
Citation: Jackson, C.M.; Adam, E.;

Atif, I.; Mahboob, M.A. Feature

Extraction and Classification of

Canopy Gaps Using GLCM- and

MLBP-Based Rotation-Invariant

Feature Descriptors Derived from

WorldView-3 Imagery. Geomatics

2023, 3, 250–265. https://doi.org/

10.3390/geomatics3010014

Academic Editor: Giorgos Mallinis

Received: 11 December 2022

Revised: 14 March 2023

Accepted: 15 March 2023

Published: 16 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Feature Extraction and Classification of Canopy Gaps Using
GLCM- and MLBP-Based Rotation-Invariant Feature
Descriptors Derived from WorldView-3 Imagery
Colbert M. Jackson 1,* , Elhadi Adam 1 , Iqra Atif 1 and Muhammad A. Mahboob 2

1 School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand,
Johannesburg 2050, South Africa

2 Sibanye-Stillwater Digital Mining Laboratory, Wits Mining Institute, University of the Witwatersrand,
Johannesburg 2050, South Africa

* Correspondence: mutisojackson@yahoo.com

Abstract: Accurate mapping of selective logging (SL) serves as the foundation for additional re-
search on forest restoration and regeneration, species diversification and distribution, and ecosystem
dynamics, among other applications. This study aimed to model canopy gaps created by illegal
logging of Ocotea usambarensis in Mt. Kenya Forest Reserve (MKFR). A texture-spectral analysis
approach was applied to exploit the potential of WorldView-3 (WV-3) multispectral imagery. First,
texture properties were explored in the sub-band images using fused grey-level co-occurrence matrix
(GLCM)- and local binary pattern (LBP)-based texture feature extraction. Second, the texture features
were fused with colour using the multivariate local binary pattern (MLBP) model. The G-statistic
and Euclidean distance similarity measures were applied to increase accuracy. The random forest
(RF) and support vector machine (SVM) were used to identify and classify distinctive features in
the texture and spectral domains of the WV-3 dataset. The variable importance measurement in RF
ranked the relative influence of sets of variables in the classification models. Overall accuracy (OA)
scores for the respective MLBP models were in the range of 80–95.1%. The respective user’s accuracy
(UA) and producer’s accuracy (PA) for the univariate LBP and MLBP models were in the range of
67–75% and 77–100%, respectively.

Keywords: tropical forests; WorldView-3; selective logging; canopy gaps; Ocotea usambarensis;
texture-spectral analysis; GLCM; MLBP; machine learning

1. Introduction

Tropical forests are c. 7% (c. 2 billion ha) of the earth’s terrestrial environment, and
house about half of all biodiversity; tropical forests serve various economic, social, and
environmental functions [1]. However, most conservation initiatives have not been success-
ful because in many regions tropical forests are being cleared for timber and expansion of
agricultural land [2]. Unsustainable selective logging (SL) is probably the single biggest
factor contributing to the global degradation of tropical forests [3]. Selective logging (SL)
reduces forest density when the sparsely distributed, and most valuable trees are cut, creat-
ing canopy gaps, without necessarily displaying any logging infrastructure [4,5]. Previous
studies on the estimation of deforestation rates in tropical forests generally ignored the
effects of SL [6]. However, recently researchers have emphasised the contribution of illegal
and SL to the rates of deforestation [7]. Kenya’s tropical forest cover is mainly composed of
montane forests. For decades, the MKFR (Mt. Kenya Forest Reserve) has been subjected to
illegal logging for its commercially valuable reserves of indigenous timber, especially the
endangered Ocotea usambarensis—a hardwood tree sought for its excellent decay and insect
resistance [8,9]. The O. usambarensis has large bole diameters between 3.75 and 9.5 m—seeds
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are produced every 10 years but germination is intermittent, and it takes a long time to
reach maturity, i.e., c. 60 to 70 years [10].

Because SL has an impact on biodiversity, the ecosystem services they provide, micro-
climate, and carbon pools, tracking this activity is crucial in tropical forests [11]. Canopy
gaps are usually small (<1000 m2) [12]. In the past, the gap’s size was determined by
ground-based techniques [13]. Field surveys can be challenging, especially in rough
terrain—they are prone to error. Furthermore, the results of ground surveys can be subjec-
tive, e.g., Nakashizuka et al. [14]. Additionally, in field surveys, it can be challenging to dis-
tinguish fine canopy gaps and the ones where the understory vegetation is dense. The most
appropriate solution was to observe forests from above rather than below through remote
sensing (RS) [15]. Many methods applied to map SL in tropical forests used low/medium
spatial resolution datasets that have a high rate of false detections [16]. The detectability of
the effects of SL on medium spatial resolution images is 1 to 3 years [17]. Therefore, the
amount of forest degradation that is not detected using low/medium spatial resolution
datasets is unknown [16]. Recently, very high-resolution (VHR) RS datasets, i.e., <1 m
per pixel, have caught the interest of researchers studying SL in tropical forests [11,18–22].
Satellite and airborne data with VHR are appropriate for precisely delineating forest canopy
gaps, as well as individual tree crowns [11]. Accurate quantification of canopy gaps from
disappearing tree crowns has a crucial contribution in calculating carbon densities of
forests, as well as modelling the effects of forest degradation on tropical biodiversity. Cur-
rently, to compute carbon densities in forests, none of the algorithms used account for
canopy gaps. The accuracy of carbon estimates can be improved, provided canopy gaps
are accurately identified.

The spectral information in multispectral RS data is limited—the textural features of a
RS dataset can reveal the spatial correlation among pixels to detect change in the structure
of vegetation [23,24]. Therefore, unlike pixel-based techniques, texture-based classification
techniques considered how a pixel related to its neighbourhood [25,26]. The application of
texture analysis in RS studies reported great achievements [27]. Texture in images is the
change in the frequency in the tone of pixels [27]. In RS, different approaches have been
applied in extracting textural features from images [26,28]. Originally by Haralick et al. [29],
texture measures, e.g., statistical metrics, are extractable from the grey-level co-occurrence
matrix (GLCM). Model-based approaches classify textured images according to probability
distributions in random fields, e.g., Cross and Jain [30], and the local linear transformations,
e.g., Unser [31]. He and Wang [32] relied on the texture spectrum. These approaches have
limited application because of their computational and time complexities [25,33]. Their spa-
tial analysis is mostly applied to small neighbourhoods, on a single scale [33]. This difficulty
has been solved through the development of multichannel-based image analysis [26,28,33].
A textured image is normally reduced into characteristic feature images by application of,
e.g., wavelet, Gabor, or neural network-based filters [26,28]. Thus, with just a few feature
statistics, a high-dimensional textural pattern can be modelled [26,28]. Among the texture
models, variants of the local binary pattern (LBP) such as the multivariate local binary
pattern (MLBP) [27], and the multivariate advanced local binary pattern (MALBP) [26]
are computationally convenient for RS images [27]. The LBP model was developed by
Ojala et al. [34] for grey-level images. Very high-resolution RS data and GLCM analysis
have been successfully used in mapping tropical forests [35–38].

