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Abstract: The satellite image time series are used for several applications such as predictive analysis.
New techniques such as deep learning (DL) algorithms generally require long sequences of data
to perform well; however, the complexity of satellite image preprocessing tasks leads to a lack of
preprocessed datasets. Moreover, using conventional collection and preprocessing methods is time-
and storage-consuming. In this paper, a workflow for collecting, preprocessing, and preparing
Sentinel-1 images to use with DL algorithms is proposed. The process mainly consists of using
scripts for collecting and preprocessing operations. The goal of this work is not only to provide the
community with easily modifiable programs for image collection and batch preprocessing but also to
publish a database with prepared images. The experimental results allowed the researchers to build
three time series of Sentinel-1 images corresponding to three study areas, namely the Bouba Ndjida
National Park, the Dja Biosphere Reserve, and the Wildlife Reserve of Togodo. A total of 628 images
were processed using scripts based on the SNAP graph processing tool (GPT). In order to test the
effectiveness of the proposed methodology, three DL models were trained with the Bouba Ndjida
and Togodo images for the prediction of the next occurrence in a sequence.

Keywords: Sentinel-1; C-SAR; satellite images; time series; graph builder; batch preprocessing;
prediction; SNAP; dataset; LSTM

1. Introduction

In recent years, there have been many technical advances in the remote sensing field.
Several thousand Earth observation (EO) satellites are currently orbiting the planet and
provide a considerable number of images. With the short revisit time of satellites over an
area, it will likely soon be possible to get free daily images of any surface on the world [1].
Since 2014, for instance, the Copernicus program, launched by the European Union and the
European Space Agency (ESA), has provided data from a constellation of six satellites called
the Sentinel mission (Sentinel-1 to Sentinel-6). The first mission of this series, Sentinel-1
(S1), operates in active mode and supplies images every six days, regardless of the weather
or the time of day (e.g., night, cloud cover, fog). Compared to optical Sentinel-2 (S2) images,
S1 radar images have the advantage of being cloud-free. This quality allows them the
ability to perform better in many applications; however, before use, raw satellite data must
be preprocessed. In practice, the processing operations for S1 images are more complex
and diverse than those of S2 images, which often limits their uses.

Consecutive data of an area, acquired from several dates, are called satellite image
time series (SITS) [2–5]. Satellite image time series applications are varied and include
agricultural resources monitoring, environment management, forest mapping, anomaly
detection, and SITS prediction [6,7]. For the case of SITS prediction tasks, deep learning (DL)
techniques are more and more mentioned in the literature. In particular, long-short-term
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memory (LSTM) architectures such as ConvLSTM, CNN-LSTM, and Stack-LSTM are used
for their ability to deal with image sequences [8].

LSTM networks are a particular type of recurrent neural network (RNN) introduced
by Hochreiter and Schmidhuber in [9]. The LSTM architectures are generally used with
data organized in sequences and have cells that store the state from previous layers [2].

DL algorithms for time series prediction typically require datasets made of long image
sequences [10–12]; however, the complexity of SITS preprocessing tasks and the lack of
training datasets are some limitations related to the use of DL techniques, as mentioned
in [2]. Indeed, for works on the prediction of land cover classes using DL algorithms,
for example, it is not easy to find datasets with SITS already preprocessed. Starting from
scratch to build a long series can also be difficult for non-experts in the remote sensing
domain. To resolve this, it has been suggested to reveal methods for automatic image
batch processing and increase the number of available training datasets. In this way, the
number of works using DL algorithms for SITS prediction could considerably increase. An
interesting application in this field is for example the prediction of deforestation from SITS
with DL approaches.

There are several publicly available remote sensing databases to use with DL algo-
rithms [13–16]; however, these datasets are mostly used for image classification tasks [17,18].
For example, the authors in [16] proposed a georeferenced dataset for training and valida-
tion of deep learning algorithms for flood detection for Sentinel-1 images. In [13], an image
dataset for ecological investigations of birds in wind farms was constructed. The authors
in [14] also proposed OpenSARUrban, a Sentinel-1 dataset dedicated to the content-related
interpretation of urban SAR images.

Moreover, although some studies have explored the problem of a lack of datasets [19–25],
there are few studies that have addressed the constitution of datasets suitable for SITS
forecasting problems. For ship detection, for example, the authors in [25] carried out a
study in which ship positions have been automatically extracted in batch from Sentinel-
1A images, and in [15], the Large-Scale SAR Ship Detection Dataset-v1.0 from Sentinel-1
have been proposed. In [20], a workflow allowing the production of a set of preprocessed
Sentinel-1 GRD data was presented. However, the proposed scripts allow the preprocessing
of the images one by one.

