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Abstract: Night-time light (NTL) data have been widely used as a remote proxy for the economic 

performance of regions. The use of these data is more advantageous than the traditional census 

approach is due to its timeliness, low cost, and comparability between regions and countries. Sev-

eral recent studies have explored monthly NTL composites produced by the Visible Infrared Imag-

ing Radiometer Suite (VIIRS) and revealed a dimming of the light in some countries during the 

national lockdowns due to the COVID-19 pandemic. Here, we explicitly tested the extent to which 

the observed decrease in the amount of NTL is associated with the economic recession at the sub-

national level. Specifically, we explore how the association between Gross Domestic Product (GDP) 

and the amount of NTL is modulated by the pandemic and whether NTL data can still serve as a 

sufficiently reliable proxy for the economic performance of regions even during stressful pandemic 

periods. For this reason, we use the states of the US and quarterly periods within 2014–2021 as a 

case study. We start with building a linear mixed effects model linking the state-level quarterly 

GDPs with the corresponding pre-processed NTL data, additionally controlling only for a long-term 

trends and seasonal fluctuations. We intentionally do not include other socio-economic predictors, 

such as population density and structure, in the model, aiming to observe the ‘pure’ explanatory 

potential of NTL. As it is built only for the pre-COVID-19 period, this model demonstrates a rather 

good performance, with R2 = 0.60, while its extension across the whole period (2014–2021) leads to 

a considerable worsening of this (R2 = 0.42), suggesting that not accounting for the COVID-19 phe-

nomenon substantially weakens the ‘natural’ GDP–NTL association. At the same time, the model’s 

enrichment with COVID-19 dummies restores the model fit to R2 = 0.62. As a plausible application, 

we estimated the state-level economic losses by comparing actual GDPs in the pandemic period 

with the corresponding predictions generated by the pre-COVID-19 model. The states’ vulnerability 

to the crisis varied from ~8 to ~18% (measured as a fraction of the pre-pandemic GDP level in the 

4th quarter of 2019), with the largest losses being observed in states with a relatively low pre-pan-

demic GDP per capita, a low number of remote jobs, and a higher minority ratio. 

Keywords: VIIRS NTL data; panel analysis; COVID-19 pandemic; economic losses; socio-economic 

characteristics; US 

 

1. Introduction 

Using satellite night-time light (NTL) data as a proxy for on-ground human activity 

was well established in the remote sensing literature of the 1970s [1]. Since then, NTL data 

have been widely used as a remote proxy for different purposes: in studies of the eco-

nomic performance of regions [2–9], in population analyses [10–15], in health geography 

studies [16–20], in studies of CO2 emissions [21–24], etc. (for a comprehensive review of 

current NTL usage and outlook for its future usage, see [25]). 
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As a proxy of human economic activities, the use of NTL data is more advantageous 

than the traditional census approach is due to its timeliness, low cost, and comparability 

between regions and countries, irrespective of the statistical capacity and reporting cul-

ture. Due to the mentioned reasons, using NTL data as a proxy for the economic perfor-

mance of the regions has become even more important during times of upheaval, of which 

the COVID-19 pandemic is a prominent example. 

Recent studies show that Visible Infrared Imaging Radiometer Suite (VIIRS) NTL 

monthly composites reveal the dimming of light as an effect of the lockdowns in response 

to the COVID-19 pandemic. Thus, Elvidge et al. [26] and Ghosh et al. [27] reported a sig-

nificant decline in the amount of night-time and monthly lighting recorded by VIIRS DNB 

NTL composites during the first months of the COVID-19 pandemic in China and in India. 

Xu and co-authors analyzed the amount of NTL in 20 megacities all over the world before 

and after the lockdowns and reported that the amount of NTL in most cities generally 

decreased after the lockdowns and that the most drastic decrease was observed for the 

cities in Asia [28]. There are also some recent studies that used NTL data to explore the 

COVID-19 influence on the socio-economic state of the regions. Thus, Wang and co-au-

thors explored the dynamics of NTL in the sites representing different types of human 

activities (such as healthcare, recreation, residential, and shopping areas, etc.) during dif-

ferent stages of the pandemic in four Chinese cities [29]. The authors report some tenden-

cies, such as an increase in the NTL levels in healthcare sites during the initial stage and a 

decrease in them during the final stage of the pandemic or an increase in the amount of 

NTL in shopping sites in the final stage of the pandemic, suggesting that NTL tendencies 

do reasonably reflect the stages of the pandemic. In another study, Roberts shows that at 

the national level, there exists a statistically significant correlation between the quarterly 

trends in Morocco’s overall NTL intensity and the trends in its real Gross Domestic Prod-

uct (GDP) [30]. Finally, in the most recent study, Dasgupta reports that during the pan-

demic, the amount of NTL was strongly correlated with GDP at the national level in India 

[31]. The question, however, remains whether NTL data can track the economic impacts 

of the COVID-19 crisis at the subnational level. 

In the case of the US, a visual inspection of the NTL data recorded by VIIRS in March 

2020, which was the starting point of the COVID-19 pandemic in the US, shows a sharp 

decline in the amount of NTL, especially in specific areas, compared to that in the pre-

pandemic periods in February 2020, as well as in March 2019 (Figure 1a,b, respectively). 

This decline contrasts with the increase in the amount of NTL normally that was observed 

before the pandemic (see, for instance, Figure 2 comparing similar pre-COVID periods). 

