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Abstract: Today Deep Learning (DL) is state-of-the-art in medical imaging segmentation tasks,
including accurate localization of abdominal organs in MRI images. But segmentation still exhibits
inaccuracies, which may be due to texture similarities, proximity or confusion between organs,
morphology variations, acquisition conditions or other parameters. Examples include regions
classified as the wrong organ, some noisy regions and inaccuracies near borders. To improve
robustness, the DL output can be supplemented by more traditional image postprocessing operations
that enforce simple semantic invariants. In this paper we define and apply totally automatic post-
processing operations applying semantic invariants to correct segmentation mistakes. Organs are
assigned relative spatial location restrictions (atlas fencing), 3D organ continuity requirements
(envelop continuity), and smoothness constraints. A reclassification is done within organ envelopes
to correct classification mistakes, and noise is removed (fencing, enveloping, noise removal, re-
classifying and smoothing). Our experimental evaluation quantifies the improvement and compares
the resulting quality with prior work on DL-based organ segmentation. Based on the experiments, we
conclude post-processing improved the Jaccard index over independent test MRI sequences by a sum
of 12 to 25 percentage points over the four segmented organs. This work has an important impact
on research and practical application of DL because it describes how to post-process, quantifies the
advantages, and can be applied to any DL approach.
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1. Introduction

Magnetic Resonance Imaging (MRI) is an imaging technique based on capturing
magnetic signal changes in the resonance of hydrogen protons after triggering radio-
frequency pulses. Computerized processing of those signals outputs MRI images which
can be used for diagnosing medical conditions. The resulting MRI scan is a sequence of
slices, where a slice is a 2D image of the body part that is being scanned. A sequence of
2D images generates a clear 3D volume with details of the body part that was scanned.
Deep learning-based segmentation networks can learn to segment automatically either
the 2D slices or the 3D volumes based on training examples. They are state-of-the-art in
segmentation of this and other medical imaging contexts.

1.1. Background on Segmentation of Abdominal Organs in MRI

The segmentation network is itself an evolution of the classification Convolution
Neural Network (CNN). While the CNN is an image classifier that inputs an image and
outputs a classification for the image, the segmentation network classifies each image
pixel, resulting in a complete segmentation of the image. The segmentation network has
an encoder, which is a sequence of convolution stages (convolution layers together with
regularization and pooling) that extract and compress features automatically from the
original image, and a decoder, which is a sequence of deconvolution layers, and a final
pixel classification layer. The decoder effectively converts the compressed features back to
an image sized segmentation map.
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In this work, the targets of segmentation are a set of organs, in particular the liver, the
spleen and the two kidneys. Figure 1 shows an example slice extracted from a full MRI
abdomen sequence, with ground-truth segmentation shown on the left and segmentation
results using CNN architecture named DeepLabV3 [1] on the right. It is possible to see
some inaccuracies in the form of some wrongly classified pixels, most errors in the example
being related to spilling to neighbor areas, and also a wrong classification of some areas as
part of the organ.

Figure 1. Example MRI sequence segmentation. The ground-truth in the left shows the organ extents
of the liver, kidney and spleen that are exposed in this specific slide (blue means organ). On the right
we show the corresponding pixel classifications by the segmentation network, where the colours are
coded as: light blue = kidney, gold = spleen, red = liver. It is possible to see that the liver segment
spills well off the organ, a region above the spleen is classified as spleen and, finally, the borders of
all three organs are overcome by the segments.

In order to prepare the segmentation networks for segmentation, it was necessary to
train them with a large number of training sequences and corresponding ground-truths
(correct segmentations) for the networks to learn how to segment specific organs. We used
the Chaos challenge data [2] as the dataset. The dataset includes 120 DICOM sequences
from MRI. In total, there are 1064 slices, 80% used for training and the remaining for
test (10%) and validation (10%). This dataset is further augmented to double the size
using data augmentation (random translations of up to 10 pixels, random rotations up to
10 degrees, shearing up to 10 pixels and scaling up to 10%). The convolution network learns
to segment based on the back-propagation algorithm, which iteratively adjusts convolution
and deconvolution filter weights based on gradient descent methods to progress into
minimization of the loss metric using a learning rate. The loss metric itself is a function that
quantifies the segmentation error, a measure of the difference between the segmentation
output and the ground-truth.

1.2. Contributions

Many factors can contribute to inaccuracies in the results of deep learning-based
segmentation, and specifically of segmentation of abdominal organs. We already pointed
out textures similarities, proximity or confusion between organs, morphology variations,
acquisition conditions and other parameters as the major reasons for those errors, resulting
in regions classified as the wrong organ, some noisy regions and inaccuracies near borders.
Some simple examples of errors include classification of parts of a left kidney as a right
kidney and vice-versa, erroneous classification of parts of the spleen as kidney or vice-
versa, some other structures classified as one of the organs, some parts of the background
classified as a part of an organ and spilling the organ segments into neighboring regions.

