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Abstract: Landform classification is crucial for a host of applications that include geomorphological,
soil mapping, radiative and gravity-controlled processes. Due to the complexity and rapid develop-
ments in the field of landform delineation, this study provides a scoping review to identify trends in
the field. The review is premised on the PRISMA standard and is aimed to respond to the research
questions pertaining to the global distribution of landform studies, methods used, datasets, analysis
units and validation techniques. The articles were screened based on relevance and subject matter of
which a total of 59 articles were selected for a full review. The parameters relating to where studies
were conducted, datasets, methods of analysis, units of analysis, scale and validation approaches
were collated and summarized. The study found that studies were predominantly conducted in
Europe, South and East Asia and North America. Not many studies were found that were con-
ducted in South America and the African region. The review revealed that locally sourced, very
high-resolution digital elevation model ( DEM) products were becoming more readily available and
employed for landform classification research. Of the globally available DEM sources, the SRTM
still remains the most commonly used dataset in the field. Most landform delineation studies are
based on expert knowledge. While object-based analysis is gaining momentum recently, pixel-based
analysis is common and is also growing. Whereas validation techniques appeared to be mainly
based on expert knowledge, most studies did not report on validation techniques. These results
suggest that a systematic review of landform delineation may be necessary. Other aspects that may
require investigation include a comparison of different DEMs for landform delineation, exploring
more object-based studies, probing the value of quantitative validation approaches and data-driven
analysis methods.
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1. Introduction

This study presents a scoping review on landform delineation based on geospatial
techniques. Scoping reviews have recently become common for evidence synthesis. Accord-
ing to Munn et al. [1], scoping reviews are a valid approach in situations where systematic
reviews are unable to meet the necessary objectives of knowledge users. While scoping
reviews follow a similar and robust approach as systematic reviews, they perform different
purposes. A variety of reasons for conducting scoping reviews have been advanced by
different authors. Arksey and O’Malley [2] contended that a scoping review can be con-
ducted to: examine the extent, range and nature of research activity; determine the value of
undertaking a full systematic review; summarize and disseminate research findings; and
identify research gaps in the existing literature. Munn et al. [1] expanded motivations for
scoping reviews to incorporate: identifying the types of available evidence in each field;
clarifying key concepts (definitions) in the literature; examining how research is conducted
on certain topics or fields; and identifying key characteristics or factors related to a concept.
Conducting a scoping review could be beneficial for landform classification due to the
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complex nature of the field and the diversity of methods and applications, including rapid
advancements in methods, tools and technology.

According to Xiong et al. [3], classifying landforms is beneficial for geomorphological
applications (geomorphological, geological and ecological processes), gravity-controlled
processes (runoff, erosion and mass movements) and radiative applications (viewshed and
visibility analysis applications). Due to their differences relating to the physical processes
that aided their formation and the difference in the way they function, it is essential
to classify landforms (MacMillan & Shary [4]; Etzelmuller and Sulebak [5]). Landform
classification entails categorizing terrain into areas of uniform characteristics relating to
slope, soil, biological and physical processes. Mokarram and Sathyamoorthy [6] recorded
that landform classification is a science of land definition that entails the extraction of
land-surface parameters and objects from digital elevation models (DEMs) and digital
terrain models (DTMs). MacMillan and Shary [7] defined a landform as a physical feature
of the Earth’s surface that possesses a characteristic, recognizable shape and is produced
by natural causes. MacMillan and Shary [7] asserted that landform entities also differ
with regard to shape, size, orientation, relief and contextual position. The philosophies
and techniques of landform identification and categorization have also contributed to
studying landscapes of other planets. For example, Bue and Stepinski [8] investigated
a numerical method for classifying and characterizing landforms on Mars. They used
unsupervised classification, based on a self-organizing map technique to divide all pixels
using topographic attributes computed from a DEM into mutually exclusive and exhaustive
landform classes based on the similarity between attribute vectors. They depicted the
results as a thematic map of landforms and the accompanying attribute statistics, which
were used to assign semantic meaning to the classes.

