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Abstract: With more than 300 years of existence, Shom is the oldest active hydrographic service in
the world. Compiling and deconflicting this much history automatically is a real challenge. This
article will present the types of data Shom has to manipulate and the different steps of the workflow
that allows Shom to compile over 300 years of bathymetric knowledge. The Téthys project for Shom
will be presented in detail. The implementation of this type of process is a scientific, algorithmic, and
infrastructure challenge.
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1. Introduction

Since 1720, Shom, the French Hydrographic Service, has collected information de-
scribing the physical marine environment, including bathymetric (depth) measurements.
These 300 years of data holdings originate from different types of sensors: either through
mechanical means (lead-line from early 1800 to the 1920s) [1], or more commonly from
acoustic sounding (single-beam since the 1820s, then using multi-beam sounders since the
1980s) [2] or even from optical sounding (lidar since 2005) [3]. The data acquired therefore
has different characteristics and qualities. These are at the basis of nautical products, in-
cluding nautical charts, ensuring the safety of navigation for the mariners, and compliance
with Regulation 9 Chapter V of the SOLAS convention; see [4].

All these accumulated data are integrated into a single dedicated database, Shom’s
bathymetric database (SBDB), see Figure 1, managed as a pile of overlapping and/or
intersecting surveys. As of 2022, the SBDB holds over 11,400 surveys. Currently, each
cartographic operator that generates nautical charts or digital terrain models must go
through a laborious process of selection of bathymetric information.

The Téthys project is an in-house project aimed at constituting Shom’s bathymetric
reference surface for which source data have been selected in order to generate the most
accurate and up-to-date surface, satisfying the criteria related to the safety of navigation.

In this paper, we will first provide elements related to the purpose of bathymetric data
fusion along with the current methodology for the production of nautical information. With
this context being laid down, we will then explain the details of the Téthys project: notably
the data model (especially the geographical extent of the data) and the semi-automated
processing chain. Finally, through examples, we will present the current production status
results, before proposing conclusive perspectives.
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Figure 1. General operation before the Téthys project, where each operator recovers all the data 
before processing it according to his needs. 
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Bathymetric data fusion is a vast research topic, which has been largely discussed in 

the literature [5–8]. Globally speaking, the process deals with the aggregation of depth 
soundings for dedicated products. Depth soundings can originate from diverse sensors 
(acoustical: single beam or multibeam; estimated from active or passive remote sensing 
technologies: Lidar, satellite-derived bathymetry, Radar Altimetry) and prior information 
originating from historical digitized charted products or ENCs. These sources of data of-
ten combine multiple levels of vertical and horizontal accuracies; they integrate various 
levels of data density (from sparse coverage to tenths to a hundred of soundings per m2) 
from different ages and different processing levels (from raw soundings to fully corrected 
and precisely vertically reference datasets associated with a characterization of the asso-
ciated level of confidence). 

Due to the scarcity and the difficulty of collecting bathymetric data, the users of bath-
ymetric products generated through a process of data fusion are often aware that data 
with mixed levels of quality is the best that can be achieved. The scale and coverage of the 
generated product are often the key factors associated with the level of refinement and 
effort to be put into the compilation process [9]. At a small scale (i.e., roughly speaking 
above 1/10.000.000), common current practice is to aggregate all the sources and use de-
terministic interpolators (quite often spline-in-tension). This is exemplified by a world-
wide digital terrain model such as SRTM15+ [10] or GEBCO [11]. Strong limitations arise, 
notably when the level of details and accuracy sought is higher (larger scale, higher reso-
lution) in particular in dynamic areas (e.g., sandwaves). 

Figure 1. General operation before the Téthys project, where each operator recovers all the data
before processing it according to his needs.

2. Bathymetric Data Fusion State of the Art

Bathymetric data fusion is a vast research topic, which has been largely discussed in
the literature [5–8]. Globally speaking, the process deals with the aggregation of depth
soundings for dedicated products. Depth soundings can originate from diverse sensors
(acoustical: single beam or multibeam; estimated from active or passive remote sensing
technologies: Lidar, satellite-derived bathymetry, Radar Altimetry) and prior information
originating from historical digitized charted products or ENCs. These sources of data often
combine multiple levels of vertical and horizontal accuracies; they integrate various levels
of data density (from sparse coverage to tenths to a hundred of soundings per m2) from
different ages and different processing levels (from raw soundings to fully corrected and
precisely vertically reference datasets associated with a characterization of the associated
level of confidence).