Within this scope, the goal of this paper is to propose a complete workflow with scripts
for collecting and batch processing S1 images. Then, a method to prepare the datasets to
use with the DL algorithms is presented. The purpose of this experiment is to build public
datasets of SITS that can be used for multiple other purposes. The code used to collect
images in bulk was generated from NASA’s Vertex platform. For preprocessing, the scripts
were based on the graph processing tool (GPT), proposed by the engine part of the Sentinel
application platform (SNAP) software, Version 8.0 [26]. This special command based on the
SNAP graph processing framework (GPF) is used to process raster data in batches, through
extensible markup language (XML) files containing graph operators.

To test the effectiveness of the proposed methodology and demonstrate the practicality
of the built datasets, the CNN-LSTM, ConvLSTM, and Stack-LSTM architectures were used
to design DL models for the next frame forecasting in S1 image sequences. Experiments
have shown that longer time series provide better performance than shorter ones.

Compared to similar works in the literature, the methodology proposed in this study
has the following particularities: (1) the process described in this paper allows us to easily
build datasets of SITS suitable for prediction tasks with DL algorithms. The images of each
series allow us to represent the different states of the land cover classes thanks to the data
acquired over time. Contrary to the dataset used mainly for classification tasks, the data
collected here are more adequate for forecasting problems; (2) the procedure is complete,
going from data collection to data preparation; (3) the proposed preprocessing chains allow
us to execute operations in batch and not individually; (4) the VV and VH bands of images
are separated during the process to allow a better analysis; (5) the preprocessed datasets
and all the scripts used in this study are available to users.
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The experiments conducted on three study areas, namely the Bouba Ndjida National
Park (BNP), the Dja Biosphere Reserve (DBR), and the Wildlife Reserve of Togodo (WRT)
provided the preprocessed datasets for time series applications. The land cover classes on
the selected AOI are diverse. This will allow us to create several types of DL models for
many applications.

In sum, the contributions of this paper are as follows:

• Proposal of a complete workflow for S1 image time series collection and preprocessing;
• Development of a GPT-based script for S1 images batch processing that can be easily

modified by users;
• Construction of a public database made of three SITS;
• Presentation of a method for preparing image time series to use with DL algorithms.

The rest of this paper is organized as follows: Section 2 describes the data used for
this study. Section 3 presents the methodology and the tools used in this paper. Section 4
depicts the results obtained from the study areas. Finally, Section 5 concludes the paper.

2. Used Data
2.1. Main Characteristics

The S1 satellites are the first in the family of six EO satellite missions (Sentinel-1 to
Sentinel-6). The S1 mission consists of a constellation of two satellites namely Sentinel-1A
(S1A), launched on 3 April 2014, and Sentinel-1B (S1B) launched on 25 April 2016. The two
satellites S1A and S1B share the same orbital plane. Together they provide images every
six days, day and night, regardless of the weather conditions. Each of the two satellites flies
over the same area every 12 days [8].

The S1 sensors are equipped with synthetic aperture radar (SAR)-type instruments
that operate in the C-band. These sensors, called C-SAR, can acquire data covering large
areas (up to 400 km) and can reach five meters resolution in four exclusive modes: stripmap
mode (SM), interferometric wide swath (IW) mode, extra wide swath (EW) mode and
wave mode (WV). Thanks to a transmission chain and two parallel reception chains for
horizontal (H) and vertical (V) polarizations, the S1 C-band SAR instruments operate in
single polarization (HH or VV) and dual polarization (HH + HV or VV + VH). The products
acquired in SM, IW, and EW modes are available in single or dual polarization while the
products acquired in WV are only available in single polarization.

The Sentinel images are free of charge to all users, including the general public and
commercial users. All the products are distributed in the Sentinel standard archive format
for Europe (SAFE). For each mode, images are available in three levels corresponding
to the processing level: Level-0, Level-1, and Level-2. The Level-0 products correspond
to unfocused raw SAR data. These data must be decompressed and preprocessed in
order to be usable. The Level 1 products are obtained by processing the Level-0 products.
Level-1 products are the most used in common applications. They are the base data
from which Level-2 products are derived and feature a wide swath (250 km) with high
resolutions (geometric and radiometric). Sentinel-1 mission provides data for applications
in the Copernicus priority areas such as maritime monitoring, emergency management,
and land monitoring. In the field of land monitoring, S1 images are mainly used for
forestry (sustainable forest management, forest type classification, biomass estimation,
and disturbance detection), agriculture (monitoring of crop conditions, soil properties,
and mapping tillage activities), and urban deformation mapping (monitoring of land
subsidence, structural damage, and underground construction).

