, we have developed two approaches of transfer learning that
allow for extending SOM space with new samples, meanwhile preserving its intrinsic structure. The
extension SOM (exSOM) approach is based on adding secondary data to the existing SOM space by
“meta-gene adaptation”, while supervised SOM portrayal (supSOM) adds support vector machine
regression model on top of the original SOM algorithm to “predict” the portrait of a new sample.
Both methods have been shown to accurately combine existing and new data. With simulated data,
exSOM outperforms supSOM for accuracy, while supSOM significantly reduces the computing time
and outperforms exSOM for this parameter. Analysis of real datasets demonstrated the validity of
the projection methods with independent datasets mapped on existing SOM space. Moreover, both
methods well handle the projection of samples with new characteristics that were not present in
training datasets.

Keywords: self-organizing maps (SOM); transfer learning; extension SOM portraying; supervised
SOM portraying; omics data; inflammatory bowel diseases; ulcerative colitis; Crohn’s disease;
infliximab; treatment response; breast cancer; histological grades

1. Introduction

The high-dimensional low sample size nature of modern -omics datasets necessitates
application of dimensionality reduction and clustering approaches for their efficient anal-
ysis. The self-organizing maps (SOM) portrayal method implemented in the oposSOM
package [1] has been proven to be a powerful approach for analysis of differential ex-
pression [2], molecular subtyping [3], and sample stratification [4]. SOM clusters gene
expression profiles (vectors of gene expression values across samples) into miniclusters
called meta-genes and projects high-dimensional data into two-dimensional maps. SOM
clustering coupled with extensive downstream functional analyses allows for comprehen-
sive annotation of transcriptome landscape, identification of co-expressed gene clusters,
and linking them to biological processes using curated sets of genes with known func-
tional background [5]. In contrast to other clustering and dimension reduction approaches,
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the SOM method allows for feature extraction and offers a mechanistic interpretation of
underlying biological mechanisms in terms of molecular “portraits”, and spot modules
of co-overexpressed genes [6]. Moreover, the SOM method was extended to the analysis
of genomic [7], epigenetic [8], single-cell [9], and pathway-level [10] data as well as for
“multi-omic” integrative analyses [11].

However, the SOM method has a major disadvantage: it requires the retraining of the
entire dataset once a new sample is added. In the case of few samples in the new dataset, this
is a valid approach [12,13], but once the number of samples is large, or individual samples
are being added consecutively, it could be time- and computing resource-consuming.
Moreover, retraining causes the change of gene arrangements, thus making the results hard
to compare.

To address this issue, we have developed two new approaches that allow for extending
SOM space with new samples, meanwhile preserving its intrinsic structure. The extension
SOM (exSOM) approach is based on adding secondary data to the existing SOM space,
while supervised SOM portrayal (supSOM) adds support vector machine regression model
on top of the original SOM algorithm and allows “predicting” the portrait of a new sample.
Both methods reuse information of the primary SOM for improved sampling efficiency of
the secondary data and as such refers to transfer learning in SOM space. They have been
shown to accurately combine existing and new data. exSOM is characterized by higher
accuracy compared to supSOM, while the latter is useful when the sample size to secondary
data is large, or samples are obtained sequentially.

2. Materials and Methods
2.1. General Workflow

The general workflow of the algorithms is presented in Figure 1. In both cases, the
“primary” dataset is trained with self-organizing maps (SOM), followed by clustering and
downstream analysis [1] (Figure 1A). In exSOM, “secondary” data is added to the existing
SOM space by passive training (Figure 1B). For supSOM, the support vector machine
regression model (SVMR) is trained that maps input expression dataset to SOM “portraits”
generated from “primary” data. Finally, a “secondary” dataset is supplied to the model
for projection into the SOM space (Figure 1C). Below, the details of each algorithm are
addressed in detail.