Due to the scarcity and the difficulty of collecting bathymetric data, the users of
bathymetric products generated through a process of data fusion are often aware that data
with mixed levels of quality is the best that can be achieved. The scale and coverage of the
generated product are often the key factors associated with the level of refinement and effort
to be put into the compilation process [9]. At a small scale (i.e., roughly speaking above
1/10.000.000), common current practice is to aggregate all the sources and use deterministic
interpolators (quite often spline-in-tension). This is exemplified by a worldwide digital
terrain model such as SRTM15+ [10] or GEBCO [11]. Strong limitations arise, notably
when the level of details and accuracy sought is higher (larger scale, higher resolution) in
particular in dynamic areas (e.g., sandwaves).

For this kind of context, a selection process, focusing principally on the most recent
data sources, is needed to prevent an unrealistic representation of the seabed. Regional
efforts such as EMODnet Bathymetry incorporate this step in their methodology [12]. In
shallow water areas, where vertical precision is essential, attention must be paid to the
quality of the dataset with respect to vertical accuracy, with particular attention being paid
to the tidal referencing methodology [13]. Some national data compilation efforts well
illustrate this further effort in the data selection and management process [9,13,14].

Moreover, when it comes to bathymetric product usages where the security of naviga-
tion is at stake, all the previous steps of the selection processes are taken with extra caution,
as much as the representation of the various confidence levels associated with the source
data is included in the process of compilation. In this sense, the CATZOC (Category of the
Zone of Confidence) is an accompanying layer of the navigational chart [15] describing



Geomatics 2023, 3 241

the data uncertainty [16], which has as much importance as the depth information layer,
and which is supported by dedicated and well-managed metadata associated to the source
datasets (see Section 4).

A major keystone in the reasoning for generating bathymetric products from hydro-
graphic data is the concept of “Navigation Surface,” also known as reference surface, first
introduced by Smith [17]. The navigation surface is a bathymetric surface product made up
of a collection of sources assuring that items critical for navigation are preserved. One of the
benefits of this concept is to locally ensure the selection of the most relevant data sources
compatible with the most stringent use (here considered to be the safety of navigation).

The process of ensuring the suitable selection of the local knowledge is also known
as “deconfliction,” which is a decision-making process whereby a selection of the sources
of data is made from the best representation of the physical coverage (2D polygon area)
and associated information such as, for example, the age and reliability of the source. This
process is either undertaken (see Figure 2) through:

- a decision of “remove/restore,” where one of two (or many) overlapping sources
uptakes the others.

- a decision of “supplement,” where the datasets under concern are merged without
giving priority (or weight) to one dataset over the other.
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Figure 2. Deconfliction process representation. Top: a remove/restore decision where the blue survey
uptakes the red one; Bottom: a supplement decision where both surveys are merged.

By creating such a navigation surface at the geographical scale of the survey (highest
scale), the objective is to undertake the decision-making selection process once for all
sthe cales. In doing so, gains are already measured in generating bathymetric products
(nautical charts and digital terrain models) by capitalizing on the selection efforts while
strengthening the management and valorization of the source information. Currently, other
similar national initiatives are underway, such as BlueTopo from the NOAA [18].

3. Qualitative Description of Data and Metadata

The information used in the production of Shom’s reference surface is composed
of bathymetric data from hydrographic surveys (sounding point clouds in the form of
x,y,z triplets or bathymetric raster surfaces) to which are associated spatial metadata
representing the extent of the survey (minimal enclosing surface, later defined as MES and
SME in French) and a series of attribute metadata.

The attribute metadata are associated with internationally recognized metadata from
the IHO S-57 standard [19,20], such as CATZOC (Category Zone of Confidence), POSACC
(Position accuracy), SOUACC (Sounding accuracy); see Figure 3 as well as internally
defined attributes. From the latter, we can cite examples such as the Codval attribute,
which indicates the validity/invalidity of a bathymetric survey, or the Captur attribute,
which indicates the type of bathymetric sensors used at sea for its acquisition. Within the



Geomatics 2023, 3 242

framework of the Téthys, the attribute metadata are managed in a conventional eXtended
Markup Language (XML) format with a key-value formalism.
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Figure 3. Classic metadata file with S-57 [19] attributes.