In this study, Level-1 ground range detected (GRD) data acquired in IW mode and
in dual polarization (VV + VH) were used. The S1-GRD products do not retain phase
information, but only amplitudes. The resulting images have pixels with approximately
square size (10 m × 10 m).



Geomatics 2022, 2 438

2.2. Study Areas

The satellite images are widely used to assess the effectiveness of protected areas [27].
The images acquired and processed in this study are S1A data corresponding to three
distinct protected areas: the Bouba Ndjida National Park (BNP), the Dja Biosphere Reserve
(DBR), and the Wildlife Reserve of Togodo (WRT).

2.2.1. Bouba Ndjida National Park

The BNP is one of the national parks in Cameroon, a Central African country. It
was established in 1968 and is located in the northern region, bordering Chad. As shown
in Figure 1, this area is crossed by numerous rivers. Geographically, the BNP is located
between 08◦21′ and 09◦ north latitude, and between 14◦25′ and 14◦55′ west longitude [28].
Although it is the largest national park in the country (with a total area of approximately
220,000 ha), it is also the most isolated. Its landscape is subject to strong pressure from
human activities and natural phenomena. Regarding the vegetation, it is mainly made
up of Sudano–Guinean shrub savanna. The climate is Sudano–Sahelian with a long dry
season (8 months) and a short rainy season (4 months). Since August 2011, a partnership
agreement has been signed between Chad and Cameroon to create the BSB (Binationale
Séna Oura–Bouba Ndjida) complex in Yamoussa [29].

Figure 1. Location map of the Bouba Ndjida National Park.

2.2.2. Dja Biosphere Reserve

The DBR, which takes its name from the Dja River that surrounds it, is located between
2◦40′ and 3◦23′ north latitude and 12◦25′ and 13◦35′ east longitude. The DBR covers 526,000 ha
and is one of the largest protected areas of the Guinea–Congolian tropical rain forests [30].
As shown in Figure 2, this reserve is located in the south of Cameroon. The terrain is fairly
flat and the landscape is composed of a multitude of small hills; however, in the south part,
the topography is more rugged with cliffs, rapids, and waterfalls. According to the 2005
Cameroonian population census, the number of people living in the neighboring localities
was 26,153 [31]. There are four seasons in the DBR area: a long rainy season, a long dry
season, a short rainy season, and a short dry season [31].
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Figure 2. Location map of the Dja Biosphere Reserve.

2.2.3. Wildlife Reserve of Togodo

The WRT is located in the southeast of Togo, a West African country. It is located
between 6◦23′ and 7◦ north latitude and between 1◦23′ and 1◦34 west longitude [32]. With
an estimated area of 30,000 ha, the WRT is bounded by the Mono River in the east and by the
Akpaka and Afan Rivers, as well as the Kpové and Tsafé farms in the west [33]. The human
occupation around the WRT includes various ethnic groups that have been settled in the
area for more than three centuries [34]. The fourth general census of population and housing
of 2010 in Togo estimates the population density between 100 and 150 inhabitants/km2.
The vegetation in WRT includes dense forest; gallery forest; open forest; wooded, shrubby,
and grassy savannah; cultivated areas; fallow land. The hydrophilic vegetation is also very
rich in flowers, with about 210 species. In addition, palm oil plantations are very developed
in this area and are considered a source of deforestation. Figure 3 shows the location map
of the WRT.

Figure 3. Location map of the Wildlife Reserve of Togodo.
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3. Methodology

The estimation of future values in a time series is always based on the observation
of previous values. The time series prediction task is more difficult than classification
and regression problems because of the complexity added by the order and temporal
dependence between the data.

Several prediction methods exist and allow us to obtain very good results for some
problems. For linear time series, the main methods are regression models (such as the
auto-regressive integrated moving average), exponential smoothing models, and the other
linear models that have been very popular for the last thirty years [35]. However, these
classical methods have some limitations. For example, they require the use of complete sets
(missing or corrupted data usually degrade the performance of the model). These methods
are also suitable for linear series or series with a constant time step, focus on one-step
prediction problems, and concentrate on the use of uni-variate data [6].

For problems such as the prediction of land use and land cover changes using satellite
imagery, classical models are not very suitable because SITS are non-linear and sometimes,
there are missing or corrupted data in the series. CA-Markov methods are widely used
in the literature for this kind of problem, but these methods require an important step of
features engineering and the use of auxiliary data which strongly influence the prediction
results [36]. Moreover, DL models can automatically learn complex mappings between
inputs and outputs. Feature extraction is a very laborious and time-consuming step;
this step is done automatically with DL algorithms, unlike classical machine learning
methods where the users have to be extremely accurate in the supervised learning process.
The authors in [37] have compared classical methods and DL algorithms for time series
prediction problems and have shown for example that DL methods are effective and easier
to apply than classical methods.