Classifying landforms can be based on manual and automatic methods. According to
MacMillan and Shary [7], automated extraction of landforms is usually premised on repli-
cating proposed manual classification schemes, of which there are several. These include
schemes by Fenneman (1938), Veatch (1935) and Hammond (1954, 1964) for the USA, the
Australian classification system of Speight (1974), Speight (1990), the SOTER4 Global Soil
and Terrain Database (van Engelen and Ting-tiang, 1995), the ITC system of geomorphic
mapping (Meijerink, 1988) and the geo-pedological approach by Zink (Hengl and Rossiter,
2003) [7]. Mokarram and Sathymoorthy [6] and Xiong et al. [3] recorded that classifica-
tion approaches can be based on general geomorphometry or specific geomorphometry.
General geomorphometry considers the detection of landforms as continuous features,
whereas specific geomorphometry detects landforms as discrete features, for example,
drumlins, sand dunes, alluvial fans and landslides. For instance, Brigham and Crider [9]
investigated a methodology to probe the degradation of fault scarps in jointed bedrock
by making field observations of seven fault carps in Hawaii, California and Iceland. They
collected aerial imagery for Structure-from-Motion (SfM) photogrammetry. They utilized
expert knowledge of a geomorphologist to manually classify fault-scarps profiles from
SfM-derived point clouds into six morphologic categories and then used principal com-
ponent analysis to quantitatively distinguish morphologic classes. Thereafter, they used
supervised classification based on a support vector machine (SVM) to classify morphologic
classes using the principal-component analysis coordinates of the classified profiles. They
determined that drivers of scarp form could be quantitatively determined by analyzing
the covariance between morphologic variability metric and other geomorphic parameters.
Li et al. [10] used deep learning (DL) and random forest (RF) algorithms to automatically
classify complex and transitional landforms using imagery, DEMs and terrain derivatives.
They found that DL could classify transitional landforms better than RF.

Recent developments that include among others wide availability of digital data
(DEMs and satellite imagery), analysis frameworks, analysis methods, analysis platforms
and tools are impacting the way terrain analysis and geomorphometry is conducted. Recent
reviews by Mokarram and Sathymoorthy [6], Maxwell and Shobe [11], and Xiong et al. [3]
uncovered most of these recent developments. Some of the key issues pertaining to DEM
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data that affect terrain analysis have been highlighted by Xiong et al. [3]. These include
issues related to sources of data, DEM voids, DEM accuracies and security of using high-
resolution DEMs [3]. For example, Verhagen and Dragut [12] investigated the value of
object-based image analysis to automatically delineate landforms using DEMs to predict
and interpret the location of archaeological sites. They concluded that OBIA was suitable
for the automatic delineation of landforms but requires an improved conceptual framework
that is adapted to the local area and archaeological questions to improve the delineation
and interpretation of the landforms. Dobre, Kovacs and Bugya [13] probed the utility
and limitations of various open-source DEMs at various spatial resolutions for extracting
geomorphic surface remnants in a semi-arid mountainous environment using a well-known
open-source GRASS GIS Geomorphons module. They scrutinized peaks as remnants of ge-
omorphic surfaces. They determined that irrespective of the characteristic differences in the
accuracies of the DEMs used, all DEMs used were able to detect surface remnants appropri-
ately. In Mokarram and Sathyamoorty [6], issues relating to definitions and attributes (for
example morphometry, geomorphometric context, terrain positions and scale) of landforms
and methods for classifying landforms are discussed. This study exposed issues relating to
less adoption of landform categorization based on general geomorphometry in comparison
to specific geomorphometry. In addition, trends regarding automated classification and
fuzzy versus crisp classification were exposed. Gioia et al. [14] evaluated the accuracy of
automatic landform classification on a large sector of the Ionian coast of southern Italy. They
performed automatic landform classification using an algorithm based on the individuation
of basic landform classes called geomorphons. They reported that automatic landform
classification using the geomorphon-based method could achieve accuracies greater than
70% when compared to landforms mapped using traditional geomorphological analysis.

Against the backdrop of the recent wide availability of DEM and satellite imagery
data and developments in analysis methods, platforms and tools, it will be beneficial to
synthesize the state of knowledge of landform classification. To the best of the knowledge of
the authors, no scoping or systematic review is available on landform classification. While a
scoping review and systematic review follow a similar methodology to synthesize the state
of knowledge, a scoping review is not as strict in terms of bias in the selection of articles and
the number of articles used. Yet, it is very useful to identify crucial knowledge relating to
assessing the potential for a systematic review, identifying potential gaps and uncovering
how research is conducted for specific fields. This study aims to conduct a scoping review
to map the state of knowledge about landform classification. The distribution of studies,
datasets used, methods and validation approaches will be investigated. The results of this
study will aid in identifying research gaps, revealing the state of knowledge on landform
classification and identifying common methods and their implementation and applications.