In all these examples a human can detect the errors, and the semantics that the
human uses to detect the errors can be enforced automatically. Even a very good deep
learning segmentation of abdominal organs might score between and 80% and 90% Jaccard
index, leaving an additional 10 to 20% space for further improvement by post-processing.
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A solution for post-processing is to apply constraints based on the additional semantic
invariants that are obvious to a human observer but not so obvious to the automated DL
procedure. These invariants can, however, be coded as automated post-processing steps.
One procedure reminiscent of atlas-based approaches is to obtain the expected 3D location
and volume from the training images, with some tolerance added, whereby an organ is
expected to be located in a specific region of the body and to have a certain volume (we
call this procedure “fencing”). Additionally, this fencing also allows us to remove incorrect
assignments and to do reclassification of regions inside the incorrect fence. Another
constraint is continuity, whereby the segment of an organ is expected to have continuity
inside of its 3D and 2D structures, and to form a solid organ envelope. This allows the
algorithm to fill gaps and also connect parts of disconnected regions within an organ’s
envelope. Additionally, small, isolated regions outside the 3D envelope can be considered
noise and reclassified. Finally, smoothness is expected. Under smoothness, borders of
organ volumes and slices should be smooth. In essence, the proposed approach applies a
set of image processing operations using several techniques to improve segmentation.

In this work, we first propose the post-processing operations, then we build an exper-
imental setup to quantify the quality improvement. For the experimental setup we first
compare the quality of segmentation of three well-known off-the-shelf segmentation net-
works to choose the best performing one. Before engaging in experimental work, we first
tuned training parameters by evaluating the quality of segmentation, as measured by the
metric IoU (intersect-over-the-union) on the test set as we varied learning rates (0.01, 0.005,
0.001, 0.0005, 0.0001), different learning algorithms (Adaptive Moment estimation = Adam,
Root Mean Square Propagation, and RMSProp, Stochastic Gradient Descent with Momen-
tum = SGDM), different numbers of epochs (70, 100, 300, 500,700), different minibatch
numbers (8, 16, 32, 64) and momentum (1, 0.9). The top performing alternative was chosen
(0.005 learning rate, SGDM, 500 epochs, 32 minibatch size, momentum 0.9) and used for
the experimental runs. After choosing and tuning the network, it was trained with MRI
sequences and then used to segment an independent set of test MRI sequences. Finally, we
applied the post-processing operations to improve the results and assess the amount of
improvement. Our assessment was based on evaluating the quality of segmentation of the
liver, spleen, left kidney and right kidney, and the quality after post-processing, to under-
stand how much the post-processing operations were able to improve the quality of the
result. Using this experimentation approach, we were able to conclude that post-processing
operations improved the Jaccard index of segmentation by 12 to 25 percentage points for
total improvement over the four organs in our experimental setup. We also reviewed the
quality achieved by related works segmenting abdominal organs, for comparison purposes.
Finally, we showed how post-processing transformed a real test sequence. We conclude
that the approach improves the robustness of segmentation by correcting errors, an impor-
tant advantage being that it can be applied to improve the quality of the outputs of any
segmentation network.

2. Related Work

Precise segmentation of abdominal organs is a relevant task for several clinical proce-
dures, including visual aids to diagnosis, detailed analysis of abdominal organs for correct
positioning of a graft prior, abdominal aortic surgery and many other tasks. Ongoing
research tries to improve segmentation results and to overcome many challenges due to
the highly flexible anatomical properties of the abdomen and limitations of modalities
reflected in image characteristics. Previously, segmentation would be done mostly using
multi-atlas techniques, with interesting results when applied to different anatomical parts.
For instance, Bereciartua et al. [3] segmented the liver using a 3D liver model guided by a
precomputed probability map. Le et al. [4] used histogram-based liver segmentation with
a subsequent geodesic active contour refinement step, and Huynh et al. [5] used watershed
transformation and active contours. In many of these approaches, organ volumes and
statistical information regarding those volumes were often used as part of the segmen-
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tation process. In the last few years, deep learning-based approaches have been quickly
overtaking traditional ones in the task of segmentation of medical images in general and
for MRI segmentation of abdominal organs specifically.

Deep learning approaches not only improve segmentation scores significantly when
compared to more traditional techniques, they are also much more capable of learning and
adapting automatically. However, many of the image processing concepts used in prior
approaches are still relevant in the deep learning era. In the next paragraphs we review
previous deep learning approaches applied to segmentation of abdominal organs in both
MRI and CT sequences.