Additionally, the question is whether NTL dynamics remain a reliable proxy of the GDP 

levels’ dynamics at the subnational level during times of upheaval. The present paper 

aims to answer this question. 
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(a) 

 

(b) 

Figure 1. Changes in night lights after the COVID-19 pandemic: March 2020 vs. February 2020 (a) 

and March 2020 vs. March 2019 (b). Blue and red pixels stand, respectively, for dimmer and brighter 

NTL signals. Source: Authors’ calculations based on VIIRS data from the Earth Observation Group 

and Google Earth Engine [32]. 

● Dimmer NTL signals 

● Brighter NTL signals 
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(a)  

 

(b)  

Figure 2. Changes in night lights before the COVID-19 pandemic: March 2019 vs. February 2019 (a) 

and March 2019 vs. March 2018 (b). Blue and red pixels stand, respectively, for dimmer and brighter 

NTL signals. Source: Authors’ calculations based on VIIRS data from the Earth Observation Group 

and Google Earth Engine [32]. 

The observed striking difference in the dynamics of the amount of NTL used after 

the onset of the pandemic might indicate the impact of the COVID-19 lockdowns on the 

economy. The question, however, remains to which extent NTL data can still serve as a 

proxy for the economic performance of the regions during crises. The present paper aims 

to answer this question. In the analysis, we compare the US state-level quarterly dynamics 

of the GDP during 2014–2021 with the pre-processed quarterly averaged monthly compo-

sites of the NTL data measured by VIIRS. We also assess the pandemic-induced state-level 

GDP losses and try to explain them using the socio-economic characteristics of the areas. 

The present analysis is conducted in several steps. Firstly, we compare the pre-processed 

years, 2014–2021, with the corresponding quarterly GDPs at the state level in the US. For 

this reason, we build mixed linear models linking the GDP with the NTL data separately 
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for the pre-COVID-19 period and the whole time period. We show that not accounting for 

COVID-19 dummies worsens the fit of the model built for the whole time period. Sec-

ondly, we use the pre-COVID-based model to make post-pandemic GDP predictions and 

estimate the state-level losses by comparing those predictions with actual quarterly GDPs 

in the years 2020 and 2021. Finally, we try to explain the outstanding vulnerability to the 

crisis of states. For this reason, we run multivariate regressions linking the socioeconomic 

characteristics of localities with the magnitude of their economic losses. The rest of the 

paper is structured as follows: Section 2 describes the data and methods used in the anal-

ysis, Section 3 presents empirical results, and Section 4 discusses the obtained results and 

concludes the paper. 

2. Materials and Methods 

2.1. Data Used 

2.1.1. NTL Data Source and Their Processing 

In the present analysis, we used the monthly cloud-free composites of the Visible 

Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) NTL data collected 

jointly by NASA and NOAA and distributed by the Earth Observation Group (EOG) [33]. 

Particularly, we used a stray-light-corrected version of the NTL data, ensuring more data 

coverage towards the poles. The utilized NTL data have a 15 arc-second (~500 m at the 

Equator) spatial resolution and report average monthly and daily observations of the NTL 

radiance (in nW/cm2/sr) [33]. A copy of the NTL data stored on Google Earth Engine da-

tabases [32] were used in this study for the ease of performing an analysis using Python 

software. 

VIIRS/DNB NTL data were chosen over the older Defense Meteorological Satellite 

Program (DMSP) NTL data due to their availability at a higher frequency, spatial resolu-

tion, higher dynamic range, and low-light detection capabilities, with the presence of on-

board calibration and the absence of saturation [34]. 

The NTL data utilized in this analysis cover 48 contiguous states and the District of 

Columbia (DC) (we excluded from the analysis Alaska, Hawaii, and Puerto Rico states 

due to their geo-locations and expectedly inaccurate NTL data contributed by volcanic 

activities and auroras) spanning eight years from January 2014 to December 2021 (which 

represents 96 monthly composites of stray-light-corrected NTL data). 

To exclude non-reliable NTL data from the analysis, the procedure of filtering out 

low cloud-free coverage and low average radiance, thus avoiding background noise, de-

scribed in [26] was performed. Thus, from each NTL composite, we excluded pixels that 

in at least one dataset—within a certain quarter—had: (i) ≤2 cloud-free observations and 

(ii) an≤0 NTL level. Afterward, for each NTL composite, for each state, the numbers of the 

filtered-out pixels were calculated, and if more than 5% of the original pixels filtered out 

in a state, it was excluded from the analysis. 

Using the filtered NTL data, we calculated the sum of light (SoL) for each state and 

each monthly NTL composite. For this reason, we summed up the latitude-adjusted NTL 

radiances of the pixels [26] within the administrative boundary of a state. Finally, for the 

comparability with the GDP data, which are available quarterly (see Section 2.2), we cal-

culated the quarterly SoLs by summing up the three monthly SoLs, which make up the 

corresponding quarter. 

2.1.2. Socio-Economic Characteristics of the States 

To compare the dynamics of the GDP with the processed NTL data measured by 

VIIRS (see Section 2.1), we used the quarterly GDP at the state level measured in millions 

of chained 2012 dollars, which we obtained from the Bureau of Economic Analysis [35]. 

As the provided data were scaled to the annual GDP, we divided the given values by four to 

obtain a quarterly average. Figure 3 reports the average state quarterly GDP for 2014–2021. 
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Figure 3. The average state quarterly GDP for the 48 states and DC for 2014–2021. The shaded area 

shows ±1 standard error from the mean. 