The powerful deep learning capabilities hold great promise for time series forecast-
ing, especially for problems with complex and non-linear dependencies such as in SITS.
The abilities of neural networks such as multi-layer perceptrons (MLP), CNN, or LSTM
networks allow reaching performances that surpass those of classical methods: (1) neural
networks are robust to noise in the data and can produce good results even with non-linear
series or with missing or corrupted data; (2) the capabilities of CNNs to automatically
extract important features from the raw input data can be applied to time series prediction
problems; (3) LSTM networks can store temporal dependencies between data [38–40].

So, for complex tasks such as SITS forecasting, the capabilities of DL models seem
well suited, provided that a dataset with a long time series is available. In fact, the volume
of historical available data representing the same area is important for the DL model to
better capture the relationships between past and present images. Some events may occur,
for example, only after a long period of time; it is important for the model to have a long
enough series to capture the behavior of that event over time. The longer the series, the
more training data the model can access; this leads to greater prediction accuracy. Having a
long time series also avoids the phenomenon of overfitting that occurs in DL models when
it focuses on the training data and fails to make good predictions on new data [41].

Since collecting and preprocessing satellite images is not always a straightforward
task, we present in the following subsections methods to facilitate batch collection and
preprocessing of Sentinel-1 image time series that are suitable for time series prediction
with DL algorithms. In addition, the process of preparing preprocessed data for use with
DL models is also described.

3.1. Bulk Collection

All types of S1A images can be downloaded for free from several platforms. Each plat-
form has its own particularities. The most widely used platforms are as follows:

• The Copernicus Open Access Center (https://scihub.copernicus.eu/ (accessed on
10 May 2022)) provides users with full access to Sentinel products. Images are available
online as soon as satellite images are received; however, older images are generally not

https://scihub.copernicus.eu/
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immediately downloadable and must be specifically requested. About six months after
the registration of an image, the image is put in offline mode on the official Copernicus
website, and a request must be sent to the server to put the product back online, for a
determined period.

• The Copernicus Dedicated Access Center (https://cophub.copernicus.eu/ (accessed
on 10 May 2022)) is for project services such as the provision of image archives that are
no longer available on the main server.

• The NASA Vertex platform or Alaska Satellite Facility (ASF) (https://search.asf.alaska.
edu/#/ (accessed on 10 May 2022)) provides the whole image time series of an area
online. In other words, there are no offline products in this data center. Another
advantage of this platform is the fact that the area of interest (AOI) can be imported as
a shapefile or in well-known text format (WKT).

• The Copernicus Access Center mirrors https://peps.cnes.fr (accessed on 10 May 2022)
(PEPS) and https://code-de.org (accessed on 10 May 2022) (code-de) proposed by the
National Center of Space Studies, known as Centre d’Etude Spatiale (CNES), and the
German Space Agency, respectively.

• The EO platform (EO Browser) (https://apps.sentinel-hub.com/eo-browser/ (ac-
cessed on 10 May 2022)) allows users to browse and compare images from all the
provided data collections.

In most platforms, images are generally downloaded individually; however, when a
series of images must be collected, it is preferable to automate the downloading of the data
using scripts, and, one way to do this is using dhusget program, a download command
line based on the cURL and Wget programs and initiated by the Sentinel Data Center. The
use of dhusget is completed by a command line query, which has the following structure:

dhusget.sh [LOGIN] [SEARCH_QUERY] [SEARCH_RESULTS] [DOWNLOAD_OPTIONS]

More details on the various setting options are available on the Copernicus Data
Access Center user page. (Online (Available): https://scihub.copernicus.eu/userguide/
BatchScripting (accessed on 10 May 2022).)

Another simple way to automatically download S1 images is using aria2c, which is
the download manager on the official Copernicus website. With this tool, the user specifies
the search criteria related to the AOI, and the validation of the selected products generates
a file named products.meta4. The command used to start the batch download is listed
below. Note that a valid Copernicus Open Access Center user account is required to run
these command lines.

aria2c --http-user=’username’ --http-passwd=’password’
--check-certificate=false
--max-concurrent-downloads=2
-M products.meta4

A major drawback with the two methods is when a product is offline, the command
is not able to immediately download it; however, there is a way to configure the script
to send a request to the server when a product is offline, and check its availability after a
certain time.

For the data used in this study, the researchers downloaded images from the ASF
platform and selected all the available images for each study area. The corresponding
Python scripts were executed in command lines on a local machine to start the recording of
all images. For more information about the bulk collection from the Vertex platform, please
navigate to the ASF website. (Online (Available): https://asf.alaska.edu/how-to/data-
tools/data-tools/ (accessed on 3 July 2022).)