The visual interpretation of VHR multi-date RS data is a good way to detect and
quantify gaps in forests with fairly low uncertainty [11]. Nonetheless, spatially precise data
for validation are lacking, and automated approaches based on VHR-RS datasets to detect
canopy gaps with high precision over extensive areas are lacking [11]. Although the GLCM
and LBP models have been applied differently elsewhere, they have not been used to study
canopy gaps, especially in montane tropical forests using VHR-RS data. Therefore, this
study aimed to use the fused GLCM-/MLBP-based approach to test whether canopy gaps
from illegal logging of O. usambarensis in a highly heterogeneous montane tropical forest
can be accurately mapped using WorldView-3 (WV-3) dataset. The performance of the basic
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LBP model and its variant, i.e., the MLBP model, was compared. It also aimed to provide a
framework for carrying out similar studies over larger spatial extents in the future. The
high-resolution (HR) WorldView-2 (WV-2) and Google Earth were used to provide historical
data. To achieve high classification accuracies, the ability to combine/discriminate between
samples is crucial [34], therefore, two similarity measures were used, i.e., the G-statistic
and Euclidean distance. Due to their excellent performance and clear logic in handling
RS data, the random forest (RF) and support vector machine (SVM) were used to classify
canopy gaps in the study area.

2. Materials and Methods
2.1. Study Area

The Mt. Kenya Forest Reserve (MKFR) was established in 1932 under the management
of the Department of Forest—now known as the Kenya Forest Service—with the primary
goal of preserving and developing the forest reserve. This included creating plantations
to replace harvested indigenous stands, regulating resource access, and preserving the
forest industry [8]. The forest reserve, located in Central Kenya, covers c. 213,083 ha, and
spans a range of elevation, slope, and aspect positions [39]. The snow-capped mountain is
right on latitude 0◦10′ S and longitude 37◦20′ E [40]. In 1997, the mountain received the
UNESCO World Heritage Site designation [9]. The study covers approximately 264 ha of
Chuka Forest in Tharaka Nithi County. Chuka Forest is part of the Mt. Kenya ecosystem
and encompasses approximately 21,740 ha (Figure 1).
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Altitude and the difference in the amount of rainfall received has resulted in a pro-
nounced vegetational gradient in Mt. Kenya. Mt. Kenya’s lower slopes are characterised 

Figure 1. Map of the study area in Mt. Kenya Forest Reserve (MKFR) showing the location of
(a) Chuka Forest, and (b) Chuka Forest and the adjacent locations.

Altitude and the difference in the amount of rainfall received has resulted in a pro-
nounced vegetational gradient in Mt. Kenya. Mt. Kenya’s lower slopes are characterised
by montane forest, including the species Newtonia buchananii, Podocarpus latifolia, Croton
megalocarpus, Nuxia congesta, Olea europaea spp. Africana, Juniperus procera, Calodendrum
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capense, and Ocotea usambarensis. The O. usambarensis also forms in the sub-montane forests
on the extremely humid eastern, southern, and south eastern slopes at 1500 to 2500 m [41].

2.2. Acquisition and Pre-Processing of Satellite Data

This study used WorldView-3 (WV-3) multispectral dataset acquired on 15 September
2019 to detect canopy gaps, while WorldView-2 (WV-2) data acquired on 30 January 2014
and historical imagery in Google Earth offered insights into historical reference for logging
(Figure 2). The satellite data of MKFR were provided by Swift Geospatial, Pretoria, South
Africa. The panchromatic band of the WV-2 was captured with a spatial resolution of
0.46 m—the WV-3 captures at 0.3 m [42,43]. The multispectral images (8 visible-near-
infrared; VNIR) of the WV-2 were acquired at 1.84 m [42]. The WV-3 captures at 1.2 m [43].
The WV-3 acquires eight shortwave-infrared (SWIR) bands with a pixel size of 3.7 m, and
eight CAVIS (clouds, aerosol, vapour, ice, and snow) bands at 30 m [43].
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Figure 2. A true-colour image showing (a) two uncut Ocotea trees in the 2014 WorldView-2 image;
(b) canopy gaps created after cutting the camphor trees in the 2019 WorldView-3 image.

The ENVI module (ENVI 5.3) FLAASH was used to atmospherically calibrate the
images by converting the digital numbers (DN) to the top-of-atmosphere reflectance. The
WV-3 data were co-registered with the WV-2 image to be able to match features between
the two datasets—this produced an average root mean square error (RMSE) of 3.41 m.
Before calculating textural features, the VNIR bands were down-scaled to 0.3 m pixels,
with the 1.2 m pixels sub-divided into 16 pixels [38]. The method necessitated the extrac-
tion of texture information without the inclusion of uncertainties of pansharpened VNIR
bands [44].

2.3. Acquisition of Field Data

A Global Positioning System (eTrex® 20 GPS Receiver; Garmin, Olathe, KS, USA) and
false-colour composite (853-RGB) of WV-3 images were used to locate canopy gaps in the
field in February 2020. The three bands were among the best-performing bands in Jackson
and Adam [45], therefore, they were used in this study’s analysis. Additionally, the 853-RGB
is a well-known band combination for analysing vegetation [43]. In the WV-3 image, gaps
were partially illuminated/fully illuminated/not illuminated. In the study area, the human-
made canopy gaps reflected the same as natural canopy gaps. The canopy gaps were
vegetated, i.e., the gaps had low vegetation in them. This was the initial stage of vegetation
recovery from disturbance. GPS coordinates of 100 vegetated gaps and 100 shaded gaps per
image block were collected and overlaid on the WV-3 image using a geographic information
system (GIS—ArcGIS® v. 10.3; ESRI, Redlands, CA, USA). The pixels of the vegetated gaps,
as well as those of the shaded gaps were extracted from the WV-3 imagery. The spatial
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resolution of the WV-3 data enabled the derivation of forest canopies as references—thus
100 samples of tree crowns were extracted per block. The ground reference data were
randomly split into 70% and 30%, i.e., as train and test data, respectively.

Appropriate image block sizes were selected to calculate texture features. Regions in
large blocks show a mixture of textures, while small blocks may reduce the probability of
computing a texture measure [27]. In this study, six non-overlapping subset images (each
1400 × 1400 pixels) were generated from the WV-3 imagery covering the study area. The
three classes—vegetated and shaded gaps, and forest canopy—were easily differentiated in
the WV-3 imagery (Figure 3).
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Figure 3. A subset of the WorldView-3 images of the study area: (a) band 8; (b) colour composite of
bands 8, 5, and 3 (RGB).

Pixels were sampled randomly, covering areas close to the class edges and
centres—pixels around class edges were vital in aiding the classifier’s edge detection
of textural features [38]. To attain high classification accuracy, the pixel size of the ref-
erence data corresponding to the texture classes were kept the same, i.e., it consisted of
20 × 20 pixels (Table 1). The same number of reference points for the vegetated and shaded
gaps, and forest canopy was collected because data imbalance reduces the accuracy and
performance of the classifier [46].

Table 1. Reference data and their description.