To assess the pandemic-induced state-level GDP losses and explain their variation 

across the states, we used state-level socio-economic characteristics, such as initial devel-

opment level and sectoral composition, as well as the racial and ethnic composition of the 

states. The initial development level was assessed as GDP per capita (millions of chained 

2012 dollars per person). It is established in the literature that economically stronger re-

gions tend to better cope with crises (see, for example, [36,37]), and we expected the initial 

pre-pandemic GDP per capita to be negatively correlated with the pandemic loss. Sectoral 

specialization across regions is known to influence the magnitude of economic impact. A 

recent study showed that areas with a diversified structure or those specialized in sectors 

such as information and technology suffered less, while states concentrated in tourism 

suffered more [38]. In the present analysis, the sectoral compositions were calculated as 

fractions of the total state GDPs contributed by a certain sector of the economy. We mainly 

tested the service sectors that were highly impacted by the lockdowns, such as those 

which require in-person work, and the sectors that are resilient to lockdown, such as those 

which can easily switch to remote work, and states with a large fraction of highly impacted 

sectors that were expected to experience large loss and states with a large fraction of resil-

ient sectors that were expected to experience small losses. Finally, the pandemic is likely 

to have different impacts on different ethnic groups [39,40]. In the present analysis, racial 

and ethnic compositions were measured as a fraction of the total state population. We 

defined the fraction of non-white people to be the fraction of the minority and predicted 

that the fraction would correlate positively with the pandemic loss. In the analysis, we 

also tested other socio-economic variables, such as age, gender structure, education, pov-

erty, and unemployment levels, as well as population densities; these variables, however, 

were statistically insignificant in the tested models (with p > 0.1) 

GDP data including industry shares were obtained from the BEA [35]. Statistics re-

garding population, age, and racial composition were obtained from the US Census site [41]. 

2.2. Methodology 

In the first stage of the analysis, we linked the state-level quarterly GDPs (Section 2.2) 

to the corresponding state-level quarterly SoLs (Section 2.1). For this reason, we initially 

developed a linear mixed effects model to use NTL as a proxy for GDP in the following 

form: 

log(𝐺𝐷𝑃𝑖,𝑡) = 𝛼 + 𝛽 log(𝑆𝑜𝐿𝑖,𝑡) + ∑ 𝛿𝑞𝑄𝑞

4

𝑞=2
+ 𝛾Yearadj + 𝜇𝑖 + 𝜖𝑖,𝑡 (1) 
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where log(x) stands for the natural logarithm of x; SoLi,t stands for the sum of lights in the 

ith state for the tth time period; Qq stands for the quarterly dummies using Q1 as a reference, 

and it is implied to account for seasonal NTL changes; Yearadj stands for the year minus 

2013 (so, the series starts with a value 1 in the year 2014), and it is implied to account for 

long-term dynamics of the NTL; µi is the time-invariant state effects; ϵi,t is the error. We 

should stress, here, that the aim of the present model’s specification—common to eco-

nomic studies, which use NTL data as a proxy for economic development of the regions 

[9]—is to check whether the NTL data are still a reliable proxy for the real GDP during a 

pandemic also. 

For this reason, we first applied this model to the period prior to the pandemic (2014–

2019 only), as well as to the whole period under analysis (2014–2021). By doing so, we 

aimed to show that the standard model’s fit became lower when we applied it to the whole 

period due to the force majeure event breaking down the ‘natural’ dynamics of the NTL 

intensities. 

To account for the pandemic impact, we expanded upon the model (see Equation 

(1)), introducing to it eight additional interactive terms between the year and quarter 

dummies in 2020 and 2021: 

log(𝐺𝐷𝑃𝑖,𝑡) = 𝛼 + 𝛽 log(𝑆𝑂𝐿𝑖,𝑡) + ∑ 𝛿𝑞𝑄𝑞

4

𝑞=2
+ 𝛾Yearadj 

+ ∑ 𝜌𝑞𝑌2020𝑄𝑞

4

𝑞=1
+ ∑ 𝜙𝑞𝑌2021

4

𝑞=1
𝑄𝑞 + 𝜇𝑖 + 𝜖𝑖,𝑡 

(2) 

These new variables describe pandemic season-specific deviations from the ‘normal’ 

seasonal dynamics separately for the two pandemic years. This analysis was conducted 

in Python software. For all of the models, the parameters were estimated using a maxi-

mum likelihood approach. 

In the second stage of the analysis, to assess the pandemic-induced GDP losses in the 

states, we used the model (Equation (1)) built for the 2014–2019 period. From this model, 

we calculated the GDP predictions for the quarters within 2020–2021 and compared them 

with the corresponding actual GDP values. We calculated three metrics to measure the 

economic impact: maximum loss, total loss, and the number of quarters until GDP recov-

ery to the 4th quarter (Q4) of 2019. Maximum loss is defined as the largest single difference 

for any quarter between the counterfactual GDP and observed GDP. This measure intends 

to capture the magnitude of economic loss at the trough (peak of the pandemic). Total loss 

is defined as the sum of the positive differences between the predicted counterfactual GDP 

and the observed GDP in each quarter between 2020 Q1 and 2021 Q4 until the state’s ob-

served GDP recovers to the counterfactual GDP level. For the states whose GDP did not 

recover until 2021 Q4, the total loss is the sum of the positive differences of all of the eight 

quarters between 2020 Q1 and 2021 Q4. This measure intends to capture the magnitude 

of economic loss before the economy returned to the pre-pandemic growth trajectory dur-

ing the period after the onset of the pandemic. The number of quarters until recovery to the 

2019 Q4 levels measures the number of quarters each state took until their GDP returned 

to the pre-pandemic GDP level, with 2020 Q1 defined as t = 0. For example, if a state re-

covered to its GDP level in 2019 Q4 in 2020 Q4, the number of quarters until recovery is 3. 

This measure intends to capture the speed of the recovery. For this, it is worth emphasiz-

ing that the calculated losses are estimates only, and they can not be validated explicitly, 

although their quality, which was evaluated proceeding the performance of the models, 

was used for the prediction of GDP (Equations (1) and (2)). 