The files containing the source code used to download the images from the three study
areas are available at http://w-abdou.fr/sits/ (accessed on 10 August 2022).

Table 1 presents the search parameters used for each study area and all available data
from 15 June 2014 to 3 July 2022 were selected to be downloaded.

https://cophub.copernicus.eu/
https://search.asf.alaska.edu/#/
https://search.asf.alaska.edu/#/
https://peps.cnes.fr
https://code-de.org
https://apps.sentinel-hub.com/eo-browser/
https://scihub.copernicus.eu/userguide/BatchScripting
https://scihub.copernicus.eu/userguide/BatchScripting
https://asf.alaska.edu/how-to/data-tools/data-tools/
https://asf.alaska.edu/how-to/data-tools/data-tools/
http://w-abdou.fr/sits/
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Table 1. Search options.

Site Mission File Type Beam Mode Direction Area of Interest (WKT)

BNP S-1A Level-1-GRD IW ASCENDANT
POLYGON (14.6088 8.7979, 14.6793 8.7979, 14.6793 8.824,

14.6088 8.824, 14.6088 8.7979)

DBR S-1A Level-1-GRD IW ASCENDANT
POLYGON (12.1466 2.9639, 12.8304 2.9639, 12.8304 3.2727,

12.1466 3.2727, 12.1466 2.9639)

WRT S-1A Level-1-GRD IW ASCENDANT
POLYGON (1.398 6.761, 1.611 6.759, 1.613 6.930, 1.400 6.932,

1.398 6.761)

The AOI to be downloaded are delimited using the WKT coordinate; thus, to down-
load the images corresponding to a new location, one needs to know the geographical
coordinates and enter them on the platform to generate a corresponding Python file. The
command to execute the download file (on a Unix console) is the following:

Python name_of_python_file.py

3.2. Preprocessing
3.2.1. SNAP Software

For the processing of Sentinel data, the ESA has developed a powerful application
called the Sentinel Application Platform (SNAP). The SNAP software was jointly developed
by Brockmann Consult, SkyWatch, and C-S for the visualization, processing, and analysis
of EO data in general and Sentinel products in particular. As Figure 4 displays, SNAP uses
several technologies such as the Geospatial Data Abstraction Library, NetBeans Platform,
Install4J, GeoTolls, and Java Advanced Imaging (JAI). The processing can be done using
the SNAP Desktop graphical interface or command line in the SNAP Engine.

Figure 4. General architecture of SNAP software operations.

Within the SNAP software, there is a flexible processing framework called GPF [26].
The GPF is based on JAI and allows users to implement custom batch processing chains.
Figure 5 highlights how the GPF works using assembled graphs from a list of available
operators. It is a directed acyclic graph (without loops or cycles) where nodes represent
the processing steps called operators, and edges indicate the direction in which data is
transferred between the nodes. The data source is the images received as inputs from the
read operator, and the output can be either an image recorded by the write operator or a
displayed image. Each data passes through an operator, which transforms the image, and
the resulting image is sent to the next node until it reaches the output. No intermediate files
are recorded during the process unless a write operation has been intentionally introduced
into the graph.
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Figure 5. Data processing in the SNAP GPF tool. Op1, Op2, and Op3 represent the operators.

In sum, the GPF architecture offers the following advantages:

• No overloading of input/output operations;
• Efficient use of storage memory (no writing of intermediate files);
• Re-usability of the processing chains;
• Ability to reuse operator configurations;
• Parallel processing of graphs according to the number of available cores.

3.2.2. Preprocessing Workflow

Prior to the development of the batch script, a processing workflow was built using
the SNAP graph builder tool. The designed graph representing the operators applied to
the study’s data is schematized in Figure 6.

Figure 6. The proposed SNAP graph corresponding to Sentinel-1 images preprocessing workflow.

1. Read: The “read” operator is used to load the data. This operator accepts not only S1
images but also other types of data.

2. Apply orbit file (AOF): The default metadata provided when SAR data are down-
loaded is generally not very accurate. In SNAP, the updated orbit file, with more
accurate information to help improve geocoding and other processing results, is auto-
matically downloaded by the AOF operator. This operation should be performed as a
priority before all other preprocessing steps for better results.

3. Border noise removal (BNR): Because of irregularities on the Earth’s surface, deforma-
tions can appear on the Level-1 images during their generation. The BNR operation
allows one to correct and remove noises present on the edges of images.