Zhou et al. [6] showed that fully convolutional networks (FCN) produce excellent
results in segmentation of abdominal organs from computer tomography (CT) scans.
Zhou et al. [6] transformed the anatomical structure segmentation on 3D CT volumes
into a majority voting of the results of 2D image segmentation on a number of 2D-slices
from different image orientations, then an organ localization module was used with two
major processing steps: (1) individual organ localization that decides the bounding box
of a target organ based on window sliding and pattern matching in Haar-like and LBP
feature spaces; (2) group-wise calibration and correction based on general Hough voting of
multiple organ locations. Bobo et al. [7] applied the approach to segmentation of the whole
abdomen from magnetic resonance imaging sequences (MRI). The authors show that fully
convolutional neural networks (FCN) improve abdominal organ segmentation significantly
when compared with multi-atlas methods. The FCN they used resulted in a dice similarity
coefficient (DSC) of 0.930 for the spleen, 0.730 for the left kidney, 0.780 for the right kidney,
0.913 for the liver and 0.56 for the stomach. Larsson et al. [8] proposed SeepSeg, a method
to segment abdominal organs based on three steps: (1) localization of region of interest
using a multi-atlas approach; (2) pixelwise binary classification using a convolutional
neural network and (3) post-processing by thresholding and removing all positive samples
except the largest connected component. In this approach, the authors found a region
of interest for each organ, which was done as a pre-processing step for a classification
network to classify fewer voxels. The authors achieved IoU (Intersect-over the Union, a.k.a
Jaccard coefficient) scores of 0.90, 0.87, 0.76 and 0.84, respectively, for liver, spleen, right
and left kidneys. Groza et al. [9] proposed an ensemble of networks and voting for output
in the segmentation of MRI scans. There were five different networks used for the final
averaged ensemble. The first was the DualTail-Net architecture, which consisted of an
encoder part and two independent decoder parts. The other four networks had very similar
U-Net-based architectures, and the final result was an averaged ensemble of predictions
obtained by the five networks. Conze et al. [10] also worked in the segmentation of MRI
scans. They tested several segmentation network architectures, including a deeper version
of UNet using VGG19 instead of VGG16, comparing one version training from scratch to
one starting from pretrained nonmedical data. The authors also cascaded two networks,
combining two v19pUNet networks by inputting posterior probabilities resulting from the
first v19pUNet output into the second one. In another alternative, the cascaded pipeline was
used as generator within a conditional Generative Adversarial Network (cGAN), a model
including a discriminator whose role was to distinguish real ground-truth segmentations
from those arising from the generator, to strengthen the ability of the generative part to
create segmentation masks that are as realistic as possible. From the various architectures
tested by Conze, the most significant improvements came from UNet with VGG19, and
also to a smaller degree by the two cascaded UNets. In [11] the authors proposed a
convolutional neural network (CNN)-based fully automated MR image-based multi-organ
segmentation technique, namely ALAMO (Automated deep Learning-based Abdominal
Multi-Organ segmentation). A multi-slice 2D neural network was developed to account for
information between adjacent slices. Within the study, the authors investigated multiple
approaches, including network normalization, data augmentation, and deeply supervised
learning. They also introduced a novel multiview training and inference technique. As
part of the work the authors compared two popular networks, PlainUnet and DenseUnet,
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showing that DenseUnet used fewer parameters and offered more accurate segmentation
results. By adding multiple skip connections within the convolutional blocks, the network
was forced to reuse its weights, thus dramatically reducing the number of parameters
for the same performance. The authors also showed that normalization had insignificant
performance gain and combining three different views could boost performance further.

These approaches reviewed focused mostly on architectural variations, multiple
views, ensembles and voting to try to improve the quality of segmentation. Not as much
focus has been placed on the central idea we explore in this work, which is that relevant
improvement can also be obtained by applying post-processing operations that enforce
semantic invariants. The use of post-processing operations to improve the quality of
segmentation also has the advantage of robustness, since whatever network architecture
is chosen, the quality of the resulting images and segmentation depends on acquisition
details, morphology and other factors. Details such as low contrast between the tissue near
the borders of organs and surrounding tissue, calibration specifics, morphology variations
along slices and between different patients, and multiple other factors, can result in better
or worse segmentation quality, even when top performing architectures are used. In that
context, and to improve the chances of a best-possible result regardless of the network
architecture, a set of post-processing steps that apply relevant semantic concepts is a very
useful add-on to make the results robust to variability. In this paper we define, apply
and experiment with post-processing operations that can correct and improve the final
quality of segmentation of the abdominal organs, thus complementing previous works on
segmentation of MRI sequences of abdominal organs.

3. The Post-Processing Approach

In this section we define a sequence of post-processing operations to be applied
automatically to the output of segmentation of an MRI sequence scanning the abdominal
organs. The segmentation convolution neural network outputs a segmentation which is
then passed through the following set of operations: (1) organs are first assigned relative
3D spatial location restrictions (fencing), based on the locations in training data; (2) a re-
classification is done within organs envelops to correct classification mistakes and remove
wrong classifications; (3) in-organ holes filling and 3D organ continuity filling are applied
(enveloping), and finally surface smoothness operations are used to smooth the surface.

The ground-truth MRI sequences are an essential element in the post-processing
operations, since the expected volumes of the organs (an atlas or each organ) are obtained
automatically from those sequences. Each slice is an image-sized labelmap (ground-truth
labelmap), i.e., each pixel contains the pixel class label. The labels identify the structure
or organ that the pixel belongs to, labeling 0 for background (no class). The output of
segmentation is also a labelmap, which we denote as “segmentation labelmap”. The
purpose of post-processing is to transform the segmentation labelmaps using invariants
inferred from the ground-truth labelmaps. We also define the term organmap as being a
labelmap containing only one of the organs, which is obtained from a labelmap by zeroing
all labels except the one identifying the specific organ to keep (the organmap can also be
transformed into a binary map by assigning 1 to the organ label).

Besides the labelmaps, we generate a (contiguous) regionsmap for the 3D volume.
While labelmaps label pixels based on the class they belong to, the regionsmap labels pixels
based on the labels based on pixels connectivity in the image. This allows us to distinguish
different connected regions of each organ in the segmentation output and enables further
automatic reasoning regarding those regions.

The operations we describe next are, in order: “fencing”, “class re-assignments and
removal of noise”, “computation and filling of organs envelops” and “slice smoothing
and filling”.
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3.1. Fencing (Expected Location Constraint)

Conceptually, the fence is a 3D volume that defines maximum organ size and/or
positions for each organ. The fence is defined for each organ separately. Given the set of
training sequences, the fence of one organ is the union of all 3D volumes of that organ in
the training sequences. A dilation operation follows [12] (imdilate function in matlab) to
add a volume tolerance (δ) over the union of volumes (δ-dilation over the union of organ
volumes V; we used δ = 5 pixels).

In order to compute the fence given the MRI training set, the ground-truth sequences
are first aligned in the scan sequence dimension using image registration algorithm [13].
The second step involves, for each organ O present in the ground-truth sequences, isolation
of O in all sequences and computation of the union of all volumes of O in all sequences,
resulting in a volume V that contains all volumes of the instances of that organ in all
training sequences.