In the final stage of the analysis, we examined the association between the socio-eco-

nomic characteristics of the states and the magnitude of loss and the speed of recovery. 

For this reason, we performed a cross-section analysis for the 48 contiguous states and DC 

with three sets of regressions, with the dependent variables being the maximum loss, the 

total loss, and the number of months before recovering to the 2019 Q4 level. As independ-

ent variables, we used the initial development level, the racial and ethnic composition, 
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and the sectoral composition (see Section 2.2). To control for potential endogeneity, we 

introduced a lagged value (the year 2019) for the independent variables. The regression is 

presented as follows: 

log(𝑃𝐼𝑉𝑖) = α + β log(𝐺𝐷𝑃𝑝𝑐𝑖) + γ(log(𝐺𝐷𝑃𝑝𝑐𝑖))2 + δ log(𝑚𝑖) + σ log(ℎ𝑠𝑖) + ω log(𝑙𝑠𝑖) + 𝜖𝑖  (3) 

where PIVi stands for the pandemic impact variable (either the maximum loss, the total 

loss, or the number of quarters until GDP recovery) in the ith state; GDPpc stands for per 

capita GDP in the 2019 pre-pandemic year; m represents the minority ratio, which is cal-

culated as the fraction of the non-white population; hs represents the fraction of GDP con-

tributed by services with a high incidence of remote working, such as those related to 

information, finance and insurance, real estate and rental and leasing, professional, scien-

tific, and technical services; ls represents the fraction of GDP contributed by services with 

a low incidence of remote working, such as those related to accommodation and food 

services, arts, entertainment, and recreation. Additionally, to address the potential effects 

of the spatial autocorrelation, we examined spatial error and spatial lag models. The anal-

ysis was performed in the GeoDa 1.8.x software [42]. 

3. Results 

3.1. NTL–GDP Association 

The NTL data filtering of low cloud-free coverage and low average radiance (see Sec-

tion 2.1) resulted in a decrease in the number of observations from 1568 (four quarters in 

eight years for 48 states and DC) to 1244, which is a ~20% decrease. Most of the decreased 

values were for 2015 or 2016 or the summer months or a few states such as Wyoming and 

Oregon. 

The regression results (see Equation (1) in Section 2.2) of the association between 

GDP and NTL data for the pre-pandemic years, 2014–2019, and for the whole of the 2014–

2021 period are represented in the first two columns in Table 1 (Models 1 and 2, corre-

spondingly). The results show that the SoL is positively associated with the GDP in a sig-

nificant manner (t = 2.08; p < 0.05) in the pre-pandemic period, 2014–2019 (see Model 1 in 

Table 1). A positive coefficient for the year indicates a positive association with an increas-

ing trend of the GDP over the years. Similarly, positive coefficients of the quarterly dum-

mies for Q2–Q4 (with Q1 as the reference point) capture the seasonality and show that the 

GDP value is higher for a given value of SoLs in Q2 compared with that in Q1, and the 

difference in Q3 and Q4 is even bigger compared to that in Q1, which are all consistent 

with the literature on the variation of the NTL data [30,43,44]. 

Table 1. Association between GDP and NTL before and after the COVID-19 pandemic. 

Predictors and Summary Statistics 
Model 1: 

Log(GDP), yy 2014–2019 

Model 2: 

Log(GDP), yy 2014–2021 

Model 3: 

Log(GDP), yy 2014–2021 

Log(SoL) 0.013 ** (2.08) 0.010 (1.37) 0.025 *** (4.01) 

Year adjusted  0.016 *** (31.91) 0.117 *** (25.72) 0.015 *** (27.92) 

Q2 dummy 0.010 *** (3.64) −0.004 (−1.39) 0.013 *** (4.45) 

Q3 dummy 0.163 *** (5.44) 0.012 *** (3.63) 0.020 *** (6.40) 

Q4 dummy 0.019 *** (7.73) 0.017 *** (5.96) 0.020 *** (7.70) 

2020 * Q1 dummy - - −0.001 (−0.26) 

2020 * Q2 dummy - - −0.107 *** (−22.60) 

2020 * Q3 dummy - - −0.037 *** (−7.97) 

2020 * Q4 dummy - - −0.030 *** (−5.93) 

2021 * Q1 dummy - - −0.014 ** (−2.47) 

2021 * Q2 dummy - - −0.012 ** (−2.34) 

2021 * Q3 dummy - - −0.013 *** (−2.71) 

2021 * Q4 dummy - - −0.005 (−0.90) 
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Predictors and Summary Statistics 
Model 1: 

Log(GDP), yy 2014–2019 

Model 2: 

Log(GDP), yy 2014–2021 

Model 3: 

Log(GDP), yy 2014–2021 

Constant 10.629 *** (77.83) 10.685 *** (72.02) 10.457 *** (74.64) 

R2 within 0.60 0.42 0.62 

R2 between 0.02 0.01 0.03 

R2-adjusted 0.35 0.18 0.37 

Number of obs. 897 1244 1244 

Note: * stands for p < 0.1; **—for p < 0.05; ***—for p < 0.01. t-statistics in parentheses. The random 

effects estimations are applied following the results of the Breusch and Pagan LM test and Hausman 

test. 