2.2. Self-Organizing Map (SOM) Training and Downstream Functional Analysis

The SOM algorithm realizes three main analysis tasks (Figure 1A): (1) dimension
reduction of the single gene expression profiles into a reduced set of meta-gene profiles, (2)
thereby clustering of similar gene profiles, and (3) multidimensional scaling represented by
the mapping of each gene into the two-dimensional SOM grid. We used the parallelized
SOM training algorithm implemented in Bioconductor R-package “oposSOM” [1]. The
method projects high-dimensional gene expression data into a two-dimensional space:
N (genes) × M (samples) gene expression matrix is translated into K (meta-genes) × M
(samples) matrix of reduced dimensionality [14,15]. Genes are assigned to meta-genes based
on the similarity of expression profiles across the samples. Each meta-gene profile can be
interpreted as the mean profile averaged over all gene profiles of the respective meta-gene
cluster. During the SOM training phase, the algorithm distributes the genes over the meta-
genes using the Euclidean distance between the gene and meta-gene profiles as a similarity
measure. Meta-genes are arranged in a k × k = K two-dimensional grid coordinate system
and colored according to their expression level for each sample, providing the so-called
“expression portraits” [1]. Group-specific mean portraits are generated by averaging the
portraits of all cases belonging to a given group or subtype.
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Figure 1. General workflow of exSOM and supSOM algorithms. (A) For both algorithms, the first 
step is SOM training with the primary dataset. (B) In exSOM, “secondary” data is added to the 
existing SOM space by passive training. (C) In supSOM, the SVMR model is trained to map the 
primary dataset to its SOM “portraits”. (D) During supSOM testing, the “secondary” dataset is 
supplied to the model for projection into the SOM space. Single arrows indicate the order in the 
pipeline, while double arrows the dimensions of samples/features in the matrix. 

In the SOM space, genes with similar profiles are located in adjacent meta-genes, 
which form “spot-like” areas of up- and downregulated expression meta-gene clusters on 
the map due to the self-organizing properties of the SOM. These spots represent clusters 
of co-regulated genes, termed expression modules, and their patterns are a characteristic 
fingerprint of each particular sample/group of samples. Lists of genes included in each of 
the spot modules provide a functional context of the spot and were evaluated with gene-
set enrichment analysis approaches [14]. 
  

Figure 1. General workflow of exSOM and supSOM algorithms. (A) For both algorithms, the first
step is SOM training with the primary dataset. (B) In exSOM, “secondary” data is added to the
existing SOM space by passive training. (C) In supSOM, the SVMR model is trained to map the
primary dataset to its SOM “portraits”. (D) During supSOM testing, the “secondary” dataset is
supplied to the model for projection into the SOM space. Single arrows indicate the order in the
pipeline, while double arrows the dimensions of samples/features in the matrix.

In the SOM space, genes with similar profiles are located in adjacent meta-genes,
which form “spot-like” areas of up- and downregulated expression meta-gene clusters on
the map due to the self-organizing properties of the SOM. These spots represent clusters
of co-regulated genes, termed expression modules, and their patterns are a characteristic
fingerprint of each particular sample/group of samples. Lists of genes included in each of
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the spot modules provide a functional context of the spot and were evaluated with gene-set
enrichment analysis approaches [14].

2.3. Extension SOM Training (exSOM)

The SOM extension method (exSOM) aims at adding new, secondary data (e.g., in-
dependent data on the same system obtained from follow-up studies or web repositories)
to an already existing SOM space (e.g., that of the primary data portraying analysis). For
this, the original SOM algorithm was adapted to realize standard meta-gene training for
the samples already contained in the primary SOM training, and a passive, “piggyback”
training of the meta-genes for the extension data (Figure 1B). In brief, the exSOM training
algorithms comprise three steps analogous to the SOM training, which are iteratively
repeated until a convergence criterion (e.g., predefined absolute number of iterations) is
achieved:

1. Training profile selection: A gene profile (i.e., a vector of expression values for all
samples) is selected, usually by sequential order.