Class # Class Sample Description

Class 1 Vegetated gap
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Gaps in the forest canopy that are darker because of
the shadows cast by the nearby tree crowns

Class 3 Forest canopy
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The topmost layer of a forest, mostly tree crowns
with a few emergent trees having heights that shoot
above the canopy.

Dimensions of canopy gaps created by the logging of Ocotea trees were measured in
the field, including the dripline measurements, maximum length, compass orientation,
and maximum breadth [47]. Points directly below the dripline were noted and since
it was impossible to cover all of the canopy drip-line, the boundaries were somehow
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generalised. A map of the gaps was created from the ground data using ArcGIS. The
comparison between the measurements gathered in the field with the remote sensing (RS)
measurements enabled the evaluation of the accuracy of the delineated canopy gaps.

2.4. Feature Extraction and Selection

Texture analysis is an effective component of classification for higher-resolution (HR)
images—it is convenient to use because image segmentation is not needed [48]. A crucial
property of texture is the repetitive nature of the pattern(s) in an area [26]. The spectral
information in images has been frequently used in interpreting and analysing images;
however, images may have an object reflecting differently, and different objects reflecting
the same [49]. This affects the accuracy of image analysis. Improvement in the spatial
resolution of RS images has contributed to more spatial structures and texture features,
which has led to increased classification accuracy.

According to Cohen and Spies [50], texture features drawn from images of HR can be
applied in forestry research. Lucieer et al. [27] and Suruliandi and Jenicka [26] noted that
significantly high classification accuracies have been achieved using textural information.
The texture-spectral analysis approach used in this study evaluated the widely used grey-
level co-occurrence matrix (GLCM) texture measures and the multivariate local binary
pattern (MLBP)—an extension of the state-of-art texture descriptor Local Binary Patterns
(LBP). The GLCMs are theoretically simple and easy to implement and they generate fewer
features [51].

The LBP texture model was put forth by Ojala et al. [34]. On a circular radius of R, the
LBP operator thresholds pixels in a circular pattern at the value of the centre pixel, in the
neighbourhood of P evenly spaced pixels. It is capable of detecting uniform patterns for
any angular space quantization and spatial resolution. The LBP were fused with rotation
invariant GLCM measures, i.e., homogeneity, contrast, entropy, angular second moment,
and correlation, which led to the following features: LBP/HOM, LBP/CON, LBP/ENT,
LBP/ASM, and LBP/COR for bands 3 (Green), 5 (Red), and 8 (Near Infrared 2) of the WV-3
image. The values of these features were computed and allocated to the image pixels, thus
revealing textural patterns. Therefore, the histogram of the joint LBP and GLCM feature
occurrence formed the final texture feature.

The LBP operator describes the texture of a single band. To improve classification
accuracy, Lucieer et al. [27] applied the LBP texture measure to colour images by proposing
a multivariate texture model, i.e., the MLBP operator, which describes local pixel relations
in three bands [26,27]. Three 3 × 3 matrices describe the local texture in individual bands,
while six 3 × 3 matrices compare texture among bands. In the MLBP model, the univariate
GLCM measure (e.g., HOM—homogeneity) was extended as multivariate homogeneity
(MHOM), i.e., comprising the individual independent homogeneities HOM3, HOM5, and
HOM8 representing bands 3 (Green), 5 (Red), and 8 (Near Infrared 2), respectively. The
global texture pattern description was derived by combining the MLBP and MHOM in
a 2-D histogram. In the 2-D histogram, the x ordinate denotes MLBP and the y ordinate
denotes MHOM. In order to incorporate colour into the MLBP model, the same procedure
was repeated for the MLBP and the remaining GLCM feature composites, i.e., the respective
composites of contrast (MCON), entropy (MENT), angular second moment (MASM), and
correlation (MCON).

2.5. Similarity and Separability between Training Signatures

Two measures were used to compare the similarity between training signatures, i.e.,
the G-statistic and Euclidean distance. The G-statistic is defined as follows [52]:
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where sample s corresponds to a histogram of the texture measure distribution, while model
m corresponds to a histogram of a reference area. tb constitutes the number of bins and fi
represents the probability for bin i. The Euclidean distance is calculated as follows [53]:

d(x, y) =

√
n

∑
i=1

(xi − yi)
2 (2)

where x is the vector of the first spectral signature and y is the vector of the second spectral
signature. n is the number of image bands.

2.6. Training of Random Forest and Support Vector Machine Classifiers

The random forest (RF) models contain bootstrapped ensembles of decision trees—they
can handle independent variables in large numbers while still reporting high classification
accuracy [54]. In this research, for the LBP model, the RF classifier was trained using
15 WV-3 metrics for the image blocks as predictors to classify the samples as vegetated
gap, shaded gap, or forest canopy. For the MLBP model, 5 WV-3 metrics were used to
train the RF classifier. During the training process the learning parameters of the RF
classifier (the mtry), the number of predictor variables, and the number of decision trees
(ntree) were optimised to obtain the best possible settings. Each tree applies a randomised
bagging approach to retrieve a training data subset and utilise it to cross-validate each
tree’s result. This enables the RF models to develop an “out-of-bag” (OOB) accuracy and
metrics of input in determining the significance of specific variables in the model [54].
The 10-fold cross-validation (CV) technique was used to extract the optimal parameters
applied in the training phase of the RF models. The mean decrease accuracy (MDA) and
the Mean Decrease in Gini (MDG) indices of variable importance were used [54]. The
MDA computes the added error rate related to an input variable’s exemption from a tree
while the MDG calculates the reduction in the forest-wide average in node impurities from
splits on a variable [55]. The higher the MDA and MDG indices, the more influential the
corresponding variables. For a robust selection of features, a combined ranking of both
indices was applied in the RF models [55].

The support vector machine (SVM) models apply a supervised binary classifier, able to
classify linearly inseparable pixels—support vectors are the samples nearest to the separating
hyperplane [55]. The SVM models find support vectors with an optimal margin near the
separating hyperplane [56]. Using kernel functions, SVM models use kernel functions
to apply decision boundaries that are not linear and introduce gamma (γ) and cost (C)
parameters. A similar approach to the RF was used to optimise the SVM parameters—i.e.,
cost and gamma—to select the optimal pair of the C and γ. The two parameters, respectively,
determine the penalty for errors of misclassification and give the curvature weight of the
deciding boundary. The radial basis function (RBF) kernel was chosen for this study.

The classification of the texture features using the RF and SVM classifiers involved
two phases. Firstly, the classifiers were trained using the respective known samples’
global histograms and their class labels—the two should be consonant with the classifiers’
corresponding pair of classes. Secondly, the unknown samples’ global histograms were
the input to the RF and SVM classifiers, which search for the class label of the test sample
through a comparison of the respective global histograms of the test sample and the training
samples. The RF and SVM classification models used 70% and 30% of the ground data as
train and test data, respectively.