2. Research Strategy

The scoping review was conducted following the reporting standards outlined by the
Preferred Reporting Items for Systematic reviews and Meta-Analyses, better known as
PRISMA [15]. The PRISMA reporting standards provide guidelines that reduce data col-
lection biases and increase procedural objectivity. In so doing, PRISMA ensures analytical
reproducibility and transparency of review protocols and has, therefore, been employed for
various systematic and scoping reviews [16–18]. Additionally, this scoping review adopted
the methodology proposed by Arksey and O’Malley [2], which comprises the following
key elements: identifying the research questions; identification of relevant studies; selec-
tion of studies; charting the data; and collating, summarizing and reporting the results.
Delineation of research questions, identification and screening of studies, and extraction
of relevant parameters are presented in the succeeding subsections. The information is
then collated, summarized and presented in the results and discussion section. Concluding
remarks about the results of the scoping review are then provided.
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2.1. Research Questions

Four research questions were formulated to guide this scoping review. The research
questions aim to highlight the knowledge gaps in recent literature and direct the mapping
of various methodological and geographical trends in the research field. Table 1 presents
the formulated questions.

Table 1. Research questions.

Number Research Questions (RQ) Motivation

RQ1 Where has landform
classification been conducted?

To identify the geographical
distribution of landform

classification studies.

RQ2 What datasets have been used
to classify landforms?

To determine the data inputs
commonly used to
classify landforms.

RQ3 How are landforms classified?
To identify trends and gaps in
data analysis and application,
including application scale.

RQ4
How are landform

classification analyses
validated?

To understand how landform
classification accuracy

is assessed.

2.2. Article Screening

The literature searches were constrained to research databases that were readily ac-
cessible to the authors, namely the EBSCOhost databases, SAGE Journals, ScienceDirect,
Scopus, Taylor & Francis and Wiley Online Library. Articles were obtained based on the
following search string:

““Landform classification” AND (topography OR “land surface”) AND (terrain OR mor-
phometry OR geomorphometric)”

The search string was consistently applied in each of the five research databases,
producing a total of 566 articles. As the review aimed to focus primarily on recent devel-
opments in landform classification, the literature search was restricted from 2012 to 2022.
After the automated removal of ineligible and duplicated articles, facilitated through the
Mendeley Desktop Software, 306 articles remained. These articles were screened based on
titles, keywords and abstracts. Once the initial screening was completed, a detailed review
of 159 articles was performed to determine the final article selection. Full articles were
assessed based on their accessibility, relevance and subject matter. A total of 59 articles
were deemed eligible for this scoping review (see Table A1, Appendix A). A summary
of the article screening and selection process is presented in Figure 1. The summary was
produced according to the PRISMA guidelines using the R Shiny App developed by [19].

2.3. Data Extraction

The final 59 articles were collaboratively reviewed by the two authors. The authors
extracted information pertaining to the geographical distribution of the studies, datasets
used, the scale at which the studies were conducted, methodological approaches and
validation schemes. A coding process was followed, which was informed by the literature,
to address RQ2–4. Table 2 outlines the coding scheme used in the review.



Geomatics 2023, 3 97Geomatics 2023, 3  97 
 

 

 

Figure 1. PRISMA article screening workflow. 

2.3. Data Extraction 

The final 59 articles were collaboratively reviewed by the two authors. The authors 

extracted information pertaining to the geographical distribution of the studies, datasets 

used, the scale at which the studies were conducted, methodological approaches and val‐

idation schemes. A coding process was followed, which was informed by the literature, 

to address RQ2–4. Table 2 outlines the coding scheme used in the review. 

Table 2. Coding scheme used for data extraction. 

Research 

Questions 
Category  Explanation    Source 

RQ2 

Datasets 

Used 

 

DEM < 30 m 

Digital elevation datasets with a spatial resolution less 

than 30 m. Considered as very high‐resolution DEM 

data. 

 

DEM = 30 m 
Digital elevation datasets with a spatial resolution of 

30 m. Considered as high‐resolution DEM data. 
 

DEM > 30 m 

Digital elevation datasets with a spatial resolution 

greater than 30 m. Considered as moderate to coarse 

resolution DEM data. 

 

Laser 

Any elevation dataset derived from active laser sen‐

sors, including airborne Light Detection and Ranging 

(LiDAR) and Terrestrial laser scanners. 

 

Figure 1. PRISMA article screening workflow.

Table 2. Coding scheme used for data extraction.

Research
Questions Category Explanation Source

RQ2
Datasets

Used

DEM < 30 m
Digital elevation datasets with a spatial

resolution less than 30 m. Considered as very
high-resolution DEM data.

DEM = 30 m
Digital elevation datasets with a spatial

resolution of 30 m. Considered as
high-resolution DEM data.

DEM > 30 m
Digital elevation datasets with a spatial

resolution greater than 30 m. Considered as
moderate to coarse resolution DEM data.
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Table 2. Cont.