2. Determination of best-matching meta-gene: The meta-gene profile, which is the most
similar to the training profile, is determined using the Euclidean distance metric.
Importantly, only data points corresponding to the original samples contribute to the
similarity metric; data points of the extension samples are not considered in this step.
This ensures that gene to meta-gene assignment is not altered by adding the extension
samples when compared to the primary SOM training.

3. Meta-gene adaptation: The expression values of the meta-genes are adapted according
to the Hebbian learning rule according to the original SOM training algorithm [16].
It combines the difference between the training and the meta-gene profiles with a
learning rate and a neighborhood factor, both incrementally decreasing as the training
proceeds. In this step, samples from the original and the extension set are considered,
resulting in iteratively optimized meta-gene expression values for all samples.

This training algorithm eventually provides unchanged meta-gene values for the
primary data and new, adapted meta-gene data for the secondary data, allowing for direct
comparison and integrated downstream analyses.

2.4. Supervised SOM Portrayal (supSOM)

Supervised SOM (supSOM) portrayal is based on support vector machine regression
(SVMR) and provides an alternative approach for extending an existing SOM space. In
supSOM, one SVMR model is trained for each meta-gene individually, using the genes’
expression profiles of the primary data as independent variable, and the corresponding
meta-gene profile obtained from the initial SOM training as dependent variable. Thereby,
only genes associated with the particular meta-gene or one of the adjacent meta-genes are
considered as predictors. Once a model is trained, gene profiles in new samples can be used
to predict the corresponding meta-genes (Figure 1C). We applied SVM regression model
with Gaussian kernel and evaluated supSOM performance for varying neighborhood radii.

2.5. Performance Assessment with Simulated Datasets

Performance and accuracy for exSOM and supSOM were assessed based on evaluation
of correlation and root-mean-square deviation (RMSD) between metadata of the extension
samples (i.e., the portraits) generated by SOM as reference vs. exSOM or vs. supSOM.

For benchmarking runtime of the SOM initialization and training phases, we generated
artificial expression matrices for the primary and secondary (extension) data (m1 = m2 = 50,
100, 200, 500, and 1000 arrays per class) using the “madsim” R package [17] (for parameters,
see Text S1).

2.6. Use-Case Datasets

We used the supSOM and exSOM approaches to evaluate the effect of infliximab
treatment on transcriptome landscapes in ulcerative colitis and Crohn’s disease (GSE23597
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and GSE16879) and to study disease grade-associated transcriptome changes in breast
cancer (GSE42568, GSE10810, and GSE29431), respectively.

Microarray raw intensity data were downloaded from the Gene Expression Omnibus
repository [18]. Before proceeding with analyses, the data were converted to log2 expres-
sion, quantile normalized, and annotated using the “affy” package for R.

2.7. Data Availability

The complete analysis results were deposited as supplementary data in the open-access
repository Zenodo [19].

3. Results and Discussion
3.1. Simulated Data

We generated simulated microarray data for two classes with 10,000 or 30,000 genes
and 50, 100, 200, and 500 samples per class, respectively, and used this data in the original
SOM algorithm [14,15]. As was expected, the increase of the sample size, as well as the
number of genes, caused a considerable extension of SOM initialization and training times
(Table 1). In particular, time for training increases linearly with both the number of genes
and the number of samples in the input data, as well as with total number of meta-genes in
the map which was kept constant in this benchmark (K = 1600).

Table 1. SOM training times for gene expression matrices of different sizes.

n = 10,000 Genes n = 30,000 Genes

Sample Size
(Control/Case) Training Time Sample Size

(Control/Case) Training Time

50/50 3 min 50/50 8 min
100/100 8 min 100/100 16 min
200/200 14 min 200/200 37 min
500/500 43 min 500/500 116 min

1000/1000 85 min 1000/1000 228 min

We compared the accuracy of exSOM and supSOM using the “self-portraying” ap-
proach, which is equivalent to “resubstitution” error estimation in SVM classifiers [20]. For
this, we generated another dataset consisting of 50 cases and 50 controls and 10,000 genes,
trained the SOM, and then used exSOM and supSOM with the same dataset to evaluate
the accuracy of the “portraying” of secondary data. The accuracy was calculated based on
correlation and RMSD between meta-genes in primary and secondary data (exSOM) or
SOM trained and SVMR predicted meta-genes (supSOM). The results showed that exSOM
generates secondary “portraits” exactly identical to primary “portraits” with correlation
equal to 1 and RMSD equal to 0 (Figure 2; for full portraits, see Figure S1).