2.7. Classification Post-Processing

In the classification post-processing stage, the shaded gap and vegetated gap classes
were merged into one class—canopy gaps. Therefore, the final map was composed of two
classes only—canopy gaps and forest canopy. Morphological filters were implemented with
ArcGIS tools whereby, thin corridors and small spaces amongst forest canopy were removed
using the Shrink tool while the Expand tool was applied to enlarge the classified raster
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gaps. The Focal Statistics tool was used to minimise pixelation and eliminate remaining
trees within gaps. The Majority filter retained the most frequently occurring value. Gap
polygons with an area < 100 m2 were eliminated using the Select function because only
gaps ≥ 100 m2 are significant for carbon dynamics [57], and to rule out small gaps that
were not likely caused by felled O. usambarensis trees.

2.8. Measures of Model Performance

Accuracy assessment is used to determine whether pixels identified in the field are
classified as they should be [58]. An assessment of the performance of the two ML classi-
fiers was conducted on 30% of the ground data. Confusion matrices consisting of overall
accuracy (OA), kappa coefficient (κ), producer’s accuracy (PA), and user’s accuracy (UA)
were produced and averaged over ten iterations. The OA is calculated by dividing correctly
classified pixels by the total number of pixels—typically expressed as a percentage [59].
The PA is the proportion of particular classes on the ground, referred to as such by the
classification map [59]. The UA displays the likelihood that a labelled pixel will be placed
on the classified map as such [60]. The kappa coefficient (κ) represents the difference
between the accuracy that was observed and expected. Therefore, the classification accu-
racies and kappa statistics computed from error matrices were used to evaluate how the
classifiers performed.

3. Results
3.1. Similarity and Separability between Training Signatures

The G-statistic and Euclidean distance enabled the avoidance of erroneous assump-
tions regarding the distribution of features. The G-statistic score is an indication of the
possibility that two samples are from the same population. Therefore, a higher score means
that the probability of two samples being from the same population is low, and vice versa.
Likewise, the Euclidean distance is 0 if two signatures are alike—it is higher for signatures
showing little similarity. The results (Table 2) indicated that forest canopy and vegetated
gaps had the lowest Euclidean Distance between them with a value of 41. The G-statistic
value between newly created gaps and shaded gaps was the highest with 9.01, while
the forest canopy and vegetated gaps was the lowest (0.38), followed by forest canopy
and newly created gaps. The Euclidean distance separability measure followed a similar
pattern. Generally, the texture classes, i.e., shaded gaps, vegetated gaps, and tree crowns,
had good separation.

Table 2. Similarity of texture features calculated by (a) G-statistic and (b) Euclidean distance. NCG—
newly created gap, SG—shaded gap, VG—vegetated gap, and FC—forest canopy.

(a) G-Statistic (b) Euclidean Distance

NCG SG VG FC NCG SG VG FC
NCG 9.01 7.15 1.43 NCG 106 77 49

SG 8.02 2.53 SG 96 55
VG 0.38 VG 41
FC FC

3.2. Optimisation of Random Forest and Support Vector Machine Classifiers

The results of the optimisation of the RF and SVM parameters for the six image blocks
are listed in Table 3. The MLBP/MHOM reported the lowest out-of-bag (OOB) error of 0.097
for the RF model with an mtry value of 3 and ntree value of 1500, while the SVM model
achieved a cross-validation (CV) error of 0.091 with 0.01 (gamma) and 10 (cost) for image
block D. The MLBP/MHOM for image block A also performed fairly well—OOB error of
0.108 with mtry and ntree values of 3 and 1500, respectively. The SVM model attained a CV
error of 0.103—gamma and cost values were 0.1 and 1000, respectively, for the same image
block. Image block F reported an OOB error of 0.106 (mtry—3 and ntree—5500) while the
SVM model achieved a CV error of 0.108 (gamma—1 and cost—100). The MLBP/MASM
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recorded the highest OOB error of 0.210 for the RF model (the mtry and ntree values were
3 and 3500, respectively) of image block A. The SVM model recorded the highest CV error
of 0.214 (the gamma and cost values were 0.1 and 100, respectively) for the MLBP/MASM
of image block E.

Table 3. The RF and SVM model optimisation parameters of the multivariate local binary pattern
(MLBP) model.

B
lo

ck
ID

Feature

Random Forest Support Vector
Machine

B
lo

ck
ID

Feature

Random Forest Support Vector
Machine

mtry ntree OOB
Error Gamma Cost CV

Error mtry ntree OOB
Error Gamma Cost CV

Error

A MLBP/MHOM 3 1500 0.108 0.1 1000 0.103 D MLBP/MHOM 3 1500 0.097 0.01 10 0.091
MLBP/MCON 2 4500 0.128 1 10 0.129 MLBP/MCON 2 5500 0.121 0.01 1000 0.116
MLBP/MENT 2 2500 0.204 0.1 100 0.202 MLBP/MENT 2 4500 0.165 1 100 0.159
MLBP/MASM 3 3500 0.210 0.1 100 0.212 MLBP/MASM 3 500 0.199 0.01 1000 0.191
MLBP/MCOR 2 2500 0.140 0.01 1000 0.132 MLBP/MCOR 3 3500 0.136 0.1 10 0.127

B MLBP/MHOM 2 4500 0.109 0.01 1000 0.110 E MLBP/MHOM 2 500 0.101 1 10 0.109
MLBP/MCON 2 3500 0.129 1 100 0.122 MLBP/MCON 2 1500 0.116 0.1 100 0.112
MLBP/MENT 3 1500 0.177 0.1 1000 0.174 MLBP/MENT 3 5500 0.184 1 10 0.179
MLBP/MASM 2 2500 0.197 0.01 10 0.190 MLBP/MASM 2 1500 0.208 0.1 100 0.214
MLBP/MCOR 2 5500 0.140 1 10 0.136 MLBP/MCOR 2 6500 0.149 0.01 100 0.136

C MLBP/MHOM 3 3500 0.109 0.01 10 0.102 F MLBP/MHOM 3 5500 0.106 1 100 0.108
MLBP/MCON 3 4500 0.126 0.1 10 0.119 MLBP/MCON 3 1500 0.124 0.01 1000 0.119
MLBP/MENT 3 6500 0.210 0.01 1000 0.204 MLBP/MENT 3 4500 0.205 1 10 0.201
MLBP/MASM 2 3500 0.200 0.01 1000 0.197 MLBP/MASM 2 500 0.199 1 10 0.194
MLBP/MCOR 2 2500 0.139 1 10 0.134 MLBP/MCOR 3 1500 0.135 0.1 100 0.138

The average importance score (Figure 4) showed the most important variables—band
3’s LBP/HOM and LBP/CON, the band 5’s LBP/HOM and LBP/CON, and the band
8’s LBP/ENT and LBP/ASM. The least performing variables, which showed the lowest
average importance scores were the band 3’s LBP/ENT and LBP/ASM, and the band 5’s
LBP/ENT and LBP/ASM.
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Figure 4. The relative importance of the LBP/GLCM model in discriminating between vegetated
gaps, shaded gaps, and tree crowns by random forest. Error bars are 95% confidence intervals.