Algorithm 1 shows the steps involved in pseudo-code. In that code, the loop of step
2 cycles over each organ. In that loop, for each organ, we create an initial empty 3D volume
with the size of the largest sequence (step 2a), then for each sequence (step 2.b) we OR
its 3D volume with the current organ volume (sout{end}) (step 2.b.i). After processing all
training sequences we simply apply an imdilate function [12] (step 2.d).

Algorithm 1: 3D Fencing Comments

Input: training ground-truth sequences s as 3D array s{},
organ ids in ground-truth idx[]

Output: 3D fence for each organ fence{organ}[]

1. fence={};
2. for i = 1:length(idx) % for each organ

a. fence{end+1}=zeros(maxX, maxY, maxZ); % create fence space
b. for i = 1:length(s) % for each sequence

i. fence{end}=fence{end} OR s{i}(idx organ) % OR the sequence
c. end

d. fence{end}=imdilate(fence{end}, δ); % add δ-dilation
3. end

Considering the abdominal organs liver, spleen and kidneys, Figure 2 illustrates three
different views of the union of organ volumes obtained from the training ground-truths.
Blue stands for the liver, yellow and purple stand for kidneys and grey stands for the
spleen. The red volumes show intersections of two or more organs, i.e., a spatial volume
where more than one organ can appear in the union of all training sequences.

3.2. Class Reassignments and Removal of Noise

After fencing, class reassignments and noise removal are done using a set of steps.

• Define the largest continuous spatial region of a specific organ, O, as the main volume
of that organ.

• For each region that is classified as another organ, O′, but is completely within the
organ fence and which has a volume larger that a predefined threshold (the threshold
was set to 500 pixels in our experiments), consider it as organ O (reclassify).

• For each region that is classified as another organ O’ but is completely within the organ
fence and which has a volume smaller than the predefined threshold (the threshold
was set to 500 pixels in our experiments), consider it as background (reclassify to
background).

• Regions classified as organ O, but which are smaller than a certain threshold (i.e., “too
small regions”) are considered noise and reclassified as background (the threshold
was set to 500 pixels in our experiments).
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Figure 2. Illustration of semitransparent dilated union of organ volumes. The figure shows the union
of locations of organs in 3D, taken from the training dataset in our experiments. The union is shown
from three perspectives, which are front, bottom and top. In the figure, the liver in blue, the two
kidneys are gold and purple, respectively, and the spleen is grey. Regions shared by more than one
organ are red. The fence is obtained using a dilation (imdilate operator [12]) of each individual organ.

Regarding implementation details, Algorithm 2 shows the main steps involved. The
inputs to the algorithm are the segmentation outputs, denoted as 3D arrays in a set of
sequences s{[]} and the fences. In that algorithm step 2 processes each sequence separately,
and step 2.b iteratively obtains the volumes of pixel classifications as each organ, so that the
algorithm can process each organ separately from the segmentation output. Next the fence
is applied to zero all pixels outside the fence (step 2.b.ii), keeping only organ pixels that
are inside of it. The next step (steps 2.b.iii and 2.b.iv) identifies the largest region as being
the specific organ being processed in the current iteration. To do that, an organ regions
labelmap (bw) is created from the organ volume using bwlabel [14] (step 2.b.iii). The sizes
of regions are next calculated on those bw regionmaps (number of occurrences of each
label). The region label with top number of occurrences identifies the largest region, and
therefore the organ extent (step 2.b.iv). Finally, step 2.b.v reclassifies regions classified as
other organs inside the organ fence and having sizes larger than a threshold (500 pixels)
as being part of the organ itself. Since those regions are inside the fence of the organ
and are not small, they are wrongly classified as another organ and should, therefore,
be reclassified. The remaining regions with volume lower than 500 are reclassified as
background (step 2.b.vi). Step 2.b.vii removes regions that were classified as the organ but
are actually disconnected from its main volume (have a different label in the bw labelmap)
and have sizes lower than a threshold (500 pixels).

Given the imperfections of segmentation near borders (including spurious pixel
classifications as part of the region and sometimes thin connections to neighbour regions),
we also found out that the best results were obtained by preceding the calculation of the
largest region by morphological erosion [15] then calculating and isolating the largest
region, subsequently applying dilation [15] with the same structuring element and size
to reverse the previous erosion operation. The erosion frequently eliminates noise in the
borders and some spurious connections to neighbouring regions.
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Algorithm 2: Class re-assignments and removal of noise Comments

Input: segmentation outputs as sets of 3D arrays, each being one sequence s{sequence[]},
organ ids in ground-truth idx[], fences fence{organ}

Output: cleaned segmentation outputs s{sequence[]}

1. sout={};
2. for i = 1: length(s) % for each sequence

a. sout{end+1}=zeroed 3D sequence volume;
b. for j = i:length(idx) % for each organ

i. O = zeroed 3D organ sequence volume;
ii. volO=s{i} & fence{idx} % organ’s fence

iii. bw=bwlabel(volO)=>regions % label differently each connected region
iv. O = bw(bw=max(countEachLabel(bw))) % max volume region within fence
v. bw(idx2:volO~=idx && countLabel(bw, idx2)>500)=idx=>volO % reclassify to organ

vi. bw(idx2:volO~=idx && countLabel(bw, idx2)<=500)=idx=>volO % reclassify to bkgnd
vii. bw(idx2:volO==idx && countLabel(bw, idx2)<=500)=background=>volO %remove noise

viii. sout{end}= sout{end}|volO % add the organ volume to the sequence
c. end

3. end

3.3. Computation and Filling of Organ Envelopes

After filling each slice individually (imfill [12]), the next step joins disconnected
regions that are inside the organ’s fence and are classified as the same organ. In this context,
a discontinuity is a gap between two regions of an organ in the sequence of MRI slices.
The space between the disconnected regions is filled by interpolation between the border
pixels of the two extremity slices bordering the gap. Figure 3 illustrates the objective. In
the figure, the space between the two regions r1 and r2 is filled by interpolation.

