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Abstract: In ship detection by means of Polarimetric SAR imagery, a very promising feature is the
characterization of the pixels of the ship based on the elementary scattering mechanisms that can
be extracted using different decomposition algorithms. Elementary scattering mechanisms provide
information regarding the physical, electrical and geometrical properties of the scatterers in each
Polarimetric SAR pixel. In this work, the newly established algorithm of the Double Scatterer Model is
applied to interpret each pixel of the Polarimetric SAR image with the contributions of two elementary
scattering mechanisms, namely, primary and secondary. The main idea is to construct a binary image
while preserving the rich information content in order to proceed in simple and fast image processing
for target detection. The present algorithm is applied to datasets with different inherent characteristics
acquired by Radarsat-2 and ALOS-PALSAR. The results presented by this new perspective on ship
monitoring are remarkable.

Keywords: ship detection; PolSAR; target decomposition; double scatterer model; image processing;
decision tree; cameron decomposition

1. Introduction

Ship detection and monitoring is essential for a wide range of purposes, such as
maritime surveillance, traffic, migration control and environmental protection. Since the
launch of SeaSat in 1978, Satellite Aperture Radar (SAR) systems have proven to be unique
tools for ship detection and maritime monitoring, as ship signatures are significant features
frequently found in SAR ocean imagery. Characteristics such as high resolution, sensitivity
to small variations in surface roughness and especially the strong signal return from hard
targets like ships make SAR systems particularly adept at detecting targets at sea [1].

SAR systems exploit the advantage of electromagnetic waves to penetrate clouds,
foliage and even the upper layer of the Earth’s surface and acquire data at any time of day
or night. SAR images own these capabilities to promote the use of Fully Polarimetric SAR
(PolSAR), also known as Quad Pol imaging systems.

PolSAR data contains the full polarization scattering matrix of each pixel in the scene
by means of transmitting and receiving electromagnetic waves with different polariza-
tions. Compared with the conventional single PolSAR, the polarimetric scattering matrix
contains more information, which can represent the response of the target to different
electromagnetic waves [2]. Therefore, by utilizing different polarizations, it is possible
to extract unique and distinct features from targets. Some features can be observed in
one polarization and not in another. Target characteristics can be defined more clearly by
combining all four polarization modes. Therefore, to improve the detection performance of
ship targets and optimize the separation from background clutter, most research utilizes
PolSAR data.

The most common form of algorithm used in PolSAR images to detect ship targets
against a background of noise, clutter and interference is the Constant False Alarm Rate
(CFAR) algorithm [3,4]. Compared with sea clutter, ship targets have strong scattering echo;
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therefore, CFAR detectors are based on the statistical models describing the sea, in order to
extract the signal of interest as a component deviating from the predetermined behavior.
The most applied statistical models for sea clutter are Alpha state distribution, Weibull
and K distribution, gamma and generalized Gaussian distribution [5–7]. Another classic
approach is based on filtering methods to enhance the contrast between the target and the
sea, such as the application of the Polarimetric Whitening Filter [8] and the Polarimetric
Notch Filter [9].

Considering the different polarimetric scattering behavior of ships, coastal areas
and the sea, plenty of scattering-mechanism-based algorithms have been proposed for
accurate ship detection. Decomposition techniques for target information retrieved from
polarimetric synthetic aperture radar (PolSAR) images have been extensively studied since
the 1980s [10]. The main idea is to extract features that can describe PolSAR images in
multiple aspects in order to be utilized in classification and target detection procedures.

Touzi et al. [11] explored Cloude-Pottier non-coherent decomposition [12], according to
which the scattering characteristics were represented by the space of entropy H and the aver-
aged scattering angle α, achieving good results in ship target detection. Ringrose et al. [13]
used Cameron’s coherent decomposition [14] to discriminate ships from clutter based on
the dominant scattering mechanism in each PolSAR cell. The four-component-model-based
decomposition introduced by Yamaguchi et al. [15] was applied by Sugimoto et al. [16] for
man-made target detection on the sea surface, while another four-component-model-based
decomposition method incorporating surface, double-bounce, volume and cross-polarized
components was proposed by Xi et al. [17] for analyzing the scattering mechanisms of
ships. Apart from the abovementioned procedures, many techniques based on statistical
approaches have been recently presented. Liu et al. [18] introduced a novel neighborhood
polarimetric covariance matrix to detect small ships, leading to a significant separability
between ship targets and sea clutter, while Cui et al. [19] extended the polarimetric correla-
tion from a fixed angle to the rotation domain along the radar line of sight, extracting, in
this way, a new set of features, resulting in accurate discrimination especially for inshore
dense ships.