3.3. Model Performance

The confusion matrices in Table 4 show the results of the RF and SVM classifiers for
the MLBP/MHOM, the MLBP/MCON, the MLBP/MENT, the MLBP/MASM, and the
MLBP/MCOR models for image block D, which recorded an average overall accuracy of



Geomatics 2023, 3 259

86.88 ± 5.1% and 89.78 ± 3.7% for RF and SVM classifiers, respectively. Image block E’s
RF classification attained an average overall accuracy of 87.00 ± 5.1% while the SVM’s
was 87.28 ± 5.8%. The SVM classification of the MLBP/MCON was the highest at 95.1%.
The respective univariate LBP measures provided overall accuracies (OAs) in the range of
67–75%.

Table 4. Confusion matrices for random forest and support vector machine classifiers for the
MLBP/MHOM, the MLBP/MCON, the MLBP/MENT, the MLBP/MASM, and the MLBP/MCOR
models for image block D.

MLBP/MHOM

Random Forest Support Vector Machine
FC SG VG Total UA (%) FC SG VG Total UA (%)

FC 28 1 3 32 88 FC 28 0 2 30 93
SG 0 29 0 29 100 SG 1 30 1 32 94
VG 2 0 27 29 93 VG 1 0 27 28 96

Total 30 30 30 90 Total 30 30 30 90
PA (%) 93 97 90 PA (%) 93 100 90

Overall accuracy = 93.3% Kappa = 0.90% Overall accuracy = 94.4% Kappa = 0.92%

MLBP/MCON

Random Forest Support Vector Machine
FC SG VG Total UA (%) FC SG VG Total UA (%)

FC 27 1 3 31 90 FC 28 1 2 31 90
SG 1 28 1 30 91 SG 0 29 2 31 94
VG 2 1 26 29 82 VG 2 0 26 28 93

Total 30 30 30 90 Total 30 30 30 90
PA (%) 90 93 87 PA (%) 93 97 87

Overall accuracy = 90.0% Kappa = 0.85% Overall accuracy = 92.2% Kappa = 0.88%

MLBP/MENT

Random Forest Support Vector Machine
FC SG VG Total UA (%) FC SG VG Total UA (%)

FC 25 3 4 32 78 FC 25 3 3 31 81
SG 3 26 1 30 87 SG 3 27 1 31 87
VG 2 1 25 28 89 VG 2 0 26 28 93

Total 30 30 30 90 Total 30 30 30 90
PA (%) 83 87 83 PA (%) 83 90 87

Overall accuracy = 84.4%; Kappa = 0.77% Overall accuracy = 86.7%; Kappa = 0.80%

MLBP/MASM

Random Forest Support Vector Machine
FC SG VG Total UA (%) FC SG VG Total UA (%)

FC 23 2 3 28 82 FC 25 3 4 32 78
SG 4 25 3 32 78 SG 3 27 1 31 87
VG 3 3 24 30 80 VG 2 0 25 27 93

Total 30 30 30 90 Total 30 30 30 90
PA (%) 77 83 80 PA (%) 83 90 83

Overall accuracy = 80.0% Kappa = 0.70% Overall accuracy = 85.6% Kappa = 0.78%

MLBP/MCOR

Random Forest Support Vector Machine
FC SG VG Total UA (%) FC SG VG Total UA (%)

FC 26 3 4 33 85 FC 26 2 3 31 84
SG 2 27 1 30 90 SG 2 28 0 30 93
VG 2 0 25 27 78 VG 2 0 27 29 93

Total 30 30 30 90 Total 30 30 30 90
PA (%) 87 90 83 PA (%) 87 93 90

Overall accuracy = 86.7% Kappa = 0.80% Overall accuracy = 89.0% Kappa = 0.84%
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Overall, the MLBP/MHOM operator achieved the highest OA with 93.5%, 92.9%,
92.4%, 91.4%, 91.0%, and 89.8% for image blocks D, E, F, A, C, and B, respectively, for the
RF classifier and 94.3%, 93.1%, 92.6%, 91.8%, 91.2% and 90.8% for image blocks D, C, A, F,
E, and B, respectively, for the SVM classifier. Generally, the UA ranged between 78–100%
for both RF and SVM classifiers. The PA was in the range of 77–100% for the RF model, and
83–100% for the SVM model. The overall results of the classification of the six image blocks
are summarised in Table 5. For each classifier, the table reports the average classification
accuracy in the form µ ± σ, where µ is the mean and σ is the standard deviation of the OA.

Table 5. The overall accuracy results of the six image blocks.

Image Blocks

Texture Descriptor A B C D E F

R
F

cl
as

si
fie

r MLBP/MHOM 91.4 89.8 91.0 93.3 92.9 92.4
MLBP/MCON 83.9 83.2 85.3 90.0 92.3 86.7
MLBP/MENT 82.6 83.9 82.4 84.4 83.4 82.6
MLBPMASM 81.1 81.4 81.1 80.0 82.9 80.0

MLBP/MCOR 84.4 84.4 84.5 86.7 83.5 85.5
Average OA 84.7 ± 4.0 84.5 ± 3.2 84.9 ± 3.8 86.9 ± 5.1 87.0 ± 5.1 85.4 ± 4.7

SV
M

cl
as

si
fie

r MLBP/MHOM 92.6 90.8 93.1 94.4 91.2 91.8
MLBP/MCON 83.2 88.1 90.2 92.2 95.1 90.2
MLBP/MENT 82.8 85.7 80.3 86.7 83.7 82.8
MLBP/MASM 81.1 85.9 81.4 85.6 80.9 81.3
MLBP/MCOR 87.5 85.5 86.5 90.0 85.5 84.5

Average OA 85.4 ± 4.6 87.2 ± 2.3 86.3 ± 5.5 89.9 ± 3.7 87.3 ± 5.8 86.1 ± 4.6

3.4. Image Classification

A subset of the classification results using MLBP/MHOM for image block D, whose
RF and SVM model optimisation parameters recorded some of the lowest OOB and CV
errors, respectively, is shown in Figure 5. Even based on visual interpretation, the classes
are mapped correctly. The multivariate local binary pattern (MLBP) model distinguishes
classes very well because it assigns distinct and precise pattern codes to show patterns. The
boundaries of extracted canopy gaps are overlaid on the ground truth canopy gap areas
which are shown in red.
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4. Discussion

The application of moderate resolution remote sensing (RS) imagery to detect canopy
gaps from selective logging (SL) may depict spectral confusion of gaps in forests due
to natural disturbances such as windfall. Remote sensing (RS) methods applied on
Landsat datasets can only detect selectively logged areas at moderately high intensities,
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i.e., >20 m3 ha−1; 3–7 trees ha−1. These methods are incapable of quantifying the magni-
tude and duration of logging damage in regions undergoing lower logging intensities,
i.e., <20 m3 ha−1 [61]. Due to the sub-pixel scale of SL gaps, the broad spectral range of
Landsat wavelengths cannot detect subtle forest changes. Pansharpened multispectral im-
ages and upscaling of spatial resolutions are some of the commonly applied techniques to
enhance lower-resolution imagery. In intensive SL analysis, high spatial resolution (5–10 m
pixel size) images enable the detection of tree fall gaps log landings, and logging roads.
However, for SL where only individual trees are targeted, the application of very high-
resolution (VHR) remotely sensed datasets is viable in detecting and mapping disappearing
tree crowns.