Figure 3. Illustration of space filling. Given a main volume of an organ (region r1) and another
smaller region (region r2) classified as the same organ inside its fence, the algorithm interpolates
between each pixel of the extremity of r2 and r1. (a) Two regions, same organ. (b) Illustration of
space filling operation. (c) Resulting organ.

The result after all the previous operations is a 3D envelope of each organ based on
the largest volume classified as that organ, and the remaining major volumes reclassified
as that organ within the fencing volume of the organ, with the space between the parts
filled to create a solid.

3.4. Slice Smoothing and Filling

Slices smoothing is the process of improving each slice by removing small protruding
pixels, filling holes and smoothing edges of each organ independently. The steps are shown
in Algorithm 3. For this algorithm, slices are processed in sequence. For each organ in each
slice, the first part of the algorithm (steps 1.a.i to 1.a.iii) removes small protruding pixels
from the main volume. This is done using a 2D erode operator (imerode [12]) to isolate
the main volume from spurious pixels, keeping only the largest region, and then applying
a dilate operator (imdilate [12]) to restore the organ area to the original size. Step 1.a.iv
fills holes inside the organ region using the imfill morphological operator ([12,16]). The
final step 1.a.v smooths contours. This works on the binary image of the organ in the slice.
The step first blurs the contours using a 3 × 3 2-D average pixel value convolution. From
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the output of the blurring, all pixels with value smaller than 0.5 are zeroed. The resulting
nonzero pixels are the extent of the smoothed organ.

Algorithm 3: Slice smoothing and filling Comments

Input: sequence of 2D slices s[]

Output: sequence of cleaned 2D slices s[]

1. For each slice si in s
a. for each organ sio isolated from si

i. apply 2D erode operator imerode [12] to sio (uses a structuring elem with size as parameter, we used square
and size 3 empirically)

ii. Keep the largest region by applying labeling of connected regions and counting the number of pixels of each
region:

1. bw=bwlabel(sio)=>regions %label differently each connected region
2. R = bw(bw=max(countEachLabel(bw))) %max region in slice
3. Delete all but R

iii. Apply a 2D dilate operator imdilate [12] to sio (structuring elem as well, we used square and size 3 empirically)
iv. Fill holes inside sio using imfill morphological operator ([12,16])
v. Smooth contours of sio by blurring and re-thresholding (blur using 2-D average convolution, then keep

intensities >0.5)
b. End
c. Reconstruct si from the modified sio for all organs as the union of all sio

2. end

3.5. Illustrating Result of Post-Processing Transformations

Figure 4 is an illustration of transformation based on the above-described operations
(fencing-enveloping-noise removal-reassignment-smoothing). It shows what happened
when a specific test image was segmented using the DeepLabV3, followed by the post-
processing operations that corrected the output. In the figure, the liver is orange, the
kidneys are yellow and purple, and the spleen is green. Figure 4a shows the ground-truth
abdominal organs. Figure 4b shows the segmentation output, where some errors can be
seen (e.g., part of the spleen was classified as right kidney, another part as left kidney and
only a smaller region is correctly classified as spleen; the right kidney region is infiltrated
by a region with a few contiguous slices classified wrongly as liver; there are also some
small noisy regions, including some larger noise outside fences, e.g., on top of the spleen).
Figure 4c shows the final corrected result after applying all the post-processing trans-
formations. Fencing removed some of the imperfections, such as the incorrect regions
classifications as right kidney in the left part of the figure. Enveloping and reclassification
transformed those and other incorrect regions standing inside the fence of spleen into
spleen and merged the resulting parts. It also transformed the region inside the right
kidney that was incorrectly classified as liver into right kidney, and finally smoothing
smoothed the slices to obtain the final result shown in Figure 4c. Although still not exactly
equal to the original model, the post-processed Figure 4c is much closer to the original
Figure 4a than the segmented Figure 4b.

Figure 4. Illustrating before and after transformations. (a) Original. (b) Segmented. (c) Post-processed.
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4. Materials and Methods

In this section we first describe the architecture of the segmentation networks used in
our experiments, then we describe the dataset and details of the experimental setup.

4.1. Segmentation Networks

The architecture of the segmentation network is a relevant factor for the quality of
segmentation; therefore, a lot of prior research has focused on improving architectures.
In this work we follow the strategy of choosing a best-performing network from a set
of popular architectures widely used in medical imaging in general. The U-Net [17],
DeepLabv3 [1] and FCN [18] are our choices of networks, and our focus is on the following
sequence: (1) first compare those base networks with the dataset used for the experiments,
including data augmentation and other training optimizations to pick the best-performing
architecture for the experimental setup used; (2) try to maximize the quality by testing
training options, in particular this led us to experiment with a successful modification of
the loss function; (3) experiment with the post-processing functionality using that network.
Next, we describe the base network architectures used.