Despite the increase in detection accuracy achieved by these new sophisticated al-
gorithms, several challenges remain. For instance, detection performance is sometimes
insufficient and strongly dependent on sea state conditions, vessel size and material, data
acquisition parameters and inherent characteristics of PolSAR data. In order to present
a new feature in ship detection, this research introduces the exploitation of the Double
Scatterer Model presented by Karachristos et al. [20] for a more in-depth interpretation of
the target scattering behavior. The new features extracted are statistically analyzed and
form a binary image, which, after being properly processed, results in high precision ship
detection. The main idea of the proposed algorithm is based on the separation between the
target and clutter, which can be considered to be a binary problem, with targets represented
by digit 0 and clutter by 1, regardless of whether the clutter is sea, land or noise.

This paper is structured as follows: Section 2 contains a thorough description of the
fully polarimetric data used to validate the proposed algorithm. Section 3 briefly provides
the method of the Double Scatterer Model used to analyze the scattering behavior of
the data. In Section 4, the proposed algorithm is presented, while Section 5 presents a
discussion of the results and a comparison with another well-established method. Finally,
conclusions are drawn in Section 6.

2. Fully Polarimetric Datasets

The evaluation of the proposed ship detection algorithm is carried out using three
fully polarimetric Level-1 Single Look Complex (SLC) products. The first and the second
data products were obtained by the RADARSAT-2, a spaceborne system of the Canadian
Space Agency, using the C-band, in April 2008. The images were acquired using the Fine
Quad-Pol Beam mode, which provides full polarimetric imaging with nominal resolution
5.2 × 7.6 [Range × Azimuth] (m2) with swath widths of approximately 25 km, covering
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any area within the region from an incidence angle of 18 degrees to at least 49 degrees.
The first scene contains an area of Vancouver, while the second data product depicts the
area of San Francisco. The third dataset was obtained by the Phase Array L-band Synthetic
Aperture Radar (PALSAR) aboard ALOS-1 using the L-band in the Polarimetric mode that
provides a nominal resolution of approximately 9.4 × 3.6 [Range × Azimuth] (m2). The
area of interest was located in Thailand, and the fully polarimetric scene was taken in
September 2016.

SLC images are represented by a complex (I and Q) magnitude value and therefore
contain both amplitude and phase information. To properly work with the SLC data,
radiometric calibration processes are needed in order to convert raw digital image data
from a satellite to a common physical scale based on known reflectance measurements
taken from objects on the ground surface. The calibration procedure was carried out in the
Sentinel Application Platform (SNAP) environment. SNAP is a common architecture for
all Sentinel Toolboxes. SNAP and the individual Sentinel Toolboxes support numerous
sensors, other than Sentinel sensors. ESA/ESRIN provides the SNAP user tool free of
charge to the Earth Observation Community [21].

It should be noted that PolSAR cells from the first two datasets obtained by the
RADARSAT-2 in C-band are used to train the proposed algorithm, while the entire third
polarimetric scene acquired by ALOS-PALSAR in L-band is used to test the present
methodology.

3. Double Scatterer Model

Based on Cameron’s coherent decomposition, the Double Scatterer Model algorithm
presents a feature extraction approach that interprets each PolSAR cell as a mixture of two
fundamental scattering mechanisms.

In particular, W. L. Cameron et al. [14] presented a technique for decomposing the
polarization scattering matrix into three parts, based on the properties of reciprocity and
symmetry. The three parts are: Non-reciprocal, Asymmetric and Symmetric. The first
stage is to decompose the scattering matrix into reciprocal and non-reciprocal components
via angle θrec. The second stage considers decomposition of the reciprocal term into two
further components, namely symmetric and non-symmetric via angle τsym. The Cameron’s
Decomposition takes the following form:

→
S = α{cosθrec{cosτsymŜ max

sym + sinτsymŜ min
sym }+ sinθrecŜ nonrec (1)

where the scalar a = ||
→
S ||22 = span(S), the angle θrec represents the degree to which the

scattering matrix obeys the reciprocity principle, and the angle τsym represents the degree
to which the scattering matrix deviates from the set of scattering matrices corresponding to
symmetric scatterers. Ŝ nonrec represents the normalized nonreciprocal components, Ŝ max

sym

the normalized maximum symmetric component and the Ŝ min
sym the normalizes minimum

symmetric component.
The maximum symmetric component can be transformed into a normalized complex

vector Λ̂(z) with z being referred to as a complex parameter that eventually determines the
scattering mechanism. The normalized complex vector Λ̂(z) is given by:

Λ̂(z) =
1√

1 + |z|2


1
0
0
z

 (2)
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Cameron in order to determine the scattering behavior of an unknown scattering
target z considered the following distance metric for the topology of complex unit disk
depicted in Figure 1:

d
(

z, zre f

)
= cos−1

max
(∣∣∣1 + zz∗re f

∣∣∣, ∣∣∣z + z∗re f

∣∣∣)√
(1+|z|2)

(
1+
∣∣∣zre f |2

)
 (3)
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Figure 1. The position of the elementary scattering mechanisms on Cameron’s Unit Disk
representation.

Cameron et al. [22] noticed the need for a closed surface rather than the disk, and
ideally, the symmetric space could be the unit sphere. This was thoroughly demonstrated
by a mapping procedure proposed in [22]. This mapping procedure is depicted in Figure 2.
Specifically, in the new topology, they associated each point (x, y) of the unit disk in
Figure 1 with a circular arc a(x, y) on the unit sphere containing the points (−1, 0), (x, y)
and (1, 0) (Figure 2). Obviously, for the point (x, y) not on the rim of the disk, the arc
length is less than π. In such a case, the arc is “stretched” to have a length equal to π and
to be part of a great circle. By associating each point (x, y) to a semi-circle, the way this
mapping works is easily depicted, by placing these circles tangent on the sphere’s surface
with the initial position (x, y) of the point on the unit disk determining the latitude ϕs and
longitude θs of the point on the unit sphere. This mapping is represented in Figure 2, with
spherical coordinates θs and ϕs given by:

θs(x, y) =

κθD = π
sin−1

(√
(1−x)2+y2

2r

)
sin−1( 1

r )
y 6= 0

π
2 (1− x), y = 0

(4)

ϕs(x, y) =


4sin−1

(
r−|yc |√

2

)
, y > 0

0, y = 0
−4sin−1

(
r−|yc |√

2

)
, y < 0

(5)

where
κ(x, y) =

π

θc
=

π

2sin−1
(

1
r

) , y 6= 0 (6)

θD(x, y) = 2 sin−1


√
(1− x)2 + y2

2r

, y 6= 0 (7)
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positions taken by the symmetric scattering mechanisms.

The space distance measure d of a test scatterer z and each of the reference scattering
mechanisms of Table 1 is now given by an equivalent to (3) but more intuitive form:

d
(

z, zre f

)
= sin−1

(
min

[
d−
(

z, zre f

)
, d∗

(
z, zre f

)])
(8)

with

d−
(

z, zre f

)
=

√√√√√√√
∣∣∣z− zre f

∣∣∣2
(1 + |z|2)

(
1 +

∣∣∣zre f

∣∣∣2) (9)

and

d∗
(

z, zre f

)
=

√√√√√√√
∣∣∣z− z∗re f

∣∣∣2 + (1− |z|2)
(

1−
∣∣∣z∗re f

∣∣∣2)
(1 + |z|2)

(
1 +

∣∣∣z∗re f

∣∣∣2) (10)

Table 1. Cameron’s scattering mechanisms.

Scatterer Type Normalized Complex Vector Complex Parameter z

Trihedral Λ̂(1) 1

Diplane Λ̂(−1) −1

Dipole Λ̂(0) 0

Cylinder + 1
2

Narrow Device Λ̂
(
− 1

2

)
− 1

2

1/4 wave device Λ̂(±j) ±j

Inspired by Cameron’s approach, K. Karachristos et al. [20] presented the Double
Scatterer Model, an algorithm extension of Cameron’s stepwise procedure, in order to
extract more information from PolSAR cells using the percentages of the most dominant
elementary scattering mechanisms located in each cell. Specifically, the main steps of the
method are the following:

1. For each scattering matrix, the complex parameter z is computed. If the criteria of
reciprocity and symmetry are met, the imaginary and the real part of z determine a
point on the complex unit disk, according to Cameron’s algorithm.
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2. The mapping of the point on the surface of the unit sphere follows. The PolSAR cell
under examination and its scattering matrix is now represented by the longitude θ
and the latitude ϕ on the unit sphere (Figure 3).