This study aimed to discover whether grey-level co-occurrence matrix (GLCM)- and
multivariate local binary pattern (MLBP)-based rotation-invariant feature descriptors de-
rived from VHR WorldView-3 (WV-3) imagery may be extended and used for canopy gap
classification in a tropical sub-montane forest. The study applied a local binary pattern
(LBP) model fused with a GLCM model, whereby the rotation invariant LBP operator
was used to obtain the LBP images of subsets of images extracted from a WV-3 scene
covering the study area. Then, five GLCM measures of the LBP images were calculated to
describe the image texture features. The LBP texture measure was applied to colour images
by applying a multivariate texture model—the multivariate local binary pattern (MLBP)
operator. Due to the robustness of the model, the classes were found to be separable. For
the LBP model, a uniformity measure was applied to show the uniformity of the neighbour-
hood’s pixel values—according to Ojala et al. [34], in a textured image >90% of patterns
are uniform.

A circular neighbourhood set comprising 8 neighbouring pixels and a radius of 1
was used—the values for P and R were 8 and 1, respectively. Large P and R values are
appropriate for describing large-scale textures, and vice versa [38]. The circular symmetrical
neighbour set approach is more robust and delivers more accurate results [51]. According
to Clausi [62], different combinations of values of P and R in neighbourhood sets might
offer meaningful texture descriptions. Larger window sizes enable classifiers to extract rich
textural information from a pixel, which could improve accuracy; however, a larger window
size might reduce sensitivity to class edges, and eventually smooth over the image [62].

Previously, very-high-resolution (VHR) earth observation (EO) data have been used
to detect SL in tropical forests. For example, Asner et al. [63] used canopy height models
(CHMs) from a single LiDAR (light detection and ranging) data acquisition, while An-
dersen et al. [5] used simple differencing of CHMs to successfully detect disappearing
tree crowns. Ellis et al. [18] and Rex et al. [21] used a single date and bi-temporal LiDAR
data, respectively, to estimate aboveground biomass (AGB) in selectively logged forests.
Dalagnol et al. [11] combined airborne LiDAR and VHR satellite data to quantitatively
assess and validate canopy gaps due to tree loss—an average precision of 64% was re-
ported. Baldauf and Köhl [64] applied automated mapping using time-series approaches
to detect SL using calibrated SAR (synthetic aperture radar) data. Before the introduction
of high-resolution (HR) optical data, the costly traditional aerial photography was used for
mapping canopy gaps—technological advances have revitalised its use through unmanned
aerial vehicles (UAVs). Spaias et al. [19] used UAV data acquired using a hyperspectral
camera to detect canopy gaps in a tropical forest—where cloud-computing resources are
lacking the amount of spatial and spectral data acquired may make the data processing
computationally demanding. Ota et al. [20] used bi-temporal digital aerial photographs
(DAPs) to compute the change in AGB due to logging. Kamarulzaman et al. [22] used
UAV data to detect forest canopy gaps from SL. The support vector machine (SVM) and
artificial neural network (ANN) classifiers achieved higher overall accuracy of 85% com-
pared to conventional classifiers. However, LiDAR and UAV data cover relatively small
spatial extents.

The accuracy results values reported here show that good classification results were
obtained. The GLCM features perform better with ≤10 classes—therefore, they can outdo
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more powerful methods [51]. This research used just five co-occurrence descriptors, al-
though Di Ruberto et al. [65] state that a higher number of co-occurrence features could
obtain excellent results. The respective univariate LBP measures provided classification
accuracies in the range of 67–75%. The multivariate LBP models gave higher classification
accuracies (Table 5). Although the MLBP/MHOM recorded the lowest out-of-bag (OOB)
and cross validation (CV) errors, the MLBP/MCON with a CV error of 0.112 (gamma and
cost values of 0.1 and 100, respectively) for the SVM model outperformed all the other
models to record the highest classification accuracy of 95.1% for image block E. The lowest
classification accuracy (80.0%) was recorded by the RF’s MLBP/MASM for image block F.
The MLBP/MSAM performed poorly in all RF and SVM models. The overall accuracies
(OAs) reported could have even been higher were it not for confusion between the classes.

The fusing of textural and spectral information from three WV-3 bands performed
better than their basic models. Future research will aim to modify the model to include
more than three bands, even extending it for hyperspectral data. This will explore the
contribution of separate colour bands in texture analysis. It will also assist in investigating
novel combinations of colour and texture for classification. Although complexity and com-
putational demands would increase, adding more bands might not significantly increase
the amount of textural information [27]. However, the net benefit would be increased
accuracy in classification, which can be worth it.

Persistent cloud cover in tropical forests presents a major challenge when mapping
canopy gaps using optical RS—this is further made worse by the absence of reliable cloud
and cloud shadow detection algorithms. This greatly limited the size of the study area.

5. Conclusions

Accurate mapping of canopy gaps is of great importance to forest managers because
it guides on-the-ground conservation and restoration projects and management applica-
tions. The results reported in this study show that canopy gaps from illegal logging of
Ocotea usambarensis have been accurately mapped with high accuracy. The study used an
approach that used features integrating both texture and spectral distributions of a very
high resolution WorldView-3 dataset—this approach considers the cross band relations. In
order to increase classification accuracy, the G-statistic and Euclidean distance measures
were used to discriminate between the samples. The framework used in this study could
allow forest managers to develop improved methods of mapping canopy gaps at larger
spatial extents, using remotely sensed data and very little/no fieldwork—currently, this
can be only applied as a guide and cannot be generalised. Future research will aim to find
a technique of combining more than three bands of different kinds of remote sensing data.
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15. Masiliūnas, D. Evaluating the Potential of Sentinel-2 and Landsat Image Time Series for Detecting Selective Logging in the
Amazon. Master’s Thesis, Report GIRS-2017-27. Wageningen University and Research, Wageningen, The Netherlands, 2017.

16. Hamunyela, E.; Verbesselt, J.; Herold, M. Using spatial context to improve early detection of deforestation from Landsat time
series. Remote Sens. Environ. 2016, 172, 126–138. [CrossRef]

17. Costa, O.B.; Matricardi, E.A.T.; Pedlowski, M.A.; Miguel, E.P.; Gaspar, R.O. Selective logging detection in the Brazilian Amazon.
Floresta Ambient. 2019, 26, e20170634. [CrossRef]

18. Ellis, P.; Griscom, B.; Walker, W.; Gonçalves, F.; Cormier, T. Mapping selective logging impacts in Borneo with GPS and airborne
lidar. For. Ecol. Manag. 2016, 365, 184–196. [CrossRef]

19. Spaias, L.; Suomlainen, J.; Tanago, J.G.D. Radiometric detection of selective logging in tropical forest using UAV-borne hyper-
spectral data and simulation of satellite imagery. In Proceedings of the 2016 European Space Agency Living Planet Symposium,
Prague, the Czech Republic, 9–13 May 2016.