4. Calibration: The calibration step (calibrate) aims to correct the signal intensity accord-
ing to the sensor characteristics and the local incidence angle. The metadata of the
input products allows SNAP to automatically determine the corrections to be applied.
In this work, the operation is performed for both VV and VH polarizations.

5. Terrain correction: The initially downloaded S1 images are devoid of geographic
coordinates, which makes them unusable for most applications. The ortho-rectification
step is performed to geo-reference images in order to project them into the Universal
Transverse Mercator system or World Geodetic System 1984. This process also allows
one to correct the distortion effects that occurred during the acquisition (overlay,
shading). The terrain correction operation is based on a digital elevation model (DEM)
automatically downloaded by SNAP or provided by the user.
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6. Image clipping (subset): Each downloaded S1 image covers an area of
250 km × 250 km (swath). For smaller AIO, it is often not necessary to use the
whole image but to extract a region. This can be done in SNAP using the subset
operator, which slices the image according to a specific area. Moreover, cutting an
image before performing other processing reduces memory consumption, processing
time, and storage. The geographic coordinates of the AOI in WKT format may be
required for this step.

7. Filtering: Radar images contain some noise called speckle, which degrades them
and makes them unusable in most cases. To improve the quality of the data and
their analysis, it is useful, in some cases, to reduce the speckle effect using filtering.
The speckle filtering operation allows one to remove as much noise as possible
and improve the readability of the images. There are several filtering algorithms
and methods such as simple spatial filtering, spatio-temporal filtering, or multi-
temporal filtering.

8. Converting values to decibels: Before writing the data to disk, the last step in the
processing chain is the conversion to decibel scale to convert the initial pixel values
to decibels (dB). In fact, SAR imagery has a high value range, and the decibel trans-
formation is made to improve data visualization and analysis. Typically, this is done
using a logarithmic transformation that stretches the radar backscatter over a more
usable range that has a nearly Gaussian distribution.

9. Write: The last operation of the process is the writing of the resulting data to the disk.

Each of the used operators are presented below and the corresponding parameters are
described in Table 2.

Table 2. The parameters used for each operator.

Operator Parameter Value

Read Data format Any format

Apply orbit file Orbit state vectors Sentinel precise (Auto download)
Polynomial degree 3

Border noise removal
Polarizations 500

Threshold 0.5
Polarizations VH, VV

Calibration Polarizations VH, VV
Output sigma0 band True

Terrain correction

Source bands band Sigma0_VH, Sigma0_VV
DEM SRTM 3 s (Auto download)

DEM resampling method Bilinear interpolation
Image resampling method Bilinear interpolation

Pixel spacing 10 m
Map projection MP1 1 for BNP and DBR; MP2 2 for WRT

Selected source bands True

Subset
Source bands Sigma0_VH

Copy metadata True
Geographic coordinates WKT1 3 (BNP), WKT2 4 (DBR) and WKT3 5 (WRT)

Subset (2)
Source bands Sigma0_VV

Copy metadata True
Geographic coordinates WKT1 3 (BNP), WKT2 4 (DBR) and WKT3 5 (WRT)

Speckle filtering Source bands VH
Filter Refined Lee

Speckle filtering (2) Source bands VV
Filter Refined Lee

Linear to dB Source bands VH
Linear to dB (2) Source bands VV

Write Save as BEAM-DIMAP

Write (2) Save as BEAM-DIMAP
1 MP1 = EPSG:32633-WGS84/UTM 33N; 2 MP2 = EPSG:32631-WGS84/UTM 31N; 3 WKT1 = POLYGON ((14.411
8.480, 14.914 8.480, 14.914 8.996, 14.411 8.996, 14.411 8.480, 14.411 8.480)); 4 WKT2 = POLYGON ((12.480 2.904,
12.480 3.350, 13.369 3.350, 13.369 2.904, 12.480 2.904)); 5 WKT3 = POLYGON ((1.398 6.761,1.611 6.759,1.613
6.930,1.400 6.932,1.398 6.761)).
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3.2.3. Batch Processing Using GPT

Each graph designed with the SNAP graph builder can be exported as an XML file
to automate the process. Even though it is possible to run batch processing from SNAP
software, it is recommended to execute operators via the SNAP GPT tool for greater
flexibility. The GPT tool is the command-line interface of SNAP that is used to execute
raster data operators in batch mode. This is another way to perform batch processing
without using the graphical user interface mode within the SNAP software. To use the
gpt command, the operations can be processed individually, or they can be processed in a
defined workflow.

Instead of specifying operator parameters separately in the processing stream, it is
possible to use the XML-encoded file as a parameter of the gpt command. The general
syntax used to execute the command for one image is offered below.

gpt <GraphFile.xml> [ options ] [<sourcefile1> <sourcefile2> ...]