3. According to Poelman [23], the elemental scattering mechanisms of Cylinder and
Narrow Diplane can be obtained as a linear combination of the remaining elemen-
tary scatterers:

Scyl(ϕ) =
1
2

Stri +
1
2

Sdip(ϕ) (11)

Sndi(ϕ) =
1
2

Sdih(ϕ) +
1
2

Sdip(ϕ) (12)

Since the scattering mechanisms of Cylinder and Narrow Diplane can be composed by
Trihedral, Dipole and Dihedral, the three mentioned above, as well as the 1

4 wave device,
can be characterized as the fundamental scattering mechanisms. This claim led us to
disregard the scattering mechanisms of Cylinder and Narrow Diplane, being of minimum
importance, and to update the spherical topology as it depicted in Figure 3.
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Figure 3. The new spherical topology constructed based on the complementary nature of elementary
scattering mechanisms.

4. Depending on the angle values (θ, ϕ) of the point under examination, the right-angled
spherical triangle to which it belongs is located. Whether it is above or below the equa-
tor, one vertex of the triangle will always be the one pole of the sphere and the other
two, the nearest scattering mechanisms calculated by using the orthodromic/great
circle distance D:

D = arccos(sinϕ1sinϕ2 + cosϕ1cosϕ2cos(∆θ)) (13)

5. The vector with an initial point on the sphere’s center and the terminal one given
by the coordinates on the spherical shell is projected on the level of the equator to
which the reference scattering mechanisms belong, based on the angle ϕ (Figure 3).
Specifically, the projection is contained in the quadrant enclosed by the center of the
sphere and the two closest to the examination point scatterers.

6. The immediate consequence is the analysis of the projection of the vector in two
vertical components, which are the two nearest scatterers.

Based on the above, the mixture interpretation for each scatterer is accomplished by:

St = P1S1 + P2S2 (14)

Pi = cosϕi cosθi (15)
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It is important to note the Pi computes the contribution degree of each of the two
dominating fundamental scattering mechanisms. When Pi is approaching 1 or 100%,
it means that the target scatterer St is fully described by one of the four fundamental
scattering mechanisms.

In the marginal case where ϕ = 90, the scatterer can be assumed as undetermined and
be classified as “non-Categorizable”. The same class is used for asymmetric scatterers.

4. Ship Detection Algorithm

The proposed algorithm is inspired by the interpretation of the scattering behavior of
PolSAR cells, according to the Double Scatterer Model decomposition algorithm. Ships are
defined as targets, while sea is defined as clutter. Therefore, a discrimination of specific
regions from the available data, corresponding to these two cases, takes place at first. The
data used for the learning process are numbered 1600 PolSAR cells in each case (clutter
and targets) and belong to PolSAR acquisitions from coastal areas of Vancouver and San
Francisco, where the targets/ships are clearly located utilizing the component of intensity
HV, as it is depicted in Figure 4a,b. Specifically, the PolSAR cells inside the red circles
correspond to ships, while the cells in the blue rectangular are assumed as clutter.
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Figure 4. (a) Intensity of HV channel of PolSAR SLC data depicts a coastal area of Vancouver. Targets
are in the red circles and clutter in the blue rectangle; (b) Intensity of HV channel of PolSAR SLC data
depicts a coastal area of San Francisco. Targets are in the red circles, the clutter in the blue rectangle.

The present technique focuses on the statistical description of the Polarimetric cells by
means of the contributions of the primary and secondary scattering mechanisms, according
to the applied decomposition. For this reason, the histograms for each scattering mechanism
corresponding in both target and clutter cells were calculated as a function of the number
of occurrences in these regions.

Utilizing the extracted information, whereby each cell of Polarimetric images has four
values, two determining the primary and secondary scatterers and two corresponding on
their contribution rates, a supervised learning technique of Decision Trees is trained to
separate targets from clutter by estimating the optimal thresholds for each feature. The
value of the last cells will be either 1 or 0, depending on the assumption of the cell either
as a target or as clutter; in this way, a binary image is constructed. The choice of this
algorithm arose by studying the statistical behavior in line with the histograms depicted in
Figures 5 and 6.
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Figure 6. Histograms of the contribution rate of each secondary scattering mechanism and the
number of occurrences in both target and clutter PolSAR cells.