Research
Questions Category Explanation Source

Laser
Any elevation dataset derived from active laser
sensors, including airborne Light Detection and
Ranging (LiDAR) and Terrestrial laser scanners.

Digital Imagery
Any panchromatic, multispectral or

hyperspectral datasets captured using
digital sensors.

GPS measurements Elevation datasets derived from in-field Global
Positioning System (GPS) measurements.

Analogue Any hardcopy maps or imagery (including any
images developed using film photography).

RQ2
DEM

Source

ALOS DEM Elevation data obtained from the Advanced
Land Observing Satellite (ALOS).

ASTER GDEM
Elevation data obtained from the Terra

Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER).

Other

Any elevation datasets specifically created for
the study area or sourced from local or national
government authorities or private companies.
Includes datasets created using data such as

laser scanning, GPS measurements, etc.

STRM DEM Elevation data obtained from the Shuttle Radar
Topography Mission (SRTM).

TanDEM-X
Elevation data obtained from the TanDEM-X

interferometric Synthetic Aperture Radar (SAR)
satellite mission.

USGS

Any elevation datasets obtained from the U.S.
Geological Survey (USGS), including the Global

Multi-resolution Terrain Elevation
Dataset (GMTED).

RQ3
Application

Scale

Local Studies conducted on a relatively small area such
as a town, city, village, ward or suburb.

Regional Studies conducted at a municipal, district, state
or provincial level.

National Studies conducted across the vast majority of a
country’s extent.

Global
Studies conducted across international borders

and comprising the majority of the
Earth’s landmass.

RQ3
Applications

Gravity-controlled processes

Studies relating to gravity-controlled processes,
e.g., runoff, erosion and mass movements.

Includes disciplines such as hydrology and
land degradation.

[3]

Geomorphological

Includes both general (detection of simple
morphometric features, e.g., peaks, ridges and

planes) and specific (detection of discrete
features, e.g., sand dunes and alluvial fans)

geomorphometry.

[3,6]

Soil mapping Studies that have employed landforms for
digital soil mapping. [20]

Radiative applications Use of landforms for computing viewsheds and
visibility analysis [3]
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Table 2. Cont.

Research
Questions Category Explanation Source

RQ3
Analysis

Unit

Pixel Any approach where DEM and/or image
cells/pixels are used as input for classification. [3,10]

Objects

Any approach where neighboring cells with
similar features are segmented into regions,

objects, areal features or segments
before classification.

RQ3
Methods

Deep Learning Any application of a deep neural network.

Expert-Knowledge
Any rule-based classification, fuzzy-logic

approach or application of pre-existing software
tools.

[6,10,21]
Filter Methods

Any method that employs windows, kernels or
neighborhoods to analyze pixels and falls

outside traditional expert-knowledge
approaches.

Manual Digitizing Any classification/identification of landforms
that were purely user-driven.

Supervised Any classification approach that required
user-defined training/labeled data.

Unsupervised Any clustering approaches or classifications
done using unlabeled data.

RQ4
Validation
Techniques

Qualitative Visual assessment of results. [22,23]

Quantitative (Pixel-based) An accuracy metric based on a validation dataset
comprising image pixels. [24,25]

Quantitative (Area-based)
An accuracy metric based on a validation dataset
comprising image objects or a comparison based

on area measurements.
[25,26]

Quantitative (Pixel & Area-based)
A multi-facet validation approach comprising

both Quantitative (Pixel-based) and
Quantitative (Area-based) metrics.

None No validation of results is reported.

3. Results and Discussions
3.1. Geographical Distribution of Selected Articles (RQ1)

Figure 2 shows the geographical distribution of the selected articles in terms of the
study area. The articles selected had a broad spatial coverage, as they were conducted
on six of the seven continents (none of the selected articles was conducted in Australia).
Many of the studies were located across Europe, with 21 of the 61 (or 34.4%) study sites
distributed across the continent (two of the selected articles performed studies across
multiple countries, accounting for a total of 61 study areas; additionally, two studies were
conducted on a global scale, which were not included in the geographical distribution
statistics). Italy had the most studies, with six investigations conducted within its borders.
Poland and Greece saw three landform classification studies performed on their terrain,
while Portugal had two studies situated across its territory. The remaining European
nations recorded only one landform classification study each.
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South and Southeast Asia recorded a total of 16 studies (26.2%) performed across the
region. China had the most studies out of any country, with ten studies, followed by Iran
with six. North America had 11.5% of the selected studies distributed across its region, with
most of these studies conducted in the United States. A common trend in many research
fields depicts that countries with fewer resources and skilled individuals have a much lower
yield in research publications. This trend is also evident in the geographical distribution of
the selected articles, where South America and Africa were the least represented regions,
with only four and three landform classification studies, respectively. Subsequently, this
may indicate that more research regarding landform classification is required across the
South American and African continents.