The supSOM performed slightly poorer compared to exSOM. The accuracy of supSOM
portrayal depended on the neighborhood radius. The correlation values varied between
0.90 and 0.99, depending on the neighborhood parameter. A steep decrease of RMSD
values was observed when increasing neighborhood radius from 1 to 4, while the selection
of larger radii caused an increase in RMSD, presumably because of the inclusion of gene
profiles from distant meta-genes (Figure 3). Based on the RMSD curve, we chose a radius
value equal to 4 on 40 × 40 SOM grid for further analyses.
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data (black lines in the top-right pane) on the grid, while secondary data (grey line in the top-right 
pane) do not contribute to gene clustering. During the extension phase, the secondary data is 
mapped to the existing SOM grid (black line on the bottom right pane). (B) The meta-gene adapta-
tion of secondary data results in identical images compared to the corresponding sample in the 
primary data. (C) The correlation between paired samples from primary and secondary datasets 
showed perfect matching (Pearson’s correlation coefficients equal 1 (red diagonal in the heatmap) 
and RMSD equal to 0, not shown). 

The supSOM performed slightly poorer compared to exSOM. The accuracy of sup-
SOM portrayal depended on the neighborhood radius. The correlation values varied be-
tween 0.90 and 0.99, depending on the neighborhood parameter. A steep decrease of 
RMSD values was observed when increasing neighborhood radius from 1 to 4, while the 
selection of larger radii caused an increase in RMSD, presumably because of the inclusion 
of gene profiles from distant meta-genes (Figure 3). Based on the RMSD curve, we chose 
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Figure 2. Performance of exSOM transfer learning using “self-portraying”. (A) exSOM adapts
secondary data to an existing SOM via passive training of the meta-genes. First, SOM arranges
primary data (black lines in the top-right pane) on the grid, while secondary data (grey line in the
top-right pane) do not contribute to gene clustering. During the extension phase, the secondary
data is mapped to the existing SOM grid (black line on the bottom right pane). (B) The meta-gene
adaptation of secondary data results in identical images compared to the corresponding sample in
the primary data. (C) The correlation between paired samples from primary and secondary datasets
showed perfect matching (Pearson’s correlation coefficients equal 1 (red diagonal in the heatmap)
and RMSD equal to 0, not shown).
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The white areas on the maps represent meta-genes where the prediction failed. (E) The correlation 
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terms of computing time. For this purpose, we generated simulated two-class microarray 
datasets (200 samples in each class with 30,000 genes). We used 50 random samples per 

Figure 3. Performance of supSOM transfer learning using “self-portraying”. (A) supSOM utilizes sup-
port vector machine regression to train the primary dataset with the corresponding meta-genes. Single
arrows indicate the order in the pipeline, while double arrows the dimensions of sam-ples/features
in the matrix. (B) The trained models are then used for the prediction of meta-gene values of the
secondary data. (C) The performance of supSOM portrayal depends on the neighborhood radius. The
optimal radius value was selected equal to 4 (red arrow) based on RMSD and Pearson’s correlation.
(D) supSOM portrayal shows slight differences compared to original SOM. The white areas on
the maps represent meta-genes where the prediction failed. (E) The correlation heatmap between
paired samples from primary and secondary datasets showed good matching (Pearson’s correlation
coefficients close to 1 (red diagonal in the heatmap).
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Finally, we evaluated whether supSOM portrayal has an advantage over exSOM in
terms of computing time. For this purpose, we generated simulated two-class microarray
datasets (200 samples in each class with 30,000 genes). We used 50 random samples per
class for SOM training and performed extSOM or SVMR portrayal on the rest of the samples
and compared the times spent in each case (Table 2).