Our analysis also shows that a mechanistic extension of the model (Equation (1)) to 

2020–2021 after the onset of the pandemic results in a poorer fit of the model (with R2-

adjusted 0.18 vs. 0.35—see Models 1 and 2 in Table 1). Due to this, the association between 

GDP and NTL is insignificant (t = 1.37; p > 0.1). In the meantime, accounting for the 

COVID-19 phenomenon (see Equation (2) in Section 2.2) shows that the association be-

tween GDP and NTL is positive and significant (t = 4.01; p < 0.01—see Model 3 in Table 1), 

and the model fit essentially improves (R2 adjusted from 0.18 to 0.37). Notably, the effects 

of the main predictors in the extended model (see Model 3 in Table 1)—SoL, year, and 

seasons—appear to be close to those in the initial pre-COVID model (Model 1 in Table 1). 

Due to this, the association between GDP and NTL is stronger, as manifested by the higher 

significance of the corresponding effect (t = 4.01 in Model 3 vs. t = 2.08 in Model 1). As 

expected, the coefficients of the interactive terms that capture the quarter-specific impacts 

of COVID-19 are all negative. The magnitude of the interactive term 2020*Q2 (which is 

the beginning of the lockdown in the US) indicates the extremely large negative shock (t 

= −22.60; p < 0.01) to the economy that occurred at the time when the COVID pandemic 

began. The magnitude of the coefficients of 2020*Q3 and 2020*Q4 also remained imposing 

(t < −5.93; p < 0.01), but these are only ~30–40% of the magnitude of the 2020*Q2 coefficient. 

This signals the prolonged large negative impact and nascent rebound. The magnitude of 

the coefficients in Q1–Q4 in 2021 are essentially smaller, but they remain negative. Due to 

this, the last coefficient 2021*Q4 is as insignificant (t = −0.90; p > 0.1), meaning that the last 

quarter of 2021 already behaves as a typical non-COVID fourth quarter does. 

3.2. State-Wise Economic Losses Due to the Pandemic 

The state-wise pandemic impact in the present analysis was measured by the magni-

tude of the estimated economic losses, either in terms of the maximum loss, the total loss, 

or the number of quarters until the GDP recovered to the level of the 4th quarter of 2019 

(see Section 2.2). Thus, Figure 4 reports the maximum loss of the quarterly GDP of each 

state after the pandemic as a ratio to its 2019 Q4 GDP level. For most of the states, the ratio 

has a range of ~10–15%. Figure 5 shows the total loss of GDP of each state until its recovery 

to the pre-pandemic level as a share of its 2019 GDP. For most of the states, the ratio ranges 

from ~5% to ~15%. The results show that Nevada suffered the largest maximum loss 

(~18%—see Figure 4) and total loss (~15%—see Figure 5), which could be related to the 

heavy hit to tourism industries in Las Vegas due to COVID-19. 
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Figure 4. The maximum loss of the quarterly GDP in the pandemic 2020 and 2021 years as a fraction 

of the pre-pandemic GDP level in the 4th quarter of 2019. 

 

Figure 5. Total loss of GDP until recovery to pre-pandemic trends as a share of the GDP level in 

2019. 

Figure 6 reports the number of quarters it took for each state to recover to the pre-

pandemic GDP in the 4th quarter of 2019. While it took from two to seven quarters for 

most of the states to recover to the pre-pandemic level GDP, seven states, including Con-

necticut, Louisiana, Maryland, New Mexico, North Dakota, Oklahoma, and Wyoming, 

did not recover before the end of the analyzed period (the 4th quarter of 2021). This 

demonstrates the severity of the COVID shock on the economy and the challenges to post-

pandemic recovery. The results reported in Figure 6 largely corroborate the findings in 

Figures 4 and 5, pointing out that states experiencing larger maximum losses and less 

speedy recoveries often suffer larger total losses. 
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Figure 6. The number of quarters to recover to the GDP level in the 4th quarter of 2019. 

3.3. Socio-Economic Characteristics vs. State-Wise Economic Losses 

Table 2 displays the results of the association between the socio-economic character-

istics of the states and pandemic-induced economic losses, which are represented by ei-

ther the maximum loss, the total loss, or the number of quarters until the GDP recovered 

to the level of the 4th quarter of 2019 (see Section 2.2). For all of the reported models, the 

variance of the inflation factor for all of predictors did not exceed 1.5, with acceptable 

multicollinearity between the explanatory variables. Tables A1 and A2 in Appendix A 

report the database and correlations between the analyzed predictors. 

Table 2. Association between the magnitude of the economic losses and socioeconomic characteris-

tics of the states (model type: linear regression). 

Predictors and Summary Statistics 
Model 4:  

Log(Max Loss) 

Model 5:  

Log(Total Loss) 

Model 6:  

Log(N. of Quarters) 

2019 GDPpc (log) −4.284 *** (−4.47) −7.345 *** (−2.95) −4.683 ** (−2.28) 

2019 GDPpc (log, squared term) −0.789 *** (−4.37) −1.522 *** (−3.24) −0.979 ** (−2.52) 

Minority ratio (log) 0.134 *** (2.94) 0.401 *** (3.40) 0.305 *** (3.13) 

Services with the remote working opportu-

nities (log) 
−0.292 ** (−2.45) −1.233 *** (−3.99) −0.723 *** (−2.83) 

Services with the limited remote  working 

opportunities (log) 
0.424 *** (4.03) 0.492 * (1.80) 0.262 (1.16) 

Constant −6.924 *** (−5.90) −10.586 *** (−3.47) −3.295 (−1.31) 

R2 0.404 0.385 0.306 

R2-adjusted 0.335 0.314 0.226 

Moran’s I 3.306 *** 1.065 2.376 ** 

Number of obs. 49 49 49 

Note: * stands for p < 0.1; **—for p < 0.05; ***—for p < 0.01. t-statistics in parentheses. 