All the XML files used to process images corresponding to the three study areas have al-
most the same content. The main difference lies in the geographical coordinates used to clip
the images (subset operator) and the map projection system (terrain correction operator).

To simultaneously execute the processing of all the raw images, the researchers pro-
posed a bash script. The code lines were written to be executed in a Unix environment. This
script browses the whole directory and applies the processing chain to each found image.
The advantage of having each file name written according to a particular naming convention
(Online (Available): https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-
1-sar/ (accessed on 10 May 2022)) is that it allows one to receive the acquisition date of each
image and rename the processed image. For instance, a raw image name is renamed after
processing into 20150409_VH.dim for the VH band and 20150409_VV.dim for the VV band.
This change facilitates the subsequent use and manipulation of the processed images.

S1A_IW_GRDH_1SDV_20150409T171237_20150409T171302_005410_006E19_7760.zip

The XML files defining all the preprocessing operations and the scripts to execute data
in the batch are available at http://w-abdou.fr/sits/ (accessed on 10 August 2022).

At this stage of the preprocessing workflow, the images can be used for many other
applications such as classification, segmentation, spatio-temporal analysis, and so on. For
each use case, specific operations must be performed on the preprocessed data. For the
specific case of using datasets for SITS prediction, the operations described in the following
section prepare the data so that it can be provided to DL networks.

3.2.4. Data Preparation for Use with DL Algorithms

Once the SITS are available, the next step is to prepare the data for use with DL
algorithms. Indeed, time series data must be transformed before it can be used in a
supervised learning model.

In a univariate supervised learning problem, there are input variables (X), output
variables (Y), and a model that uses an algorithm to learn the mapping function from the
input to the output: Y = f (X) [8]. In this paper, the researchers present a method used to
transform univariate time series (univariate time series are sequences of data consisting of
a single set of observations with a temporal order (such as SITS)) to solve sequence-to-one
forecasting problems where the inputs are a sequence of data and only one occurrence of
data is offered as an output.

First, to simplify the use of the DL algorithms, all the images are transformed into
JPG files, normalized, and reshaped to smaller sizes before the preparation step. Each
image of the series has the shape (W, H, N), where W, H, and N denote the number of
rows, columns, and channels for each image, respectively. Note that chronological order
of images must be kept in each data since the researchers were studying forecasting tasks,
and 80% of the data was selected for model training with the remaining 20% for testing.

https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/naming-conventions
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/naming-conventions
http://w-abdou.fr/sits/
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Next, the DL model to design requires that data are provided as a collection of samples,
where each sample has an input component (X) and an output component (Y), as presented
in Table 3. This transformation allows one to know what the model will learn and how the
model can be used to make predictions. After transforming the data into a suitable form,
they are represented as rows and columns.

Table 3. A univariate time series converted to supervised learning.

X_Train Y_Train

[X1, X2, X3, X4, X5] X6
[X2, X3, X4, X5, X6] X7
[X3, X4, X5, X6, X7] X8

... ...
[Xt−5, Xt−4, ..., Xt−1] Xt

For two-dimensional data using DL networks, such as convolutional neural networks
(CNN) or long-short term memory (LSTM) for prediction, additional transformations are
required to prepare the data before fitting models. Thus, the data are transformed to the
form of (samples, timestep, W, H, f eatures), where samples are the sequences, timestep is
the number of occurrences in each sample, and f eatures correspond to the number of
variables to predict.

In sum, to prepare the time series data for fitting predictive DL models, the following
actions are necessary:

• Resize the data;
• Organize data into a training set and test set (80% and 20%);
• Split the univariate sequence into samples (generate X_train and Y_train samples);
• Reshape data from [samples, timestep] into [samples, timestep, W, H, f eatures].

4. Results
4.1. Used Tools

The experiments were carried out on a computer with a GNU/Linux operating system
(Ubuntu 20.04.1 LTS). Table 4 gives the main hardware characteristics of the system used in
this study.

Table 4. Hardware characteristics. CPU: central processor unit.

Memory 96 gigabytes (GB)
Processor Intel Xeon (R) CPU E5-2609 v4

Processor frequency 1.70 GHz × 16
Graphic card NVD9

Hard Disk 1.5 terabyte (TB)

As far as software tools are concerned, the following programs were used:

• SNAP 8.0: A tool used to design and implement the automatic batch processing
workflow. This software also allowed to display and analyze the downloaded data;

• QGIS 3.16.0-Hannover: A program used for manipulating the shape-files and the
geographic information. This tool was also used to analyze the obtained image
time series;

• Python 3: A programming language mainly used for download scripts;
• Tensorflow: A Google open source tool dedicated to machine learning;
• Google Colaboratory environment (Colab pro) (www.colab.research.google.com (ac-

cessed on 10 August 2022)): to have a privileged access cloud to a graphical processor
unit (GPU).