Table 2. Comparison of computational time of exSOM and supSOM.

Data—200 Samples in Each Class with 30,000 Genes Time

exSOM 23 min
SOM training (50/50 samples) 8 min

extSOM (150/150 samples) 15 min
supSOM 14 min

SOM training 50/50 samples 8 min
SVMR model training (50/50 samples) 4 min

SVMR portrait prediction (150/150 samples) 2 min

The results obtained with simulated data indicate that both methods can be used for
accurate “projection” of new datasets to the existing SOM space without perturbing the
intrinsic structure of the latter. exSOM outperforms supSOM for accuracy, while supSOM
significantly reduces the computing time and outperforms exSOM for this parameter.
exSOM might be the method of choice when accuracy is important; however, one has to
consider that self-portrayal used as a simulation model is based on SOM-training and
is, thus, method-consistent for trained and verified extension data, while supSOM is not.
Advantages of supSOM of faster computation may become more pronounced if the size of
new samples is large or they become available not at once, but sequentially.

3.2. Inflammatory Bowel Disease (Ulcerative Colitis and Crohn’s Disease) Response to
Infliximab—supSOM (Transferring Treatment Data to Disease Landscapes)

In this section, we used two publicly available datasets from the context of inflamma-
tory colon diseases as an exemplary use case: GSE23597 (title: “Expression data from colonic
biopsy samples of infliximab treated UC patients”) and GSE16879 (title: “Mucosal expres-
sion profiling in patients with inflammatory bowel disease before and after first infliximab
treatment”). The GSE23597 dataset contains samples from patients with baseline ulcerative
colitis (UC) disease, as well as patients treated with infliximab or placebo (54,613 genes
× 113 samples). This dataset was used as a reference (primary data) for SOM training.
The GSE16879 dataset contains samples from patients with UC and Crohn’s disease (CD)
before and after treatment with infliximab (54,613 genes × 90 samples). This dataset was
used as secondary data for the extension approaches in a second step. The samples in both
datasets were additionally stratified to responders and nonresponders. SOM portrayal of
the primary dataset demonstrated that infliximab responders and nonresponders showed
distinct patterns of deregulation of functional spots on the SOM transcriptome landscapes
(Figure 4). The SOM portraits of disease baseline (untreated), as well as nonresponder
patients, were characterized by upregulated spots on the upper right corner of SOM maps
(spot H and F), while responder patients were characterized by an overexpressed spot in the
left bottom corner of the map (spot P). The functional analysis of deregulated modules sug-
gests the upregulation of inflammatory response, particularly tumor necrosis factor (TNF)
signaling pathway in baseline nontreated patients and nonresponders, in agreement with
previous studies [21,22]. In contrast, patients who responded to infliximab showed marked
downregulation of inflammation and upregulation of functional gene sets associated with
tissue restoration and cell metabolism. Interestingly, the gene expression landscape in the
placebo group was similar to that of patients receiving infliximab; however, the magnitude
of spot expression was considerably lower. However, compared to the drug, the placebo
group was still characterized by upregulation of immune/inflammatory gene signatures
(Figure 4 and Figure S2), suggesting that infliximab possesses strong anti-inflammatory
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effects in responders, and, in parallel, induces injured tissue restoration by activating
growth factor signaling and metabolic pathways.
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samples from patients with ulcerative colitis (UC) and Crohn’s disease (CD) before and 
after treatment with infliximab as well as normal colonic mucosa samples. In addition, 
patients were retrospectively stratified into infliximab responder and nonresponder 
groups [23]. supSOM (Figure 5) as well as exSOM (see Figure S3) portraits of UC patients 
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ally, obtained results allowed for gaining additional insights into mechanisms of inflam-
matory bowel diseases and infliximab treatment efficacy. First, we observed considerable 