The spatial metadata of a bathymetric survey is meant to represent the area of the
seabed that has been recognized following the acquisition/processing stage. Fidelity to the
actual coverage of the dataset is key as this polygon will be used as part of the deconfliction
process. In order to be the most representative, three conditions on the relationship between
the minimal enclosing surface polygon and its associated soundings have been defined and
must be verified:

- Unicity: Each sounding of the dataset is included in a single MES.
- Density: Soundings that have a distance with the nearest neighbors less than 5 times

(defined from the hydrographic expertise, Case 1 of Figure 4) the intrinsic resolution
of the acquisition sensor is gathered in the same MES. Otherwise, a new polygon is
created (Case 2 of Figure 4). Eventually, the sounding is considered as an isolated
sounding if it is impossible to aggregate it with its neighbors (Case 3 of Figure 4).

- Representativeness: The contour (internal and external) of the generated multi-
polygons is buffered with a distance depending on the characteristics of the survey:
horizontal uncertainty and intrinsic resolution. This is a sensitive point to avoid
removing a shoal at the border of the survey with a too-loose MES when the area has
not been strictly covered.

Figure 4 schematizes all these criteria. Note that following this process, a single survey
is represented by a single or a multi-polygon also including holes in their geometry.

Prior to 2018, the MES was constructed manually by operators at Shom, as no known
algorithm provided satisfaction (representativity and computing performance). Moreover,
this tedious work was also subject to operators’ biases, which strongly motivated the
development of an automated MES envelope generation.

In order to determine the most accurate spatial coverage for a bathymetric survey,
we first studied the α-shape algorithm, which is a classical computational geometry
method [21] that is a refinement of the convex hull method [22]; both are available in
numerous GIS solutions (e.g., QGIS) based on a Delaunay Triangulation followed by an
analysis of the length of the triangle edges and suppression of the triangle edges, the lengths
of which are above the defined α length. The algorithm has a complexity of O(n log n),
with n representing the number of points. The α-shape algorithm is used to obtain the line
segments composing the perimeter of a set of points in the plane, thus allowing the building
of the strictest spatial boundary from these segments composing the boundary of the input
point cloud. The key parameter of this algorithm is the α value, which defines whether a
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segment will be considered a right-of-way boundary or a core segment. Nevertheless, this
method has strong limitations, with changing density of the point cloud, considering the
static definition of the α parameter.
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In order to alleviate the limitation introduced by the α-shape algorithm and to optimize
the searching phase of the points located at the border of the survey, we introduced
the QuadSME algorithm [23]. Based on the bathymetric point cloud and its horizontal
uncertainty (the POSACC), the algorithm had five steps:

- The first step of this methodology was the import of the data in the form of a point
cloud including triples (x, y, z) and the value of the associated POSACC.

- The second step of the methodology consisted of a geospatial indexation based on
a first quadtree segmentation [24], with the number of points per quadrant set to
5 million points as the stopping criterion.

- The third step of the methodology consisted of a second quadtree indexing. The space
was divided to keep only quadrants validating either a density criterion or a maximum
number of soundings (arbitrarily defined at 1000). The density criterion corresponded
to the number of points in each sub-quadrant constituting a main quadrant. If the
density was identical (judged by a threshold) for each child quadrant, then the parent
quadrant was considered as homogeneous.

- The fourth step of the methodology consisted of the generation of polygons containing
the soundings. First, a characteristic resolution of the point cloud included in the
sub-quadrant was calculated to adapt to the potential differences in density of the
input point cloud. Then, partitioning and detection of isolated points were performed.
The objective was to build specific envelopes for the isolated points and build clusters
of points with the same density before creating the polygons. Finally, a Delaunay
triangulation was performed on the different clusters and the associated polygon
was extracted.

- The fifth and last step of the methodology consisted of dissolving the polygons
generated during the previous steps to form the final MES. The geometries were
merged via a process of dilation/erosion (creation of a buffer) of the geometries to
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remove construction holes, see Figure 5 which represents a generated MES and the
associated quadtree decomposition.
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Figure 5. Top: a bathymetric survey (point cloud—color according to depth value); Bottom: the
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quadtree decomposition.