While we were running the models, for the seven states whose GDP did not recover 

to the 2019 Q4 level until 2021 Q4 (see Figure 5 in Section 3.2), the number of quarters until 

the recovery to the 2019 Q4 GDP was artificially assumed to be eight. This assumption 

was made to keep all of 49 states in the regression without excluding the states that expe-

rienced the least speedy recoveries. 

As it can be seen from the table, the states with a higher GDP per capita before the 

COVID-19 pandemic typically experienced smaller maximum and total losses, as well as 

shorter recovery periods (to see a statistically significant negative association between the 

three metrics and 2019 GDP per capita (t < −2.28; p < 0.05), see Models 4–6 in Table 2). Our 
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results also indicate that states with a higher ratio of services that were paid better and 

employed remote working opportunities experienced smaller losses (t < −2.45; p < 0.05), 

while the states with a higher ratio of services with limited remote work opportunities 

generally suffered more losses (t > 1.8; p < 0.1). Additionally, the states with higher minor-

ity rates suffered larger economic losses and a less speedy recovery (t > 2.94; p < 0.01). 

For two out of three models, the effect of spatial autocorrelation was not negligible 

(with Moran’s I > 2.376; p < 0.05). Table 3 reports spatial error models (they are better fit 

and have more generality compared to their spatial lag counterparts). As it can be seen 

from the table, the spatial error model results are remarkably close to the values of the 

coefficients for the main predictors (compare models in Tables 3 and 2), although the over-

all fit appears to be better (R2 = 0.401–0.574 vs. R2 = 0.306–0.404). 

Table 3. Association between the magnitude of the economic losses and socioeconomic characteris-

tics of the states (model type: spatial error regression). 

Predictors and Summary Statistics 
Model 4a:  

Log(Max Loss) 

Model 5a:  

Log(Total Loss) 

Model 6a:  

Log(N. of Quarters) 

2019 GDPpc (log) −4.014 *** (−5.86) −7.330 *** (−3.32) −5.085 *** (−3.17) 

2019 GDPpc (log, squared term) −0.762 *** (−5.85) −1.525 *** (−3.65) −1.057 *** (−3.47) 

Minority ratio (log) 0.107 ** (2.16) 0.376 *** (3.10) 0.244 ** (2.26) 

Services with the remote working opportu-

nities (log) 
−0.514 *** (−5.20) −1.431 *** (−4.89) −1.081 *** (−4.75) 

Services with the limited remote working 

opportunities (log) 
0.436 *** (5.48) 0.525 * (2.10) 0.333 * (1.79) 

Constant −6.651 *** (−7.79) −10.699 *** (−3.92) −4.132 ** (−2.07) 

λ 0.615 *** (4.98) 0.224 (1.22) 0.516 *** (3.62) 

R2 0.574 0.401 0.427 

Number of obs. 49 49 49 

Note: * stands for p < 0.1; **—for p < 0.05; ***—for p < 0.01. z-statistics in parentheses. 

4. Discussion 

In this paper, we have used the latest set of monthly night-time light (NTL) compo-

sites from VIIRS/DNB from 2014 to 2021 to examine the relationship between NTL and 

the economic activities in the U.S. and measure the pandemic’s impact on the economy at 

the state level. In the core analysis, we first examined the relationships within the latitude-

adjusted NTL data, which were filtered on the low cloud-free coverage and low average 

radiances, for the state-level GDP over the pre-pandemic period (from 2014 to 2019) on a 

quarterly basis. Secondly, we extended the model to the pandemic period (from 2020 to 

2021) with additional control variables to account for the shock caused by COVID and 

assessed the economic loss compared with the counterfactual GDP estimate (in the ab-

sence of COVID-19). Finally, we elaborated on the association between the socio-economic 

characteristics of the states and the magnitude of their economic loss and the speed of 

recovery. Several recent studies explored NTL dynamics during the COVID-19 pandemic 

and concluded that drastic changes did take place [26–28]; some studies have confirmed 

that the NTL data correlate with GDP in the pandemic period at the level of selected cities 

[29] and at the national level [30,31]. Our study adds value by using the NTL to measure 

the changes in the quarterly GDP at the subnational level in the U.S. before and during 

the pandemic period. An important finding of our analysis is that NTL data, as they do in 

the ‘normal period’, remain a reliable proxy for the economic development of the regions 

at the subnational level even under external shocks. Our analysis also sheds light on the 

characteristics of the regions that are the most vulnerable—in terms of economic losses 

and the speed of recovery—to COVID-19. 
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The results of the association of the quarterly NTL data and GDP at the state level, 

which were controlled for the seasonal and long-term NTL changes, indicate a signifi-

cantly positive GDP–NTL association in pre-pandemic period (t = 2.08; p < 0.05, see Model 

1 in Table 1), with the model fit achieving R2 = 0.60. These numbers corroborate the previ-

ous findings in the literature that NTL is a reliable proxy for GDP at the subnational level 

in the ‘normal period’. Thus, in their recent comprehensive analysis, Gibson and Boe-Gib-

son report a fit of R2 = 0.35–0.70 for GDP-NTL association models based on the US 2014–

2019 state-level data and different versions of annual NTL composites [9]. 

Our results indicate that NTL may remain a reliable GDP proxy—at least to the same 

extent as it does in ‘normal periods’—even after large external shocks (such as the pan-

demic in 2020 and 2021), given that the effect of COVID is referred to via using the inter-

active terms of year and quarter dummies. The GDP–NTL association in our analysis was 

significantly positive (t = 4.01; p < 0.01, see Model 3 in Table 1), and the model fit achieved 

R2 = 0.62. These results are in line with those of the previous analysis by Roberts, reporting 

that at the national level, in the case of Morocco, a strong correlation between the quarterly 

trends in overall NTL intensity and the GDP levels existed during the pandemic [30]. 