3.2. Datasets Used for Classifying Landforms (RQ2)

The results of the datasets used, sources of DEMs and the cumulated frequency
pertaining to the use of different DEMs, including the scales at which they were used,
are depicted in Figure 3. Data sources used include very high-resolution DEMs (spatial
resolution < 30 m), high-resolution DEMs (spatial resolution = 30 m), moderate to coarse
resolution DEMs (spatial resolution > 30 m), digital and laser imagery and analogue and
GPS data (Figure 3). Very high-resolution DEMs and high-resolution DEMs are commonly
used to delineate landforms at local, regional and national scales, and their frequency of
use appears to be comparable (Figure 3). The common use of high-resolution DEMs is
most likely due to the recent availability of freely available DEMs datasets covering the
entire globe [20,27,28]. Additionally, there appears to be wide use of very high-resolution
DEMs available at local scales that are either generated for purposes of the studies or
sourced commercially [29–31]. While coarse to moderate resolution DEMs have been used
to classify landforms from local to global scales, they were mainly used at regional scales for
the studies considered in this scoping review (see Figure 3). Digital imagery, laser-derived
DEMs, analogue data and GPS measurements were predominantly incorporated at regional
scales. Only one study incorporated a laser-derived DEM at a local scale. The SRTM DEM
appears to be the most preferred DEM for landform classification across all scales. While
13 studies used the SRTM DEM at regional scales, it was used once at local, national and
global scales for the studies considered in this review. The SRTM DEM’s wide use is likely
due to it being the first DEM to be freely available at high and moderate resolution at a
global level. ASTER GDEM was used in eight studies at regional scales and two at local
scales. While TanDEM-X was used in two studies at regional level, USGS-sourced DEM
was used in two studies at regional scales and one study at a global scale. ALOS DEM
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was considered in two studies, one at a local level and the other at a regional scale. This is
probably due to ALOS DEM having been launched in 2015, and most researchers appear
to readily use the SRTM DEM and ASTER GDEM as they are popular. Commercial and
locally sourced DEMs are the most commonly used DEMs for landform classifications
at local, regional and national scales (refer to Figure 4). These DEMs were used by 9, 4
and 20 studies at local, national and regional studies, respectively. With regards to the
cumulative use of DEMs from 2012 to date, commercial and locally sourced DEMs are the
most commonly used followed by the SRTM DEM and the ASTER GDEM. USGS DEMs,
TanDEM-X and ALOS DEM did not show signs of an increase in uptake for landform
classification (Figure 5). While the SRTM DEM and locally sourced DEMs were in use since
2012, ASTER GDEM and USGS DEMs were considered from 2013, TanDEM-X from 2014
and the use of ALOS DEM was only observed after 2019.
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Overall, it seems that very high-resolution and high-resolution DEMs are the most
commonly considered DEMs to delineate landforms at local, regional and national scales.
The SRTM DEM appears to be the most used DEM for landform classification at local,
regional, national and global levels. The ASTER GDEM has also been considered for
landform delineation at local and regional scales. ALOS DEM, USGS DEMs and TanDEM-X
have not been widely considered for landform studies thus far.