In the decision tree, nodes are split into sub-nodes on the basis of a threshold value
of each feature. In our case, the hierarchy that is followed in nodes splitting is based on
the importance of each of the four features extracted from each PolSAR cell according
to the Double Scatterer Model. More specifically, the first discrimination is based on the
primary scattering mechanism. If this feature is not ‘strong’ enough to make an accurate
discrimination, the contribution rate of the primary scattering located in the PolSAR cell is
used as a secondary criterion. If there is not a clear separation, the additional criteria of the
secondary scattering mechanism and its contribution rate are considered.

The classification tree algorithm mentioned above uses the Gini Index, also known as
Gini Impurity. The Gini Index is a metric used in classification tasks that measures the sum
of squared probabilities of each class. It calculates the probability of a specific variable being
incorrectly classified when randomly chosen. It is a variation of the Gini coefficient and
can only be applied to categorical variables with binary outcomes of “success” or “failure”.
The Gini index ranges from 0 to 1, with a value of 0 indicating that all elements belong to
one class, a value of 1 indicating that elements are randomly distributed across multiple
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classes, and a value of 0.5 indicating that elements are uniformly distributed among some
classes. Mathematically, Gini Impurity is defined as follows:

Gini = 1−∑n
i=1(pi)2 (16)

where pi is the probability of a sample classified to a particular class.
The splitting procedure continues until the last pure sub-set is found in the tree or

the maximum number of splits in the growing tree is reached, in which case it is 7. The
classification tree is depicted in Figure 7.

The proposed methodology reduces the complex task of target/object detection into
simple image processing with minimum computational cost thanks to the simplified form
of the binary image. By assigning the value 0 to each possible target and the value 1
to cells corresponding to clutter, the binary image will be constructed. The tree nodes
follow the hierarchy indicated by the Double Scatterer Model, as previously mentioned.
More specifically:

1. The first split is based on the primary scatterer. The under-examination cells are
divided into two sub-roots, those whose scattering behavior is described by the
primary scattering mechanism of trihedral and those whose scattering properties are
interpreted by the other scattering mechanisms (dihedral, dipole, 1/4 wave device).
A decision that can clearly be made by observing the histograms and the number of
occurrences for the trihedral mechanism as a primary scatterer.

2. If the primary scatterer is the trihedral mechanism of two branches, follow based on
the contribution rate. Specifically, if the contribution rate is higher than 0.95% the cell
is characterized as clutter/sea, otherwise an additional split is needed. The left-hand
branch (Figure 7) is indicated, according to which, if the contribution rate is less than
0.12%, the cell is labeled as a target, otherwise it is assumed to be clutter.

3. In the case in which the primary scatterer is not the trihedral mechanism, but is any of
the others, the contribution rate of the secondary scatterer determines the decision, as
depicted in the right-hand branch (Figure 7). If the contribution rate of the secondary
scattering mechanism is greater than or equal to 0.00005%, regardless of its kind, the
cell is considered as a target, otherwise as clutter.
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Figure 7. Decision tree for binary image construction based on features extracted via the Double
Scatterer Model.

In order to highlight the robustness and the effectiveness of the proposed method, we
applied the model that was trained based on the data from the imagery scenes acquired by
the RADARSAT-2 to a test set obtained using a different sensor and, specifically, that of
ALOS-PALSAR. In cases where the satellite imagery does not only depict sea and ships,
but also land, following the proposed procedure, the values of 0 and 1 will be given in
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these cells. However, this does not affect the proposed algorithmic framework, because
a well-established segmentation procedure follows that it will mask off the land regions;
namely, the Active Contour model [24] s employed, as can be seen in Figure 8-Right. The
processing of the constructed binary image that follows is very simple and fast in terms
of filtering and segmentation. Therefore, by calibrating the PolSAR image of the coastal
area of Thailand and applying the Double Scatterer Model and the decision tree model
mentioned above (Figure 7), we obtain the following result (Figure 8-Right).
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Figure 8. Coastal area of Thailand as depicted by the amplitude of channel HV in a grayscale format
(Left). Binary image as constructed based on the proposed decision tree (Right) according to which
the white color corresponds to sea/clutter and the black to candidate targets.

The eight components, four imaginary and four real parts, that make up the orig-
inal fully polarimetric image are now transformed into a binary one. The noise that
appears could be modeled as impulse noise, also known as ‘salt and pepper’. Therefore, a
9 × 9 kernel of mean filter is applied. The segmentation of the image in order to mask off
the land area and find the boundary lines of small islets and the coastline is based on the
simple and well-established method of Active Contours [24]. By applying the hamming
distance between the filtered image (Figure 9a) and the segmented one (Figure 9b), followed
by a smoothing kernel, the candidate ships are located (Figure 9c).