Figure 4. Transcriptome landscape (primary SOM space) of response to infliximab in ulcerative colitis.
(A) The overview map is segmented into 19 modules, from which 5 modules (F, H, I, J, and P) were
deregulated in a group-specific manner. Group-specific mean transcriptome portraits of studied
groups (see [15]). (B) Module (spot)-specific expression profiles in groups. The results show that
modules F, H, and I were upregulated in the baseline disease and nonresponder group, while the
expression of modules P and J were upregulated in responders. (C) The heatmap of module-specific
gene-set enrichment scores. The results indicate that drug responders and nonresponders show
differential deregulation of gene modules that are associated with inflammation, TNF-alpha signaling
(spots F, H, and I), tissue restoration, and cell metabolism (spot P).

Based on the SOM landscape obtained, we performed a supSOM and exSOM portrayal
of gene expression in an independent dataset (GSE16879), which contained biopsy sam-
ples from patients with ulcerative colitis (UC) and Crohn’s disease (CD) before and after
treatment with infliximab as well as normal colonic mucosa samples. In addition, patients
were retrospectively stratified into infliximab responder and nonresponder groups [23].
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supSOM (Figure 5) as well as exSOM (see Figure S3) portraits of UC patients after treatment
showed perfect matching to the corresponding SOM portraits. Additionally, obtained
results allowed for gaining additional insights into mechanisms of inflammatory bowel
diseases and infliximab treatment efficacy. First, we observed considerable differences
in the spot patterns observed in responder vs. nonresponder IBD patients before treat-
ment (Figure 5). Both UC and CD nonresponder patients showed marked upregulation
of immunity and inflammation-related signatures localized on the top right corner of the
SOM portraits (corresponds to spots F, H, and I in primary SOM landscape, see Figure 4),
particularly TNF signaling via TNFR2, pattern-recognition receptor signaling, nitric oxide
synthesis, neutrophil activation, etc. (Supplementary Figure S4). Interestingly, baseline
(before treatment) molecular portraits of UC and CD responder groups showed distinct
patterns of up- and downregulated functional modules. The molecular portraits of CD
responders were more similar to the healthy subjects (Pearson’s r = 0.74), compared to
the UC responders (Pearson’s r = 0.09). Further analysis indicated that the UC and CD
nonresponders were characterized by the increased baseline levels of TNF-a compared to
the responders, however, with a similar tendency of expression decrease after treatment
(Figure S5). This can indicate that not responding to the drug can be at least partially
attributed to inadequate dosing of infliximab [24].

3.3. Extending Breast Cancer Transcriptome Landscapes—exSOM

As a second use case, we used the exSOM approach to perform disease grade-
associated molecular portrayal of breast cancers. The GSE42568 dataset contains gene
expression profiles measured in 121 healthy and breast cancer tissue samples. Samples
were stratified by breast cancer histologic grading (17 normal, 11 Grade I, 40 Grade II, 53
Grade III) [25]. Using this dataset as primary, we performed 40 × 40 SOM training to cluster
co-expressed genes and characterize transcriptome portraits of cancer grades. The results
indicate that normal breast tissue expression signatures substantially differ from diseased
ones (Figure 6A,B). Breast cancers were generally characterized by the loss of normal tissue
gene expression (spot A), including response to hypoxia, lipid metabolism process, cell
adhesion, and extracellular matrix organization. Moreover, we observed a grade-dependent
increase in the number of differentially expressed genes (Figure S6). Furthermore, we also
noticed switching cancer gene expression signatures from luminal to basal type (Figure 6C).
Grade I cancers were characterized by upregulation of spot B associated with luminal type,
response to estrogen, and immune response. Grade II cancers largely share gene expression
signatures with Grade I and Grade III, representing a transition type without having a
characteristic spot. The Grade III cancers were additionally characterized by upregulation
of functional modules involved in cell proliferation, cell–cell adhesion, cell migration, and
epithelial–mesenchymal transition (spots C) (Figure 6C).
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Figure 5. Projection of GSE16879 (mucosal expression profiling in patients with inflammatory bowel
disease before and after first infliximab treatment) dataset onto primary SOM space. supSOM portraits
of UC patients after treatment showed perfect matching to the corresponding portraits of the original
SOM. supSOM portraits highlight the differences in deregulated spots between responder and
nonresponder IBD patients before treatment. Both UC and CD nonresponders are characterized by
an overexpressed spot on the top-right corner of their corresponding group portraits, which remains
unchanged after treatment. In contrast, US and CD responders showed a different distribution of
upregulated spots before treatment, while their corresponding portraits after treatment resemble
transcriptome portraits of healthy mucosa.
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Figure 6. Primary SOM transcriptome landscape of disease grade-stratified breast cancers. (A)
Overview map of deregulated functional gene modules in primary SOM. (B) Group-specific module
expression. (C) Heatmap of enrichment analysis scores of functional modules.