U-Net. U-Net is a 58-layer segmentation network using VGG-16 stages for feature
extraction (encoding), followed by an intermediate section connecting encoder to decoder,
and a decoding section that is symmetric to the encoding section. Figure 5a summarizes
the layers of U-Net. The encoding section consists of contraction blocks applying two
3 × 3 convolution layers followed by a 2 × 2 max pooling layer. The decoding section is
symmetric to the encoding section, consisting of the same number of expansion blocks as
there are contraction blocks in the encoding section. As with encoding, each expansion
block has two 3 × 3 convolution layers followed by a 2 × 2 up-sampling layer. But each
expansion block also appends feature maps from the corresponding contraction block.
The rationale is that features learnt in the contracting block of the image will be used to
reconstruct it at the symmetric stage.

FCN. The structure of FCN is sketched in Figure 5b. FCN also uses VGG-16 (with
seven stages, corresponding to 41 layers) as encoder, plus a much smaller sequence of
up-sampling layers (decoding stages) for a total network size of 51 layers. FCN also
forwards feature maps (the pooled output of coding stage 4 is fused with output of the first
up-sampling layer, and the pooled output of coding stage 3 is fused with the output of the
second up-sampling layer). Finally, the image input is also fused with the output of the
third up-sampling layer, all this followed by the final pixel classification layer.

DeepLabV3. DeepLabV3 is the deepest network tested in this work, with 100 layers
and a generic layout of layers shown in Figure 5c. DeepLabV3 uses Resnet-18 as feature
extractor, with eight stages totaling 71 layers, the remaining stages being Atrous Spatial
Pyramid Pooling (ASPP), plus the final stages. Forwarding connections are also added from
encoding stages to the ASPP layers for enhanced segmentation of objects at multiple scales.
The outputs of the final DCNN layer are combined with a fully connected Conditional
Random Field (CRF) for improved localization of object boundaries using mechanisms
from probabilistic graphical models.

4.2. Dataset

The magnetic resonance imaging data used in our experimentation is CHAOS Dataset,
a publicly available set of scans in [2]. Table 1 lists the main dataset configurations. The
data consists of 120 MRI sequences capturing abdominal organs (liver, kidneys and spleen)
obtained using the T1-DUAL fat suppression protocol. Table 1 summarizes the dataset
configurations. The sequences were acquired by a 1.5T Philips MRI, which produces 12-bit
DICOM images with a resolution of 256× 256. The ISDs varies between 5.5–9 mm (average
7.84 mm), x-y spacing is between 1.36–1.89 mm (average 1.61 mm) and the number of slices
is between 26 and 50 (average 36). In total there are 1594 slices (532 slice per sequence)
used for training and testing, with the testing sequences being chosen randomly to include
20% of all sequences in 5-fold cross-validation runs. Given the relatively limited size of
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the dataset, data augmentation was added after we verified that it would contribute to
improved scores by increasing diversity and the size of the dataset.

Figure 5. Architectures of segmentation networks used. (a) U-Net segmentation network.
(b) FCN segmentation network. (c) DeepLabV3 segmentation network.
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Table 1. Summary of dataset configuration.

Parameter Value

Machine 1.5T Philips MRI
Acquisition protocol T1-DUAL fat suppression

Image resolution 12-bit DICOM images, resolution 256 × 256
ISDs 5.5–9 mm (average 7.84 mm)

x-y spacing 1.36–1.89 mm (average 1.61 mm)
Number of sequences 120

Number of slices 1594
Number of slices per sequence 26 to 50 (average 36)

Test data 20% sequences, 5-fold cross-validation runs

4.3. Training and Sequence of Experiments

Data augmentation was defined based on random translations of up to 10 pixels,
random rotations up to 10 degrees, shearing up to 10 pixels and scaling up to 10%. The
networks were pretrained on object recognition tasks (Imagenet dataset). Network training
was configured using SGDM as the learning algorithm, with an initial learning rate = 0.005
and piecewise learning rate with a drop period of 20 and a learn rate drop factor of 0.9 (the
learn rate would decrease to 90% every 20 epochs). The default loss function used was
cross-entropy (crossE), but we also experimented with post-processing on the segmentation
output of the network trained with IoU loss. We include IoU loss because we found out
that it improved the quality of segmentation of individual organs. Class balancing was
applied in the pixel classification layer, training iterations were 500 epochs after we verified
that convergence to a stable loss is achieved before that with minibatch size = 32, and
momentum = 0.9. The training and testing were done on a machine with a GPU NVIDEA
G Force GTX1070. The experiments were divided into two phases. The first phase involved
choosing the best performing segmentation network. Using the chosen network we then
proceeded to segment all MRI test sequences and then applied automatic post-processing
to all sequences. The last step involved evaluating the quality of the results. We focused
our analysis using global metrics and per-class IoU (a.k.a. Jaccard index JI), since this is a
reliable and common metric for evaluation of segmentation performance.

4.4. Development Environment and Libraries Used

The coding for this work was done on Matlab R2019b and required the image process-
ing toolbox, the deep learning toolbox, the computer vision toolbox and the deep learning
toolbox model for the Resnet-18 network. The DeepLabv3 segmentation network was
built using the deeplabv3plusLayers function. The FCN architecture was built using the
fcnLayers function and the UNet used function unetLayers. The networks were trained
using the trainNetworks function with training options defined using the trainingOptions
object. The MRI images were handled by imageDatastore objects, and the ground-truths
were handled by pixelLabelDataStore objects. The code for post-processing was all written
from scratch in Matlab using multidimensional arrays to keep the training and test data
and Matlab library functions to implement the necessary image processing operations.
Matlab functions used as helpers to implement the steps included bwlabel, imbinarize,
bwareafilt, morphological operations such as imfill, imerode, imdilate, and convolution
operations using conv2. Links for code Supplementary Materials are given in the end of
the work.