Geomatics 2023, 3, FOR PEER REVIEW 11 
 

 

   
(a) (b) (c) 

Figure 9. (a) Filtered image; (b) Segmented image; (c) Candidate targets presentation. 

By highlighting the coordinates of located targets into the Intensity HV component, 

we obtain the following result (Figure 10). 

 

Figure 10. Ship detection based on the proposed algorithm. 

5. Results and Discussion 

To quantitatively evaluate the effectiveness of the proposed algorithm (Figure 11), 

the FoM factor and the False Alarm Rate are calculated and compared with those of the 

most commonly used process of CFAR detection. The latter procedure includes Lee filter-

ing for denoising, land mask-off by utilizing the statistical modeling of sea and the CFAR 

detection algorithm and was carried out in SNAP environment. Moreover, a target detec-

tion based on visual inspection was also made. 

Figure 9. (a) Filtered image; (b) Segmented image; (c) Candidate targets presentation.



Geomatics 2023, 3 184

By highlighting the coordinates of located targets into the Intensity HV component,
we obtain the following result (Figure 10).
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Figure 10. Ship detection based on the proposed algorithm.

5. Results and Discussion

To quantitatively evaluate the effectiveness of the proposed algorithm (Figure 11), the
FoM factor and the False Alarm Rate are calculated and compared with those of the most
commonly used process of CFAR detection. The latter procedure includes Lee filtering for
denoising, land mask-off by utilizing the statistical modeling of sea and the CFAR detection
algorithm and was carried out in SNAP environment. Moreover, a target detection based
on visual inspection was also made.
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Figure 11. Flowchart of the proposed ship detection algorithm.

The efficiency of our method can be confirmed since it is able to detect twenty-three
(Figure 12a) out of twenty-four targets/ships (Figure 12c), while it presents three false
alarms. The CFAR procedure applied by the SNAP toolbox is able to detect all of the
twenty-four targets (Figure 12b), but it detects seven false alarms.
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Figure 12. (a) Ship detection based on the proposed algorithm, Thailand; (b) Ship detection based on
the CFAR and Lee filtering, Thailand; (c) Ship detection based on visual inspection, Thailand.

The accuracy of the proposed algorithmic framework is estimated through the quality
factor FoM (Figure of Merit), which is the ratio of the number of correct detections to the
sum of false alarms and real ships:

FoM =
NTP

NTT + NFP
(17)

NTP corresponds to the number of true positives, i.e., the number of correct detected
ships, NFP represents the false alarms and NTT is the number of true ships in the image.

The False Alarm Rate that represents the ratio of the number of false alarms to the
number of real ships is also calculated:

FR =
NFP
NTT

(18)

The higher the detection accuracy, the lower the false alarm rate and the better
the performance.

The results (Table 2) show that the proposed technique performs better than the
most commonly used algorithm in ship detection. This conclusion is very promising,
considering the very limited number of samples that were used to achieve this accuracy in
detection. Equally important to mention is the computational cost required for the proposed
algorithm. While a combination of well-known image processing and machine learning
techniques is applied, the proposed technique mainly relies on the rich information content
of the data analysis process and presents a completely new perspective by converting the
multidimensional satellite data into a binary image, greatly simplifying the target/object
detection task.
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Table 2. Quantitative detection performance of the proposed method compared with the most
known one.

NTP NFN NFP FoM FR

CFAR Detection 24 0 7 0.77 0.29
Proposed Algorithm 23 0 3 0.85 0.12

6. Conclusions

This research presents a novel ship detection scheme, exploring, for the first time in a
target/ship detection task, a new methodology for feature extraction, known as the Double
Scatterer Model. The rich information content obtained, combined with classic image
processing and machine learning procedures, led to remarkable results. At the same time,
the main and radical idea of constructing a binary image from the multi-components Single
Look Complex data proved to be an approach that reduces the processing computational
load and decomposes the target detection task into a simple image processing problem
by retaining the information content. Moreover, this novel stepwise algorithm is very
promising considering the fact that it is independent of SAR data resolution, given that the
proposed model was trained on Polarimetric cells acquired in C-band and evaluated on
data obtained by L-band. Future works will focus on optimizing each step of the procedure,
by improving the denoising and utilizing more sophisticated approaches in constructing
the decision tree, which could have the potential to present important new aspects in
the process of target detection in different spatial environments without the limitation of
discrimination between ships and sea.
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