3.3. Analytical Approaches for Classifying Landforms (RQ3)

The results for analysis methods, including cumulative trends, mappings of analysis
unit trends, analysis unit versus methods used, analysis unit and scales of application,
trends of analysis applications and cumulative trends of applications, are depicted in
Figures 6, 7a–c and 8a,b, respectively. While most studies were based on expert knowl-
edge, the use of supervised and unsupervised methods was comparable (Figure 6). The
dominance of expert-knowledge methods is most probably due to landform classification
frameworks being mainly based on predetermined classification schemes. Numerous re-
searchers have, in recent times, simply adopted automated and semi-automated landform
classification schemes due to their ease of use and increased availability. Deep learning and
filter methods are the least considered methods of landform classification (Figure 6). The
less frequent adoption of deep learning approaches is likely due to the fact that machine
learning approaches have only become popular recently. The most-used analysis unit is
the pixel (Figure 7a). A total of 41 studies used pixel-based methods in comparison to 18
studies that used object-based methods (see Figure 7a). While pixel-based studies used filter
methods, deep learning, supervised, unsupervised and expert knowledge, object-based
studies were based on unsupervised, supervised and expert knowledge (Figure 7b). Most
studies were conducted at regional scales, followed by local, national and global scales
(Figure 7c). This is most likely because targeted applications for the respective studies as
landforms delineation are scale driven. A total of 2, 5, 11 and 41 studies were conducted
at global, national, local and regional levels, respectively. Regarding the scale and the
analysis unit of study, most studies conducted at regional level used pixel-based methods
(Figure 7c). The number of studies that used pixel-based approaches at a national and
local level is comparable. Object-based analysis of landforms appears to be popular at
regional and local scales (Figure 7c). Most studies delineated landforms for geomorpholog-
ical applications, followed by gravidity-controlled processes, soil mapping and radiative
applications (Figure 8a). As can be seen in Figure 8b, the number of studies conducted
for geomorphological applications has been increasing from 2012 to date. In contrast, not
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much attention seems to be focused on landform delineation for gravity, radiative and soil
mapping applications.
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Generally, the expert-knowledge approach is the predominant adopted method for
landform delineation and has displayed a substantial increase from 2012 to date. Supervised
and unsupervised methods are also used. Largely, landform delineation studies use pixel-
based approaches. The adoption of object-based methods is increasing steadily though.
Geomorphological applications dominate the studies and have increased dramatically
in the last ten years, while the other applications have not shown much increase. Deep
learning and filter methods seem to have been used after 2019 but have not shown much
attraction for landform classification.

3.4. Methods Used for Validating Landform Classifications (RQ4)

The validation of landform classification methodologies is essential to assessing the
accuracy, robustness, scalability and transferability of the research design. The analysis of
the validation processes reported in the selected articles depicted a wide variety of valida-
tion methods that have been explored in the literature (Table 3). The analysis indicated that
there was no consensus as to which type of validation is preferred or recommended for a
particular application.
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scales of application (c).
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Table 3. Validation processes reported in the selected articles.

Validation Process Total Applications

Quantitative (Pixel-based) 17
None 15

Quantitative (Area-based) 14
Qualitative 10

Quantitative (Pixel and Area-based) 3

The trend analysis of the validation methods presented in Figure 9 shows that the
majority of the selected articles reported no formal validation procedure between 2014
and 2021. This could be attributed to the increased availability and popularity of ex-
pert knowledge-based classification methodologies such as the Topographical Position
Index (TPI) [32,33] or the Geomorphons pattern recognition algorithm [34,35]. This notion
is corroborated by Figure 10, which illustrates that most studies that employed expert
knowledge-based methods reported no validation of the classification results. This trend
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could suggest that researchers mainly rely on pre-existing classification schemes, most of
which have been automated these days.
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tion types.

Additionally, the trend analysis depicts that since 2017, there has been an observable
increase in both pixel- and object-based quantitative assessment of classification results.
This increase could partly be due to the influx of machine learning applications within
the research field, with many machine learning models requiring validation to improve
their performance.

Figure 11 exhibits no real trend between the analysis unit (i.e., classification based on
pixels or objects) and the validation method. Quantitative (Pixel-based) validation methods
are more commonly employed for both pixel- and object-based classification approaches.
Although it is common practice to utilize the same analysis unit for the validation pro-
cess [25], it is evident that Quantitative (Pixel-based) validation methods are still popular
among object-based landform classifications. Various authors have argued against using
pixels as the validation unit due to their sensitivity to positional errors and its lack of a
meaningful relationship with the Earth’s features [36,37]. The disconnection of pixels from



Geomatics 2023, 3 107

Earth’s features may be problematic for landform delineation as landforms are inherently
a spatial area of relatively homogeneous Earth features. Area-based validation processes
could be more valuable as they provide an indication of both geometric and thematic
accuracy [25]. However, area-based validation processes are more complex compared to
pixel-based methods [38]. To date, there still remains uncertainty in the research field
regarding what validation processes are optimal for object-based classification [25,38].

Geomatics 2023, 3  108 
 

 

 

Figure 11. Comparison of the validation methods reported in the selected articles and the analysis 

unit. 

Overall, most studies did not report on how landforms were validated. Pixel‐based 

quantitative validation methods are predominantly used for both pixel‐ and object‐based 

classification approaches. A steady increase in the adoption of quantitative pixel‐ and ob‐

ject‐based validation approached was observed. 

4. Conclusions 

This study explored a scoping review on the use of geospatial methods to delineate 

landforms. The review set out to map trends in the distribution of studies, datasets used, 

methods and validation approaches. Four research questions were delineated for this re‐

view. They are: where has landform classification been conducted?; what datasets have 

been used to classify landforms?; how are landforms classified?; and how are landform 

classification  results  validated? The  resultant  articles were  systematically  screened,  of 

which a total of 59 articles were finally chosen for review, and the relevant parameters 

were  recorded. The parameters were collated and summarized  to answer  the  research 

questions.   