5. Experimental Results and Interpretation

In this section we evaluate the proposed post-processing approach. Our experi-
ments were based on first choosing the best-performing network, then presenting the
post-processing results in the form of evaluation of the amount of improvement derived
from applying it. Finally, we review performance results from related works on both MRI
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and CT of abdominal organs to put our results in perspective in relation to the performances
reported in those works.

5.1. Choosing the Best-Performing Network

Table 2 shows the results of the first part of our experiments, finding the best-
performing base network. As described in the experimental setup, these results were
obtained with data augmentation. IoU (JI) and Dice of the three segmentation network
architectures is reported. The best-performing network was deepLabV3 (2 percentage
points (pp) better than FCN, FCN being 3 pp better than UNET). For that reason, we
proceeded with the next experiments using deepLabV3.

Table 2. IoU of segmentation networks with base crossE loss.

IoU Dice

Class DeepLabV3 FCN UNET DeepLabV3 FCN UNET

Background 99% 99% 98% 99.5% 99.5% 99%

Liver 86% 86% 74% 93% 93% 85%

Spleen 82% 74% 73% 90% 85% 84%

rKidney 77% 78% 75% 87% 87.6% 86%

lKidney 81% 77% 78% 89.5% 87% 87.6%

Avg IoU 85% 83% 80% 92% 91% 89%

5.2. Post-Processing Results

For the next experiment we took the segmented sequences after applying deeplabV3-
based segmentation to the original test sequences and ran them through the sequence of
post-processing operations. The experiment was divided into two main tests to reflect the
use of two different loss functions, i.e., cross entropy (crossE, the default loss function)
and IoU. We included the two loss functions because IoU loss improved the quality of
segmentation further. That way, we were able to compare the amount of improvement
with the base crossE loss to that with already improved segmentation scores using IoU.

Tables 3–6 show our results concerning the effects measured as IoU and Dice of
applying the post-processing improvements in sequence. Tables 3 and 4 report the results
using IoU as the loss function, and Tables 5 and 6 shows the results using crossE, the default
loss function. Each column in the tables identifies the organ and the last column is the
sum of percentage points (pp) increase in IoU or Dice over all organs. The first row shows
the IoU/Dice of the base segmentation results, then each other row shows the IoU/Dice
achieved after each post-processing operation.

Table 3. Improvement (metric = IoU) when IoU used as loss function.

Step Liver
(IoU)

Spleen
(IoU)

R Kidney
(IoU)

L Kidney
(IoU)

Pp Increase
(Sum)

Base segmentation 0.86 0.87 0.86 0.84 -
Fencing 0.86 0.87 0.87 0.85 2

Re-assignments and
noise redux 0.88 0.89 0.87 0.87 6

Enveloping, filling
and slice filling and

smoothing
0.90 0.90 0.88 0.89 6
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Table 4. Improvement (metric = Dice) when IoU used as loss function.

Step Liver
(Dice)

Spleen
(Dice)

R Kidney
(Dice)

L Kidney
(Dice)

Pp Increase
(Sum)

Base segmentation 0.925 0.93 0.925 0.91 -
Fencing 0.925 0.93 0.93 0.92 1.5

Reassignments and
noise redux 0.936 0.94 0.93 0.93 3.6

Enveloping, filling
and slice filling and

smoothing
0.95 0.95 0.936 0.94 4

Table 5. Improvement (metric = IoU) using cross entropy loss function.

Step Liver
(IoU)

Spleen
(IoU)

R Kidney
(IoU)

L Kidney
(IoU)

Pp Increase
(Sum)

Base segmentation 0.86 0.82 0.77 0.81 -
Fencing 0.86 0.82 0.83 0.83 8

Reassignments &
noise redux 0.88 0.85 0.84 0.86 9

Enveloping, filling
and slice filling and

smoothing
0.90 0.87 0.87 0.88 9

Table 6. Improvement (metric = Dice) using cross entropy loss function.

Step Liver
(Dice)

Spleen
(Dice)

R Kidney
(Dice)

L Kidney
(Dice)

Pp Increase
(Sum)

Base segmentation 0.925 0.9 0.87 0.895 -
Fencing 0.925 0.9 0.91 0.91 5

Reassignments &
noise redux 0.936 0.92 0.913 0.925 5.3

Enveloping, filling
and slice filling and

smoothing
0.95 0.93 0.93 0.94 5.2

The results in the tables essentially show that the post-processing steps were quite
useful. Fencing improved the quality of segmentation by 2 pp in Table 3 (IoU loss) and
by 8 pp in Table 5 (crossE loss). The next operation, re-classification and noise reduction,
had the most significant contribution in both cases (6 pp and 9 pp for IoU and crossE loss
respectively), and the final operation (enveloping, filling and slice filling and smoothing)
contributed with 5 and 8 pp increases, respectively. The contributions were larger in
the experiment with crossE because the base segmentation had more errors in that case.
In general, these results prove that post-processing improved the results significantly.
Importantly, we applied post-processing in a specific experiment setting and with a specific
dataset and network, but it can be generalized to any approach and dataset since the
defined post-processing steps are not dependent on either the network, the experimental
settings or datasets tested.