In order to compare the representativity of the geometries both generated by the
α-shape and QuadSME methods, the Haussdorf-Pompeiu [25] distance metric was selected.
The Hausdorff-Pompeiu distance is a topological tool that measures the distance between
two subsets of a metric space. It was therefore very suitable for comparing the maximum
distance between two spatial areas, which allowed the dissimilarity of the two shapes to be
measured. From Table 1, which shows the results associated with five surveys differing in
size and geographical coverage, it can be observed that the Hausdorff-Pompeiu distance
for the QuadSME method was always smaller and therefore more faithful to the reference
α-shape method. Also, a fact to be noticed is that the distance value remained in the same
order of magnitude for lots with few soundings (first two examples of Table 1). Moreover,
for larger size datasets (last three examples of Table 1), the QuadSME method provided a
Hausdorff-Pompeiu distance better within one order of magnitude.

Table 1. Computation of the Hausdorff-Pompeiu distance (in meters) for five bathymetric surveys.

Survey Name Soundings Number α -Shape Distance QuadSME Distance

S202099900-001 2743 165.6 141.9
S201207000-5 25,718 86.7 76.5

E201804100-002 128,939 16.6 0.9
S202102500-001 1,070,131 182.9 25.1

S200701200-1 10,829,541 1340.3 118.3

The computation time associated with each method was also compared, using the
same computing facility (Intel Xeon 6248 2.50 GHz, 32 Gb RAM). The QuadSME method,



Geomatics 2023, 3 245

see Figure 6, showed better computation times than the QuadSME algorithm compared
to the α-shape algorithm, especially when the number of points was greater than one
million. For a number of soundings of the order of magnitude of 10 million, the QuadSME
method was 40 times faster than the α-shape algorithm, most likely because of the quadtree
partitioning (Steps 2 and 3). Processing time was further improved by multiprocessing
the QuadSME method, with operations from Steps 2 to 4 performed independently and in
parallel on each of the quadrants.
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On the other hand, the computation time of the QuadSME method was very dependent
on the homogeneity of the distribution soundings. Thus, when the density criterion was
quickly reached then the quadtree process stopped. Conversely, when the sounding
distribution was not homogeneous in the sub-quadrants or when the data contained many
holes, then the computation time was longer because it was necessary to go to the end of
the quadtree decomposition.

4. Téthys Workflow

Following a detailed and accurate representation of the source dataset, as described
in the previous section, the deconfliction process was wisely undertaken, leading to the
generation of the bathymetric surface reference. The overall workflow, see Figure 7, was
carried out according to the following processes:

- From the different original surveys, verification of all data and metadata content was
performed, benefiting the SBDB consistency directly.

- The conflicts between the superimposed datasets were resolved according to the
qualitative elements carried by the metadata (hydrographic qualification, ages, etc.).

- The compilation (combination or cutting/replacement) of the data was undertaken
following the priorities previously defined between the datasets in Step 2.

Considering the vastness of the French exclusive economic zone (EEZ), this workflow
was operated on 1◦ by 1◦ geographic tiles. More than 300 expert rules validated by Shom
hydrographers and cartographers were implemented in this process.

The Téthys project offers each operator data where their interactions are validated and
verified by a set of attribute rules and priority constraints related to each other. The resulting
surface is directly exploitable, without any particular expertise, and is reproducible.
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Automation of this workflow can be implemented based on several technologies that
best handle open and proprietary geospatial data formats, along with efficient manipulation
of large volumes of data. Fundamental to this implementation are the use of:

- Extract Transform Load (ETL) software handling spatial information: The dedicated
FME software [26] supports geospatial data extraction (Extract) from homogeneous or
heterogeneous sources, followed by the processing stage (Transform) of the data into
a proper storage format/structure; and, finally, the data is loaded into a dedicated
target database. In addition to data transformation tools, spatial ETL solutions also
contain various geoprocessing algorithms to process and analyze spatial and non-
spatial data (e.g., geometry validation and repair, topology check, or creating and
merging attributes, etc.). The software allows this tool to have several advantages for
the needs of Téthys. Figure 8 illustrates the no-code graphical FME interface, based on
multiple data-driven interactors. Such a workflow processing environment facilitates
development and subsequent maintenance.