The study found that most landform delineation studies were conducted in Europe, 

followed by South and East Asia and North America. Very few studies are available that 

were  conducted  in South America and  the African  continents. Regarding  the datasets 

used,  the review exposed  that  the SRTM DEM  is  the most used  freely available global 

DEM for landform classification at local, regional, national and global levels. This is fol‐

lowed by the ASTER GDEM, which was only used at regional and local scales for studies 

considered in this review. TanDEM‐X, USGS DEMs and ALOS DEM have not been used 

much for  landform delineation. Freely available high‐resolution global DEMs and very 

high‐resolution commercial and locally available DEMs products are predominantly con‐

sidered  for  landform delineation at  local,  regional and national scales. Concerning  the 

analysis methods, expert knowledge is the most used approach for landform classification 

and has been growing in popularity in the last ten years. The use of supervised and unsu‐

pervised methods is comparable and has seen steady growth in their use. Filter methods 

and deep learning are less considered for landform delineation. Most studies are premised 

on the use of pixels as an analysis unit, but the use of object‐based methods is steadily 

increasing. In comparison to object‐based analysis, the adoption of pixel‐based analysis 

for landform delineation has increased substantially in the last ten years. Pixel‐based anal‐

ysis appears to be predominantly more popular than object‐based analysis across scales. 

Figure 11. Comparison of the validation methods reported in the selected articles and the
analysis unit.

Overall, most studies did not report on how landforms were validated. Pixel-based
quantitative validation methods are predominantly used for both pixel- and object-based
classification approaches. A steady increase in the adoption of quantitative pixel- and
object-based validation approached was observed.

4. Conclusions

This study explored a scoping review on the use of geospatial methods to delineate
landforms. The review set out to map trends in the distribution of studies, datasets used,
methods and validation approaches. Four research questions were delineated for this
review. They are: where has landform classification been conducted?; what datasets have
been used to classify landforms?; how are landforms classified?; and how are landform
classification results validated? The resultant articles were systematically screened, of
which a total of 59 articles were finally chosen for review, and the relevant parameters were
recorded. The parameters were collated and summarized to answer the research questions.

The study found that most landform delineation studies were conducted in Europe,
followed by South and East Asia and North America. Very few studies are available that
were conducted in South America and the African continents. Regarding the datasets used,
the review exposed that the SRTM DEM is the most used freely available global DEM for
landform classification at local, regional, national and global levels. This is followed by
the ASTER GDEM, which was only used at regional and local scales for studies consid-
ered in this review. TanDEM-X, USGS DEMs and ALOS DEM have not been used much
for landform delineation. Freely available high-resolution global DEMs and very high-
resolution commercial and locally available DEMs products are predominantly considered
for landform delineation at local, regional and national scales. Concerning the analysis
methods, expert knowledge is the most used approach for landform classification and
has been growing in popularity in the last ten years. The use of supervised and unsuper-
vised methods is comparable and has seen steady growth in their use. Filter methods and
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deep learning are less considered for landform delineation. Most studies are premised
on the use of pixels as an analysis unit, but the use of object-based methods is steadily
increasing. In comparison to object-based analysis, the adoption of pixel-based analysis for
landform delineation has increased substantially in the last ten years. Pixel-based analysis
appears to be predominantly more popular than object-based analysis across scales. With
regards to applications, most landform delineation studies were aimed at geomorphological
applications. Additionally, there has been a dramatic increase in landform delineation
studies for geomorphological applications in the last ten years. Gravity-controlled pro-
cesses, soil mapping and radiative applications studies were less represented and have
not shown much growth in the last ten years. For validation techniques, most studies
use quantitative pixel-based methods of validation. A substantial number of studies did
not report how landforms were validated. The use of quantitative area-based validation
techniques is also common. Qualitative validation approaches are also used fairly often. It
appears that the adoption of pixel and object-based quantitative validation techniques are
gaining momentum.