Next, we used exSOM portrayal to map samples from two different secondary datasets
(GSE29431 and GSE10810) to the primary SOM landscape. The GSE29431 dataset contained
51 samples (12 normal, 3 Grade I, 11 Grade II, and 25 Grade III); the GSE10810 dataset
contained 47 samples (27 normal, 2 Grade I, 10 Grade II, and 10 Grade III). The exSOM,
as well as supSOM portraits for both secondary datasets, showed a good correlation with
primary SOM counterparts (Figure 7 and Figure S7). Moreover, exSOM portraits further
emphasized the “indiscrete” pattern of Grade II breast cancers. In line with previous data,
our results suggest that grades are not discrete but rather form a continuum with uncertain
boundaries, which complicate classification and assignment [26–28] of this important
prognostic marker.
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4. Conclusions

In this paper, we described options for extending SOM-based high-dimensional tran-
scriptomic data portraying with additional, independent samples. The two extension
approaches presented enable overcoming the main limitation of SOM machine learning,
namely, that adding samples or complete datasets changes the intrinsic primary structure
of primary SOM. Both exSOM and supSOM demonstrated their utility in overcoming this
drawback. Both methods have their advantages and disadvantages: while exSOM seems
more accurate, supSOM is time-efficient.

From the methodical side, the novelty of the study is provided by the combination of
previous SOM portrayal neural network machine learning with extrapolation of metagene
values for novel samples using additive transfer learning approaches which transfer novel
data into a multidimensional space obtained from previously collected data. The novel
methods considerably widen the application range of SOM portrayal because they not only
make computations more effective but, especially, because they enable usage of always
analyzed data space for novel samples.

Analysis of inflammatory disease and cancer datasets demonstrated the validity of the
projection methods with independent datasets mapped on existing SOM space. Moreover,
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we showed that the methods well handle the projection of samples with new characteristics
that were not present in training datasets (see the “inflammatory bowel disease response to
infliximab” section of the Results).

Thus, we demonstrated that SOM extension methods (exSOM and supSOM) can
remarkably extend the usage scenarios of SOM “molecular data portrayal” approaches.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biomedinformatics2010004/s1 Text S1: gives the codes for the generation of a simulated data
set. Figure S1: Complete portrayal of simulated dataset with SOM, exSOM, and supSOM, Figure S2:
Pairwise differential gene expression in primary SOM IBD dataset (GSE23597), Figure S3: Comparison
of supSOM and exSOM portraits in secondary IBD dataset (GSE16879), Figure S4: Biological processes
associated with upregulated spots F, H, and I on the primary SOM IBD dataset. Baseline disease
and nonresponders were characterized with upregulated stops F, H, and I (see Figure 4) related
to inflammatory response, cytokine-mediated signaling, neutrophil activation, reorganization, etc.,
Figure S5: Differential expression landscape in IDB responders vs. nonresponders in the secondary
dataset (GSE16879). Orange color indicates upregulation, blue color indicates downregulation, white
indicates the region of invariant gene expression, Figure S6: Grade-dependent change of differential
expression genes in breast cancer, Figure S7: Comparison of exSOM and supSOM portraits in
secondary breast cancer datasets. (A) GSE10810, (B) GSE29431.
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