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Raw Data Download 

The following command was used to download through the SRA toolkit on a local Linux OS 

based machine. 

wget http://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/2.10.2/sratoolkit.2.10.2-centos_linux64.tar.gz 

https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=Run_ID or the data can be downloaded using the 

command: /fastq-dump --split-files Run_ID (e.g., Run_ID = SRR6782109). 

 

 

Figure S1. Glimpse of the Fastq file. 

Quality Control 

The "FASTQ Quality Check" tool is an easy way to perform quality control. The quality control 

analysis is done by nine modules, which provide a quick overview of whether the data looks 

good, and there are no issues that may hinder downstream analysis. The result is an HTML file 

with evaluations in the form of charts. The file begins with the quality statistics table for data. It 

contains information about the input FASTQ file, type of quality score encoding, the total 

number of reads, read length, and GC content (Figure S2). 



 

Figure S2: Basic summary statistics of raw sequence data (fastq file). 

The first plot, 'Per base Sequence Quality' (Figure S3), is a box-and-whisker plot showing quality 

score distribution over all the sequences on the x-axis and the observed mean quality on the y-

axis. The red line in the center of the box and whisker plot gives the median value,  the yellow 

box of the plot represents the inter-quartile range (25-75%), the upper and lower whiskers of the 

plot represent the 10% and 90% percentile scores, and the blue line represents the mean quality 

of the read. The background of the graph divides the y-axis into excellent quality calls (green), 

reasonable quality (orange), and calls of low quality (red). A warning is flagged if the median 

quality for any base is less than 27, while the failure occurs if the median quality falls below 20. 

The screenshot of this plot for our dataset shows good quality reads with median quality above 

30 for most of the reads and all the reads in the green area indicating good base calls.  



 

Figure S3: Per base sequence quality plot (depicting the quality of the reads in the fastq file). 

The second plot, 'Per sequence quality score’ (Figure S4), gives the distribution of the average 

quality score. This quality report allows a check if a subset of sequences has low-quality values 

universally. There is a problem with the run if a significant proportion of the sequences in a run 

have overall low quality. If the observed mean quality is below 27, which equals to a 0.2% error 

rate, a warning is issued. A failure is flagged when the mean quality falls below 20, which 

equates to a 1% error rate. What we look for in the plot is a tight distribution towards one end of 

the plot, which would indicate good quality. We observe that the frequently observed mean 

quality is around 31 for our dataset, indicating good quality read data. This module generates the 

following plot for our dataset: 



 

Figure S4: Distribution of per sequence quality scores. 

The next plot, ‘Per base sequence content' (Figure S5), gives the percentage of bases called for 

each of the four nucleotides at each position across all reads in the read file. For any sequencing 

run, the proportion of all nucleotides, A, T, G, C, is expected to be in equal proportion indicating 

that the lines in this plot should run parallel with each other. With most RNA-Seq library 

preparation methods, there is a non-uniform distribution of bases for the first 10-15 nucleotides. 

This non-uniform distribution is normal and expected, depending on the type of library kit which 

is used in the library preparation. This module marks this distribution as Failed by FastQC even 

though the sequence is perfectly acceptable. If the difference between A and T, or G and C is 

greater than 10% in any position, a warning is given, and if more than 20%, it raises a failure.  



 

Figure S5: Distribution of per base sequence content.   

The following Figure S6 is of the sequence GC content and plots the number of reads vs. GC 

percentage per read. There may be a greater or lesser distribution of mean GC content among 

transcripts. A roughly normal distribution of GC content is expected where the peak corresponds 

to the overall GC content. An anomaly can lead to the observed plot to be broader or narrower 

than the ideal plot of the normal distribution, indicating contamination. If the sum of the 

deviations from the normal distribution represents more than 15% of the reads, a warning is 

issued while a fail is raised for more than 30% reads. For our dataset, the GC content is 48%. 



 

Figure S6: Distribution of per sequence GC content. 

The next plot,' per base N content,'(Figure S7) gives the percentage of bases at each position for 

which N is the base call. If a sequencer cannot call a base with confidence, it substitutes an N 

rather than a conventional base. If this curve rises noticeably above zero, it indicates a problem 

that occurred during the sequencing run. If a position in the plot shows an N content of >5%, it's 

a warning, and for >20%, it's a failure. The following is the screenshot of our dataset. 

 



Figure S7: Distribution of per base N content. 

 

Figure S8: Sequence length distribution plot. 

The plot is for the sequence length distribution (Figure S8). It gives the distribution of fragment 

sizes in the file. This module will produce a simple graph showing a peak only at one height. A 

warning occurs if all sequences are not the same length and failure is due to an error leading to 

the sequences with zero length. For our dataset, we get a peak of the curve at 98, depicting that 

all sequences are 98 bases long. 



 

Figure S9: Sequence duplication levels plot. 