The scoping review only considered readily available articles that were published
between 2012 and 2022. Only articles that were available in full text and in English were
considered. It is likely that crucial studies that did not satisfy the selection criteria were
missed. Despite these limitations, we are convinced that this review provides crucial
insights into the use of geospatial methods to delineate landforms. We think that there
is merit to conduct a full-scale systematic review on this subject to get a clearer picture
of the state of research in this field. The SRTM DEM has mainly been used for landform
delineation across scales; it would be beneficial to investigate the impact of DEM sources
and spatial resolutions on the accuracy of landform classification. This study revealed that
the use of very high-resolution commercial and locally sourced DEMs is very common
for landform delineation at local, regional and national scales. It would be beneficial to
investigate the accuracy of landforms delineated from freely available high-resolution
DEM products and very high-resolution commercial and locally sourced DEMs across
different scales. While the use of supervised and unsupervised approaches is common
for landform classification, the accuracy of landforms delineated through these methods
should be explored. In addition, the efficacy of deep learning and filter methods for
landform delineation should be investigated. The dominance of landform delineation for
geomorphological applications was exposed in this scoping review. Studies that delineate
landforms for other applications, for example, soil mapping and radiative applications,
should be explored more in future studies. While the use of pixel- and object-based analysis
for landform delineation was comparable, the accuracy of these methods for landform
delineation requires research attention. In addition, the use of object-based analysis should
also be thoroughly investigated. Here, we considered areal objects that were delineated in
a variety of ways, but it is not clear how the different methods impact landform delineation.
The use of validation techniques also requires research attention. This scoping review
uncovered that pixel-based and object-based quantitative techniques are commonly used
to validate landforms. A few studies adopted both techniques. It would be beneficial to
investigate the value of pixel-based versus object-based quantitative analysis methods for
landform validation. Against the backdrop of the popularity of expert-based validation
techniques, it is our view that investigations that reveal the accuracy of expert-based versus
quantitative approaches should be explored. Seeing that it appears to be common not to
validate landform delineation, it is crucial to explore adopting standardized procedures for
delineating landforms for different applications.
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Appendix A

Table A1. Selected articles.

Article
Index Title Authors Publication Year

A1 GIS-based landform classification of Bronze
Age archaeological sites on Crete Island Argyriou, A.V., Teeuw, R.M., Sarris, A. 2017

A2

Multi-resolution soil-landscape
characterisation in KwaZulu Natal: Using

geomorphons to classify local soilscapes for
improved digital

geomorphological modelling

Atkinson, J., de Clercq, W., Rozanov, A. 2020

A3
Using textural analysis for regional landform

and landscape mapping, Eastern
Guiana Shield

Bugnicourt, P., Guitet, S., Santos, V.F., Blanc,
L., Sotta, E.D., Barbier, N., Couteron, P. 2018

A4 An approach to DEM analysis for landform
classification based on local gradients Camiz, S., Poscolieri, M. 2018

A5
Semi-automated object-based landform
classification modelling in a part of the

Deccan Plateau of central India

Chattaraj, S., Srivastava, R., Barthwal, A.K.,
Giri, J.D., Mohekar, D.S., Obi Reddy, G.P.,

Daripa, A., Chatterji, S., Singh, S.K.
2017

A6
The land morphology concept and mapping

method and its application to
mainland Portugal

Cunha, N.S., Magalhães, M.R., Domingos, T.,
Abreu, M.M., Withing, K. 2018

A7
Delineation of main relief subdomains of

central Amazonia for regional
geomorphometric mapping with SRTM data

de Morisson Valeriano, M., de Fátima
Rossetti, D. 2020

A8 Application of the topographic position
index to heterogeneous landscapes

de Reu, J., Bourgeois, J., Bats, M.,
Zwertvaegher, A., Gelorini, V., de Smedt, P.,
Chu Meirvenne, M., Verniers, J., Crombe, P.

2013

A9
Evaluation of a spatially adaptive approach
for land surface classification from digital

elevation models
Dekavalla, M., Argialas, D. 2017

A10 Automated object-based classification of
topography from SRTM data Drǎguţ, L., Eisank, C., Drăguţ, L., Eisank, C. 2012

A11 Multi-modal deep learning for
landform recognition

Du, L., You, X., Li, K., Meng, L., Cheng, G.,
Xiong, L., Wang, G. 2019

A12
Toward geomorphometry of plains -

Country-level unsupervised classification of
low-relief areas (Poland)

Dyba, K., Jasiewicz, J. 2022

A13 Farm-scale soil patterns derived from
automated terrain classification

Flynn, T., Rozanov, A., Ellis, F., de Clercq, W.,
Clarke, C. 2020

A14

Detecting and mapping karst landforms
using object-based image analysis: Case

study: Takht-Soleiman and Parava
Mountains, Iran

Garajeh, M.K., Feizizadeh, B., Blaschke, T.,
Lakes, T. 2022
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Index Title Authors Publication Year

A15

Algorithms vs. surveyors: A comparison of
automated landform delineations and

surveyed topographic positions from soil
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Automatic relief classification versus expert
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A57

Soil phosphorus spatial variability due to
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case study of small watersheds in
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regional-scale landform classification: a case
study of loess area in China
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Landform classification for site evaluation
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