20. Ota, T.; Ahmed, O.S.; Minn, S.T.; Khai, T.C.; Mizoue, N.; Yoshida, S. Estimating selective logging impacts on aboveground biomass
in tropical forests using digital aerial photography obtained before and after a logging event from an unmanned aerial vehicle.
For. Ecol. Manag. 2019, 433, 162–169. [CrossRef]

21. Rex, F.; Silva, C.; Paula, A.; Corte, A.; Klauberg, C.; Mohan, M.; Cardil, A.; da Silva, V.S.; de Almeida, D.R.A.; Garcia, M.; et al.
Comparison of statistical modeling approaches for estimating tropical forest aboveground biomass stock and reporting their
changes in low-intensity logging areas using multi-temporal LiDAR data. Remote Sens. 2020, 12, 1498. [CrossRef]

22. Kamarulzaman, A.; Wan Mohd Jaafar, W.S.; Abdul Maulud, K.N.; Saad, S.N.M.; Omar, H.; Mohan, M. Integrated segmentation
approach with machine learning classifier in detecting and mapping post selective logging impacts using UAV imagery. Forests
2022, 13, 48. [CrossRef]

23. Ghasemi, N.; Sahebi, M.R.; Mohammadzadeh, A. Biomass estimation of a temperate deciduous forest using wavelet analysis.
IEEE Trans. Geosci. Remote Sens. 2013, 51, 765–776. [CrossRef]

24. Zhou, J.; Guo, R.Y.; Sun, M.; Di, T.T.; Wang, S.; Zhai, J.; Zhao, Z. The effects of GLCM parameters on LAI estimation using texture
values from Quickbird satellite imagery. Sci. Rep. 2017, 7, 7366. [CrossRef]

25. Kim, K.I.; Jung, K.; Park, S.H.; Kim, H.J. Support vector machines for texture classification. IEEE Trans. Pattern Anal. Mach. Intell.
2002, 24, 1542–1550. [CrossRef]

26. Suruliandi, A.; Jenicka, S. Texture-based classification of remotely sensed images. Int. J. Signal Imaging Syst. Eng. 2015, 8, 260–272.
[CrossRef]

http://doi.org/10.1038/nature10425
http://www.ncbi.nlm.nih.gov/pubmed/21918513
http://doi.org/10.1016/j.gecco.2014.07.007
http://doi.org/10.3832/ifor3301-013
http://doi.org/10.1016/j.rse.2013.08.049
http://doi.org/10.1126/science.1070656
http://doi.org/10.1016/j.tree.2014.07.003
http://www.ncbi.nlm.nih.gov/pubmed/25092495
https://www.kws.go.ke/file/1470/download?token=1lO6G3zI
https://www.kws.go.ke/file/1470/download?token=1lO6G3zI
http://www.enviropulse.org/documents/Kenya_SOE.pdf
http://www.enviropulse.org/documents/Kenya_SOE.pdf
http://doi.org/10.1080/00128325.1987.11663510
http://doi.org/10.3390/rs11070817
http://doi.org/10.1007/BF02347651
http://doi.org/10.1016/j.rse.2015.11.006
http://doi.org/10.1590/2179-8087.063417
http://doi.org/10.1016/j.foreco.2016.01.020
http://doi.org/10.1016/j.foreco.2018.10.058
http://doi.org/10.3390/rs12091498
http://doi.org/10.3390/f13010048
http://doi.org/10.1109/TGRS.2012.2205260
http://doi.org/10.1038/s41598-017-07951-w
http://doi.org/10.1109/TPAMI.2002.1046177
http://doi.org/10.1504/IJSISE.2015.070546


Geomatics 2023, 3 264

27. Lucieer, A.; Stein, A.; Fisher, P. Multivariate texture-based segmentation of remotely sensed imagery for extraction of objects and
their uncertainty. Int. J. Remote Sens. 2005, 26, 2917–2936. [CrossRef]

28. Jenicka, S.; Suruliandi, A. Comparison of soft computing approaches for texture-based land cover classification of remotely
sensed image. Res. J. Appl. Sci. Eng. Technol. 2015, 10, 1216–1226. [CrossRef]

29. Haralick, R.M.; Shanmuga, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cyber. 1973, 3, 610–621.
[CrossRef]

30. Cross, G.R.; Jain, A. Markov random field texture models. IEEE Trans. Pattern Anal. Mach. Intell. 1983, 5, 25–39. [CrossRef]
[PubMed]

31. Unser, M. Texture classification and segmentation using wavelet frames. IEEE Trans. Image Process. 1995, 4, 1549–1560. [CrossRef]
32. He, D.C.; Wang, L. Texture unit, texture spectrum, and texture analysis. IEEE Trans. Geosci. Remote Sens. 1990, 28, 509–513.

[CrossRef]
33. Arivazhagan, S.; Ganesan, L. Texture classification using wavelet transform. Pattern Recognit. Lett. 2003, 24, 1513–1521. [CrossRef]
34. Ojala, T.; Pietikäinen, M.; Mäenpää, T. Multiresolution gray-scale and rotation invariant texture classification with local binary

patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [CrossRef]
35. Rakwatin, P.; Longépé, N.; Isoguchi, O.; Shimada, M.; Uryu, Y. Mapping tropical forest using ALOS PALSAR 50m resolution data

with multiscale GLCM analysis. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium,
Honolulu, HI, USA, 25–30 July 2010; pp. 1234–1237. [CrossRef]

36. Wang, T.; Zhang, H.; Lin, H.; Fang, C. Textural-spectral feature-based species classification of mangroves in Mai Po Nature
Reserve from Worldview-3 imagery. Remote Sens. 2016, 8, 24. [CrossRef]

37. Marissiaux, Q. Characterizing Tropical Forest Dynamics by Remote-Sensing Using Very High Resolution and Sentinel-2 Images.
Master’s Thesis, Faculty of Bioengineers, Catholic University of Louvain, Ottignies-Louvain-la-Neuve, Belgium, 2018.

38. Burnett, M.W.; White, T.D.; McCauley, D.J.; De Leo, G.A.; Micheli, F. Quantifying coconut palm extent on Pacific islands using
spectral and textural analysis of very high-resolution imagery. Int. J. Remote Sens. 2019, 40, 1–27. [CrossRef]

39. KFS. Mt. Kenya Forest Reserve Management Plan 2010–2019. Available online: http://www.kenyaforestservice.org/documents/
MtKenya.pdf (accessed on 3 January 2019).

40. Lange, S.; Bussmann, R.W.; Beck, E. Stand structure and regeneration of the subalpine Hagenia abyssinica of Mt. Kenya. Bot. Acta.
1997, 110, 473–480. [CrossRef]

41. Bussmann, R.W.; Beck, E. Regeneration- and cyclic processes in the Ocotea-Forests (Ocotea usambarensis Engl.) of Mount Kenya.
Verh. GfÖ. 1995, 24, 35–38.

42. DigitalGlobe. The Benefits of the 8 Spectral Bands of WorldView-2. Available online: https://dg-cms-uploads-production.s3
.amazonaws.com/uploads/document/file/35/DG-8SPECTRAL-WP_0.pdf (accessed on 2 February 2019).