The sequence duplication level plot (Figure S9) shows the relative number of sequences with 

different degrees of duplication. A low duplication level is indicative of a higher level of 

coverage of the file, while a higher recurrence indicates a bias usually from the PCR 

amplification. There are two lines on the plot. The blue line takes the full sequence set and 

shows how its duplication levels are distributed in the original data. The red line shows the 

duplication proportions of the deduplicated group. For RNA-seq, there will be some very highly 

abundant transcripts for which duplicate reads are expected and is always flagged. If the 

duplicated sequences are more than 20% of the total, a warning is issued, while for more than 

50%, it is a failure. 

 



Figure S10: Chart of the overrepresented sequences. 

The overrepresented sequence lists the sequence, which appears more than expected in the file 

(Figure S10). An overrepresented sequence in the file either means that it has some biological 

significance or indicates a contaminated library or not a diverse library as expected. In the case 

of a typical high-throughput library, it will contain different sequences, and no one sequence that 

makes up a small fraction of the whole set of sequences. A sequence is considered 

overrepresented if it is accounted for ≥ 0.1% of the total reads for which a warning is raised and 

a failure if it is >1%. For our dataset, the over-represented sequence is of poly Gs constituting 

approximately 0.6% of the total with no possible link to contamination or primers. 

The last plot for our data quality control is the' Adapter content'(Figure S11). The graph shows 

the percentage of adapter content in each position. It is always useful to know if the library 

contains an adapter in order to be trimmed for downstream analysis. Our dataset is free of the 

primers as seen in the plot below: 

 

Figure S11: Distribution of percentage of Adapter content. 



Document S1: Linux commands for various analyses. 

Extracting Barcodes and UMI 

The following command from the UMI-tool outputs a text file containing the list. 
 
umi_tools whitelist --stdin read1(R1)file.fastq –bc-pattern=”Pattern sequence”   --log2stderr > 

whitelist.txt  

where, read1(R1).fastq is the read file e.g., SRR6782109_1.fastq; Pattern sequence is the given pattern  

sequence, e.g., CCCCCCCCCCCCCCCCNNNNNNNNNN. 
 

The whitelist file that is generated as follows: 

 

Figure S12:  Part of the whitelist file. 

To extract UMIs the command is in this form: 

 umi_tools extract --bc-pattern=”Pattern sequence” --stdin SRR6782109_1.fastq --stdout 

SRR6782109_1_extracted.fastq.gz –read2-in SRR6782109_2.fastq.gz --read2-out= 

SRR6782109_2_extracted.fastq.gz --filter-cell-barcode --whitelist=whitelist.txt 

Mapping 

The following command was used to generate the BAM files: 



STAR --runThreadN 12 --genomeDir ./Human-genome-indices --readFilesIn 

/SRX3742050/SRR6782109_2_extracted.fastq.gz --outFilterMultimapNmax 1 --outSAMtype 

BAM SortedByCoordinate --outFileNamePrefix SRX3742050/SRR6782019_star_output 

 

Generating count matrix 

The featureCounts package was run using the following command: 

featureCounts -a hg38_ucsc.gtf -o gene_assigned_file -R BAM out.bam -T 4 

To sort the file, we used the following commands: 

samtools sort subread-2.0.0-Linux-

x86_64/bin/SRR6782019_star_outputAligned.sortedByCoord.out.bam.featureCounts.bam -o 

assigned_sorted.bam  samtools index assigned_sorted.bam 

The following command was used to generate a count data file (i.e., gene expression data 

matrix).  

umi_tools count --per-gene --gene-tag=XT --assigned-status-tag=XS --per-cell -I 

assigned_sorted.bam -S counts.tsv.gz 

 

Figure S13: Glimpse of resulting count matrix. 

Reduce the number of genes when many cells have zero counts:   



 For 60% reduction, those genes are deleted, which have '0' expression in 60% of cells. 1201 

genes are used to plot the clustering index and the number of clusters in Figure S11. The number 

of clusters was found to be 10. 

 

Figure S14: Number of optimal clusters with a 60% reduction in genes. 

Differential Expression Analysis 

Differential Expression Analysis is also performed on the expression data to reduce the size of 

the data. It is also called as gene selection in gene expression genomics [1-4] 

Document S2: Normalization 

DEsingle integrates a modified median normalization method that originated from DESeq to 

normalize the read counts data [5-8]. Let Yij denote the read counts of the gene i in cell j, then 

the size factor of cell j is estimated by:  

𝑠 = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑌∏ 𝑌 /  

Where Yij ≠ 0, which means only the non-zero read counts of each gene, are used. The 

normalized read counts of ith gene in jth  is calculated using the formula, Yij/Sj. 

Table S1. List of top 500 differentially expressed genes detected through DESeq2 and DEsingle 

for adenocarcinoma cell lines (.xlsx). 
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