- Direct geo-processing in a dedicated working database via SQL scripts: The choice was
made to use the combination of a PostgreSQL/POSTGIS database, overlaid with the
pgPointCloud extension [27]. This environment benefits from the adapted geospatial
point cloud indexing capabilities commonly used for the management of large LIDAR
point clouds, which have similar characteristics to bathymetric soundings. Note that
direct interaction with the pgPointCloud data structure is managed through the PDAL
library [28].

- Dedicated APIs to allow for the manipulation of proprietary format. The current SBDB
is currently managed under the proprietary software Teledyne CARIS Bathymetric
DataBase, and Python bindings built upon a dedicated API provided by the software
manufacturer [29] allow for the transformation into open and interoperable formats.
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Figure 8. Example of FME interface performing the processing to generate the surface reference.

The first deconfliction performed is shown in Figure 9 which distinguished the stages
before and after this process; each color represented the MSE of a survey. On this first
tile (called 145_81, a name inspired by the Marsden square [30]), 115 surveys were used
as input data and 441,418,088 associated soundings were processed. At the end of the
processing chain, only 96 surveys were finally retained and 310,970,981 soundings were
integrated into the Téthys. Of these bathymetric data, over 6000 soundings were digitized
from old nautical charts.
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Figure 9. First tile of the Téthys project: on the left, surveys studied for deconfliction; on the right,
surveys cut and kept after the deconfliction process (we distinguish easily the remove/restore or
supplement decision especially in the blue part on the right side).

The area covered extends from the port of Saint-Malo in the west, to the bay of Mont
Saint-Michel in the east, and from the south of the Rance to the town of Coutance in the
north. The result of this deconfliction process raised 44,167 conflicts between intersecting
data sources. Quality control of the tiles was performed by comparing, among other things,
previously generated navigation products, such as the official Electronic Navigational Chart
(ENC). This first work has recently benefited cartographers who published the nautical
chart covering the Chausey Islands and the production of the topo-bathymetric DTM,
which covers the approaches to Saint-Malo; see [30].

Shom agents have access to these bathymetric data via an internal geographic web
portal. Selected layers can be queried, filtered, and downloaded in well-known GIS formats
(ASCII, shapefile, GeoPackage). Bathymetric data are extracted by defining a bounding box
of the area of interest. Users can also load web services (WMS, WFS, WCS) or GIS vector
data into the portal.

5. Discussion and Perspectives

The current concept underlying the use of the Téthys is oriented towards cartographic
use applied for the safety of navigation, which translates into the implementation of
more than 300 expert rules to ensure the control and deconfliction of bathymetric surveys.
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However, different concepts of use might require different rules or preferences to be imple-
mented in the deconfliction process. For example some users, with fewer constraints on the
selection of shoals, but stronger constraints on the statical robustness of the bathymetric
information (digital terrain elevation surfaces for the use of oceanographic modeling) might
welcome relaxed deconfliction rules with the potential weighting of the prioritized sources
of overlapping surveys [7,31]. It would be relevant to look at the expert needs concerning
the deconfliction rules to be implemented in order to adapt the current workflow to these
new practices.

Moreover, with an increasing effort being brought to the automation of the overall
workflow, the transformation of the hydrographic profession is questionable. While an
effort to generate the first iteration of the reference tiles is currently needed, it is also
believed that, through subsequent updates, the hydrographers will have to focus on more
and more specific technical issues related to their training without being distracted from
minor processing tasks; hence generating a virtuous cycle.

The Téthys workflow systematically implements automation techniques and method-
ological developments that allow it to take advantage of the intelligence of the data. The
generation of the surface reference based on the most relevant bathymetric knowledge
allows selected information to be effectively and efficiently provided as support for the
generation of marine charts. This methodology and its implementation can prepare the
French National Hydrographic to meet the challenges of the future as it better manages
bathymetric data, makes it more efficiently usable for end-products, and considers the
diversity and increasing volume of bathymetric data to be handled in the close future.

The target is to model all the tiles in the French metropolitan EEZ by the end of the
first quarter of 2024; at the time of writing this paper, more than 46% of this area is already
produced. Furthermore, updating the bathymetric reference navigation surface with the
most up-to-date surface and new incoming surveys, is a crucial task that is easily enabled
by the Téthys process.
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