5.3. Brief Comparison with Related Approaches

In this section we first compare the final scores obtained after post-processing in our
experimental work with some techniques based on the architectural features tested on
the same dataset. Then, we review some of the best scores obtained for segmentation of
abdominal organs by other authors using a variety of techniques that include improved
network architectures and ensembles, many of those works segmented CT scans, others
segmented MRI scans. We converted scores to IoU (Jaccard index) when necessary, since
many of those works report scores using the dice metric.
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Table 7 compares several architectural variations from the work [10] that include the
U-Net, a modified U-Net with VGG-19 instead of VGG-16 (V19UNet), a pretrained version
(V19pUNet) and finally a cascade of two V19pUNet (V19pUnet1-1). The results show that
our post-processing approach is better than any of these.

Table 7. Comparing to IoU of related approaches (CHAOS dataset).

MRI JI = IoU Liver Spleen R Kidney L Kidney

[10] teamPK

U-Net 0.73 0.76 0.79 0.83

V19UNet 0.76 0.79 0.84 0.85

V19pUNet 0.85 0.83 0.85 0.86

V19pUnet1-1 0.86 0.83 0.86 0.87

deeplabV3
post-processed 0.90 0.90 0.88 0.89

Table 8 shows the quality of segmentation achieved by related MRI (first three cases)
and CT segmentation approaches as reported by the authors in their own papers. As can be
seen from the table, there are many related approaches, and the reported scores vary signif-
icantly and also depend on the dataset used. From Table 8, refs. [19,20] achieve high scores
in MRI segmentation of some of the organs (only the liver in [20]). Hu et al. [21,22] obtained
the best results for CT, usually above 90%. The scores we obtained after post-processing
(Tables 3 and 5) are higher than [7] and comparable to some of the best scores reported in
related works segmenting MRI sequences (e.g., [19]). Most importantly, the scores on those
advanced architectures would also benefit from applying our post-processing approach,
since it can be applied to any segmentation technique.

Table 8. IoU as reported in some related approaches (MRI and CT).

MRI JI = IoU Liver Spleen R Kidney L Kidney

[7] 0.84 0.87 0.64 0.57

[20] 0.90 (LiverNet) - - -

[21] 0.91 - 0.87 0.87

CT JI = IoU Liver Spleen R Kidney L Kidney

[23] 0.938 0.945

[24] 0.85 -

[6] 0.88 0.77

[19] 0.92 0.89

[20] 0.96 0.94 0.96 0.94

[25] 0.9 - 0.84 0.80

[9]

F-net 0.86 0.79 0.79 0.80

BRIEF 0.74 0.60 0.60 0.60

U-Net 0.89 0.80 0.77 0.78

[8] 0.90 0.87 0.76 0.84

6. Post-Processing Extended Example

Figure 6 shows a 3D depiction of the sequence of slices of abdominal organs from a
real test sequence. The 3D depiction is shown as a 3D model that includes all four organs
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(liver, spleen, right and left kidney), and also as a 3D coloured regions model (spleen is
green, liver is orange, right kidney is yellow and left kidney is purple).

Figure 6. Original test sequence with organs as 3D and coloured 3D models.

Figure 7 shows the output of segmentation using DeepLabV3 with the default cross
entropy loss function. Once again, we show the 3D model plus the 3D coloured regions.
We can see from both models, and especially from the 3D coloured model, that there are
several inaccuracies in the output, including regions classified incorrectly as another organ.

Figure 7. Segmented test sequence with organs as 3D and coloured 3D models.

Figure 8 shows the 3D coloured model of the results after post-processing. We can see
that incorrect region classifications were corrected, especially in the spleen and left kidney
regions, and in the right kidney region as well. Some noise was also removed.

Figure 8. Post-processed segmented organs.

7. Conclusions and Future Work

Deep learning-based segmentation is an established procedure for segmentation of
MRI and CT sequences. In spite of the amazing quality of the results, there are still
imperfections, and researchers search for approaches to improve the quality of the results.
Many works have explored advances in segmentation network architectures and the use
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of ensembles and voting. We propose and evaluate a complementary approach of image
post-processing for enforcement of semantic invariants (fencing, enveloping, noise removal,
reassignment and smoothing) to improve the results. The approach is defined in detail, and
in the experimental section we tested the degree of improvement achieved from the post-
processing steps. We used a publicly available dataset to show that the approach improved
segmentation scores by a sum of 12 to 25 percentage points over the four organs tested.

Our focus in this work has been on improving the quality of segmentation out-
put by means of post-processing, which can be applied regardless of the architecture of
the segmentation CNN. Our future work on this issue will explore two major improve-
ments. On one hand, we intend to find an approach to integrate post-processing into the
network architecture itself as additional layers. The advantage will be to integrate this
post-processing in the back-propagation learning procedure. On the other hand, we also
wish to investigate several relevant evolutions to current state-of-the-art segmentation
using deep learning. Concerning the use of U-Net for segmentation of MRI, those relevant
innovations include Attention Gates (AGs) [26], Squeeze-and-Excitation (SE) blocks [27]
and Squeeze-and-excitation networks [28], which improve generalization performance in
multicentric studies. Our future work also involves testing the approach with CT scans
and together with advanced techniques that include ensembles of networks with voting.

Supplementary Materials: The following are available online: https://github.com/pedronunofurtado/
postprocess, base code functions used in this work for testing postprocessing; https://github.com/
pedronunofurtado/codingLOSS, code used for testing networks with loss functions.
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