While we were assessing the pandemic-induced losses and the time of recovery, we 

applied an accepted form of analysis using satellite NTL data to study the dimming and 

recovery of lights after exogenous shocks, such as natural disasters and conflicts (see, for 

example, [45,46]). Thus, as our analysis indicates, the magnitude of loss due to COVID-

19, as well as the speed of recovery, varied widely across the states, with most of the states’ 

ratio of maximum quarterly loss ranging from ~10% to ~15% in the pre-pandemic 4th 

quarter in 2019, and the total GDP loss ranging from ~5% to ~15% in 2019. In the 4th quar-

ter of 2021, 42 out of the 49 states recovered to the GDP level of the 4th quarter in 2019. 

These findings generally coincide with the patterns of GDP and jobs. Thus, Ettlinger, 

while citing the results from the September 2021 Bureau of Labor Statistics monthly sur-

vey, stated that while the U.S. as a nation, overall, has recovered close to 80% of those jobs, 

the rate of the recovery of the lost jobs in individual states ranges from 36% of the pre-

pandemic levels to a full recovery [47]. 

Our results argue that the states with a lower initial pre-pandemic GDP per capita 

level, a higher number of low-paid services jobs with limited remote working opportuni-

ties, and a higher minority ratio suffered larger economic loss and less speedy recovery 

post-pandemic. This association between the socio-economic characteristics and economic 

losses are largely consistent with several recent studies on the pandemic’s impact on the 

economy in the U.S. Thus, Breaux et al. argued that while the pandemic had a drastic 

impact on the entire economy and people’s life, the impact varied by industry [48]. Klein 

and Smith [49] found that the cities with a high concentration of tourism, such as Las Ve-

gas and Orlando, suffered the largest losses, while the cities with a high concentration of 

technology and information industries, such as San Francisco and Seattle, suffered less. 

The authors also argue that the areas with relatively large Hispanic or Latino communities 

were more vulnerable to the pandemic-induced consequences, probably reflecting the de-

mographic composition of workers in heavily impacted industries [49]. 

In the meantime, the results of the analysis should be interpreted with caution: 

Firstly, the relationship between GDP and NTL is not perfect. While, typically, the NTL 

intensity increases as incomes rise, the imperfection of the association is due to its com-

plexity and is conditioned by many factors [50,51], including indoor versus outdoor light-

ing, contributions of investment versus income, and the energy/light intensity of different 

productive activities. For example, the production of manufacturing products might re-

sult in a in the use of more light than the design of computer software would for the same 

value of GDP. Energy preservation habits and population density often play an important 

role as well. Gibson and Boe-Gibson show that NTL is a poor predictor of agricultural 

activity and changes in the total economic activity in highly agricultural counties [9]. In 

Mellander et al.’s study, the authors demonstrate that the link between NTL and economic 

activity estimated by wages is slightly overestimated in large urban areas and 

https://carsey.unh.edu/person/michael-ettlinger
https://www.bls.gov/news.release/laus.nr0.htm
https://www.bls.gov/news.release/laus.nr0.htm
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underestimated in rural areas [7]. The NTL data were found to be a better predictor for 

GDP in metropolitan statistical areas than they were for entire states, as night-time light 

may be more closely related to urban sectors than rural sectors [52]. In addition, the rea-

sons a weaker association between NTL and GDP in the growth data might be related to 

the errors or inconsistencies in the digital image luminosities captured by satellites over 

time; the decay of the optical attributes of sensors affects the reliability of the radiance 

measures at night, and seasonal changes captured by the VIIRS, such as stray light in high-

latitude regions, increases in the summer [52]. Secondly, filtering the NTL data on the low 

cloud-free coverage and low average radiance might affect the areas differently, which 

could have varied impacts on the estimates. Finally, the estimated counterfactual GDP in 

2020 and 2021 is drawn from the trendline, with a slope that stands for the national aver-

age and the intercept adjusted for state-specific levels, which might underestimate or 

overestimate the would-be counterfactual GDP for the states with growth rates that devi-

ate from the national average. 

Future research may be focused on refining the revealed patterns in the NTL–GDP 

association during the pandemic at the state level. This would help us to address varia-

tions in lockdown policies across the states. It also seems promising to explore the effects 

of other socio-economic variables to improve the estimates of GDP losses both to improve 

the estimates for GDP losses in the US and to adjust the developed models beyond the 

study area to other countries and regions. 

A potential concern may be associated with the absence of the atmospheric calibra-

tion of the used EOG-provided NTL data product. Indeed, several recent studies have 

reported changes in the concentrations of some pollutants during the pandemic times. 

Rather expectedly, the lockdown policies resulted in decreased emissions of the main at-

mospheric pollutants, such as carbon dioxide, nitrogen oxides, aerosols, and particulate 

matter [53,54] (although the opposite local effects were sometimes observed due to 

weather peculiarities [53]). Most of the mentioned pollutants, however, absorb electro-

magnetic radiation that is beyond the visible light range, and thus do not affect NTL 

brightness. For those pollutants that do absorb light in its visible spectrum, such as aero-

sols, the negative association between their concentration and atmospheric transmissivity 

is long understood [55]. Thus, a pandemic-induced decrease in the amount of aerosols 

should result in slightly brighter NTL radiances. This means that if it was observed, the 

lockdown-associated dimming would have had to surpass the above-mentioned bright-

ening effect. This justifies using the EOG NTL product in studies focusing on dimming 

[26,27]. However, atmospheric gases are known to affect light scattering, especially in the 

short-wavelength range. Thus, decreased emissions of pollutants during the outbreak 

might lead to some dimming of the NTL. Although the impact of this effect seems minor 

compared to that of the economically induced changes, it should still be checked by using 

the atmospherically calibrated NTL, such as the Black Marble product [56]. 