43. DigitalGlobe. WorldView-3. Above + Beyond. Available online: http://worldview3.digitalglobe.com/ (accessed on 2 February 2019).
44. Li, H.; Jing, L.; Tang, Y. Assessment of pansharpening methods applied to worldview-2 imagery fusion. Sensors 2017, 17, 89.

[CrossRef] [PubMed]
45. Jackson, C.M.; Adam, E. A machine learning approach to mapping canopy gaps in an indigenous tropical submontane forest

using WorldView-3 multispectral satellite imagery. Environ. Conserv. 2022, 49, 255–262. [CrossRef]
46. Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review.

Int. J. Remote Sens. 2018, 39, 2784–2817. [CrossRef]
47. Fox, T.J.; Knutson, M.G.; Hines, R.K. Mapping forest canopy gaps using air-photo interpretation and ground surveys. Wildl. Soc.

Bull. 2000, 28, 882–889. [CrossRef]
48. Kupidura, P. The comparison of different methods of texture analysis for their efficacy for land use classification in satellite

imagery. Remote Sens. 2019, 11, 1233. [CrossRef]
49. Cui, H.; Qian, H.; Qian, L.; Li, Y. Remote sensing experts classification system applying in the land use classification in

Guangzhou City. In Proceedings of the 2nd International Congress on Image and Signal Processing, CISP’09, Tianjin, China,
17–19 October 2009. [CrossRef]

50. Cohen, W.B.; Spies, T.A. Estimating structural attributes of Douglas fir/western hemlock forest stands from Landsat and SPOT
imagery. Remote Sens. Environ. 1992, 41, 1–17. [CrossRef]

51. Bianconi, F.; Fernández, A. Rotation invariant co-occurrence features based on digital circles and discrete Fourier transform.
Pattern Recognit. Lett. 2014, 48, 34–41. [CrossRef]

52. Sokal, R.; Rohlf, J. Introduction to Biostatistics, 2nd ed.; Freeman and Company: New York, NY, USA, 1987.
53. Tuominen, J.; Lipping, T. Spectral characteristics of common reed beds: Studies on spatial and temporal variability. Remote Sens.

2016, 8, 181. [CrossRef]
54. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
55. Han, H.; Guo, X.; Yu, H. Variable selection using mean decrease accuracy and mean decrease Gini based on random forest. In

Proceedings of the 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China,
26–28 August 2016. [CrossRef]

56. Vapnik, V. The Nature of Statistical Learning Theory, 2nd ed.; Springer: New York, NY, USA, 2000.
57. Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a

random forest classifier for landcover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [CrossRef]

http://doi.org/10.1080/01431160500057723
http://doi.org/10.19026/rjaset.10.1890
http://doi.org/10.1109/TSMC.1973.4309314
http://doi.org/10.1109/TPAMI.1983.4767341
http://www.ncbi.nlm.nih.gov/pubmed/21869080
http://doi.org/10.1109/83.469936
http://doi.org/10.1109/TGRS.1990.572934
http://doi.org/10.1016/S0167-8655(02)00390-2
http://doi.org/10.1109/TPAMI.2002.1017623
http://doi.org/10.1109/IGARSS.2010.5651347
http://doi.org/10.3390/rs8010024
http://doi.org/10.1080/01431161.2019.1594440
http://www.kenyaforestservice.org/documents/MtKenya.pdf
http://www.kenyaforestservice.org/documents/MtKenya.pdf
http://doi.org/10.1111/j.1438-8677.1997.tb00665.x
https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/35/DG-8SPECTRAL-WP_0.pdf
https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/35/DG-8SPECTRAL-WP_0.pdf
http://worldview3.digitalglobe.com/
http://doi.org/10.3390/s17010089
http://www.ncbi.nlm.nih.gov/pubmed/28067770
http://doi.org/10.1017/S0376892922000339
http://doi.org/10.1080/01431161.2018.1433343
http://doi.org/10.2307/3783843
http://doi.org/10.3390/rs11101233
http://doi.org/10.1109/CISP.2009.5300939
http://doi.org/10.1016/0034-4257(92)90056-P
http://doi.org/10.1016/j.patrec.2014.04.006
http://doi.org/10.3390/rs8030181
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1109/ICSESS.2016.7883053
http://doi.org/10.1016/j.isprsjprs.2011.11.002


Geomatics 2023, 3 265

58. Adam, E.; Mutanga, O.; Odindi, J.; Abdel-Rahman, E.M. Land-use/cover classification in a heterogeneous coastal landscape
using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. Int. J. Remote
Sens. 2014, 35, 3440–3458. [CrossRef]

59. Negrón-Juárez, R.I.; Chambers, J.Q.; Marra, D.M.; Ribeiro, G.H.P.M.; Rifai, S.W.; Higuchi, N.; Roberts, D. Detection of subpixel
treefall gaps with Landsat imagery in Central Amazon forests. Remote Sens. Environ. 2011, 115, 3322–3328. [CrossRef]

60. Mutanga, O.; Adam, E.; Cho, M.A. High-density biomass estimation for wetland vegetation using WorldView-2 imagery and
random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [CrossRef]

61. Hethcoat, M.G.; Edwards, D.P.; Carreiras, J.M.B.; Bryant, R.G.; França, F.M.; Quegan, S. A machine learning approach to map
tropical selective logging. Remote Sens. Environ. 2019, 221, 569–582. [CrossRef]

62. Clausi, D.A. An Analysis of Co-Occurrence Texture Statistics as a Function of Grey Level Quantization. Can. J. Remote Sens. 2002,
28, 45–62. [CrossRef]

63. Asner, G.P.; Kellner, J.R.; Kennedy-Bowdoin, T.; Knapp, D.E.; Anderson, C.; Martin, R.E. Forest canopy gap distributions in the
southern Peruvian Amazon. PLoS ONE 2013, 8, e60875. [CrossRef]

64. Baldauf, T.; Köhl, M. Use of TerraSAR-X for forest degradation mapping in the context of REDD. In Proceedings of the World
Forestry Congress XIII, Buenos Aires, Argentina, 23 October 2009.

65. Di Ruberto, C.; Fodde, G.; Putzu, L. Comparison of statistical features for medical colour image classification. In International
Conference on Computer Vision Systems; Springer: Cham, Switzerland, 2015; Volume 9163, pp. 3–13. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1080/01431161.2014.903435
http://doi.org/10.1016/j.rse.2011.07.015
http://doi.org/10.1016/j.jag.2012.03.012
http://doi.org/10.1016/j.rse.2018.11.044
http://doi.org/10.5589/m02-004
http://doi.org/10.1371/journal.pone.0060875
http://doi.org/10.1007/978-3-319-20904-3_1

	Introduction 
	Materials and Methods 
	Study Area 
	Acquisition and Pre-Processing of Satellite Data 
	Acquisition of Field Data 
	Feature Extraction and Selection 
	Similarity and Separability between Training Signatures 
	Training of Random Forest and Support Vector Machine Classifiers 
	Classification Post-Processing 
	Measures of Model Performance 

	Results 
	Similarity and Separability between Training Signatures 
	Optimisation of Random Forest and Support Vector Machine Classifiers 
	Model Performance 
	Image Classification 

	Discussion 
	Conclusions 
	References