5. Conclusions 

A prompt understanding of the magnitude of the economic losses and capturing the 

signs of recovery is required to take swift and informed action in stressful periods. This 

especially holds for countries and regions where traditional measures are unavailable, in-

frequent, or inaccurate. The herein presented results suggest that the NTL data, which are 

available at high frequency at granular spatial levels for almost all of the areas on Earth 

and are accessible free of charge with only a short time lag, remain a reliable proxy for the 

economic performance of regions, even during periods of upheaval. Furthermore, com-

paring the statistical associations between GDP and NTL in ‘normal’ and pandemic peri-

ods allows us to assess the degree of the vulnerability/resilience of different areas to socio-

economic perturbations, which would contribute to building informed precise anti-crisis 

policies. 
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Appendix A 

Table A1. Database for the analysis of the association between the socio-economic characteristics of 

the states and pandemic-induced economic losses (represented by either maximum loss, total loss, 

or the number of quarters until GDP recovered to the level of the 4th quarter of 2019). See Sections 

2.3 and 3.3 for the explanation. 

State 
Maximum 

Loss 
Total Loss 

Quarters until Re-

covery 
GDP pc Minority % 

Share of High Ser-

vices 

Share of Low Ser-

vices 

AL 0.107 0.069 6 0.041 0.309 0.249 0.052 

AZ 0.081 0.035 3 0.044 0.174 0.319 0.060 

AR 0.084 0.038 4 0.039 0.210 0.208 0.054 

CA 0.107 0.052 4 0.069 0.281 0.386 0.057 

CO 0.097 0.059 5 0.062 0.131 0.359 0.065 

CT 0.127 0.114 8 0.071 0.203 0.415 0.050 

DE 0.096 0.084 7 0.066 0.308 0.496 0.040 

DC 0.072 0.071 6 0.176 0.540 0.400 0.112 

FL 0.102 0.051 5 0.045 0.227 0.359 0.080 

GA 0.105 0.069 5 0.053 0.398 0.378 0.046 

ID 0.085 0.026 2 0.041 0.070 0.252 0.054 

IL 0.114 0.091 7 0.061 0.232 0.349 0.060 

IN 0.113 0.041 4 0.050 0.152 0.221 0.054 

IA 0.093 0.044 4 0.055 0.094 0.290 0.046 

KS 0.100 0.065 5 0.055 0.137 0.278 0.046 

KY 0.117 0.068 5 0.043 0.125 0.228 0.054 

LA 0.124 0.140 8 0.051 0.372 0.215 0.055 

ME 0.090 0.035 3 0.044 0.056 0.295 0.071 

MD 0.103 0.095 8 0.061 0.415 0.354 0.057 

MA 0.107 0.056 5 0.075 0.194 0.420 0.057 

MI 0.140 0.072 5 0.047 0.208 0.291 0.054 

MN 0.102 0.067 5 0.060 0.162 0.303 0.050 

MS 0.110 0.061 4 0.034 0.409 0.205 0.063 

MO 0.099 0.062 5 0.047 0.171 0.303 0.061 

MT 0.081 0.034 3 0.044 0.111 0.255 0.068 

NE 0.092 0.036 3 0.061 0.119 0.287 0.043 

NV 0.189 0.139 7 0.051 0.261 0.278 0.167 

NH 0.100 0.030 3 0.057 0.069 0.348 0.073 

NJ 0.127 0.090 7 0.063 0.281 0.359 0.049 

NM 0.098 0.100 8 0.045 0.181 0.240 0.061 

NY 0.116 0.092 7 0.077 0.304 0.494 0.063 

NC 0.104 0.048 4 0.049 0.294 0.304 0.055 

ND 0.084 0.103 8 0.074 0.131 0.191 0.039 
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OH 0.114 0.075 6 0.052 0.183 0.287 0.052 

OK 0.114 0.133 8 0.051 0.260 0.189 0.048 

OR 0.105 0.070 5 0.052 0.133 0.290 0.061 

PA 0.125 0.095 7 0.056 0.184 0.325 0.053 

RI 0.109 0.058 5 0.050 0.164 0.316 0.069 

SC 0.100 0.040 4 0.041 0.314 0.271 0.065 

SD 0.064 0.018 2 0.053 0.154 0.296 0.053 

TN 0.136 0.055 4 0.048 0.216 0.267 0.079 

TX 0.103 0.071 5 0.062 0.213 0.263 0.046 

UT 0.065 0.024 3 0.053 0.094 0.328 0.057 

VT 0.123 0.094 7 0.048 0.058 0.287 0.083 

VA 0.091 0.065 6 0.057 0.306 0.366 0.055 

WA 0.079 0.030 2 0.070 0.215 0.396 0.050 

WV 0.103 0.068 5 0.040 0.065 0.194 0.052 

WI 0.110 0.090 7 0.052 0.130 0.283 0.052 

WY 0.121 0.177 8 0.067 0.075 0.168 0.049 

Table A2. Pearson’s correlations between socio-economic characteristics of the US states used in the 

analysis (see Table 2). 

 
Year 2019 

GDPpc (log) 

Minority 

Ratio (log) 

Services with the Remote 

Working Opportunities 

(log) 

Services with the Limited Re-

mote Working Opportunities 

(log) 

2019 GDPpc (log) 1.00    

Minority ratio (log) 0.27 1.00   

Services with the remote work-

ing opportunities (log) 
0.50 0.31 1.00  

Services with the limited re-

mote working opportunities 

(log) 

0.06 0.08 0.12 1.00 
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