4.2. Preprocessed Dataset Description

At the end of this study, a database of three time series of preprocessed S1 images is
built. The SITS are from the selected study areas, namely the BNP, the DBR, and the WRT.

www.colab.research.google.com
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During the preprocessing chain execution, no intermediate files are saved. In fact, only the
final results are saved on the disk. Since the sizes of the raw images are very large, this
avoids unnecessary use of storage memory.

A total of 628 images are downloaded with the Python programs. Each raw image,
with an average size of 1 GB, is downloaded as a compressed file (zip) using an average
rate equal to ten megabytes per second (MB/s). It took about 18 h to download all the data
with a total size of 654.9 GB. One can notice that a fast internet connection is recommended
for this step. The summary of the download information is given in Table 5.

Table 5. Download summary.

Site No of Files Total Size Total Time Average Rate

BNP 204 198.1 GB 6.2 h 9.94 MB/s
DBR 207 247.0 GB 6.2 h 10.01 MB/s
WRT 217 209.8 GB 5.6 h 10.04 MB/s

The analysis of the collected images depicts that some data are missing in the time
series. Indeed, there is about 6% of missing data for the BNP and DBR areas, compared
to only 2% for the WRT. Table 6 gives the list of dates (dd/mm/yyyy) where images are
not available for each study area. The column “Percentage” represents the proportion of
missing data.

Table 6. List of dates corresponding to the missing data.

Study Area No of Missing Data Percentage Dates

PNB 15 6.85%
21/04/2015, 03/05/2015, 15/05/2015, 08/06/2015, 20/06/2015, 07/08/2015, 31/08/2015, 24/09/2015,
05/10/2015, 17/10/2015, 29/10/2015, 27/02/2016, 27/04/2016, 26/06/2016, 29/03/2017, 21/06/2017,

20/12/2019.

DBR 14 6.33% 19/04/2015, 01/05/2015, 13/05/2015, 30/06/2015, 29/08/2015, 10/11/2015, 27/12/2015, 01/02/2016,
25/02/2016, 25/04/2016, 24/06/2016, 12/12/2020, 12/01/2021, 12/05/2022.

WRT 05 2.25% 02/05/2015, 29/10/2015, 28/12/2015, 25/06/2016, 22/05/2018.

The raw satellite images contain a lot of information and are very large. Their pro-
cessing is often time-consuming and requires a processing unit with good capabilities.
Table 7 presents the performed processing time for each study area. In sum, about 16 h
were required for the three areas. The WRT presents the smallest processing time because
the surface considered for the raw image slicing was the smallest, only 44,379 hectares (ha).

Table 7. Processing time for each study area.

Site Processing Time Subset Surface

BNP 4 h and 45 min 220,667 ha
DBR 8 h and 4 min 486,964 ha
WRT 3 h 48 min 44,379 ha

The constructed datasets (Figure 7) are available at http://w-abdou.fr/sits/ (accessed
on 10 August 2022) and can be downloaded for free. A total of 1256 preprocessed images
in VV and VH polarization are proposed: 408 for BNP, 414 for DBR, and 434 for WRT.

Table 8 gives the characteristics of each dataset. Since the pixel size of the images is
10 m, the areas in hectares for each of the AOI are approximately 221,000 for BNP, 490,000
for DBR, and 44,500 for WRT.

http://w-abdou.fr/sits/
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Figure 7. Representation of VH-bands for BNP, DBR, and WRT S1 image time series.

Table 8. Main characteristics of the preprocessed datasets.

Site Image Size Pixel Size Dates No of Images Total Size Data Type File Type

BNP 5553 × 3980 10 m From 09 April 2015 to 01 July 2022 408 39.2 GB Float32 DIMAP
DBR 9899 × 4948 10 m From 07 April 2015 to 29 June 2022 414 84.7 GB Float32 DIMAP
WRT 2380 × 1869 10 m From 27 March 2015 to 30 June 2022 434 11.1 GB Float32 DIMAP

Figure 8 shows plots extracted from each AOI. It allows distinguishing globally the
type of land cover in each image, thanks to Figure 8a, which corresponds to the RGB image
from Google satellite images. Google satellite images show a natural view of surfaces and
are imported from the QGIS Tile+ plugin. For example, one can deduce from Figure 8a
that the DBR area is essentially made up of forest cover, while in the BNP there is a lot of
savannah or bare soil. The red rectangle shown in Figure 8c delineates the area extracted
from the base image and displayed in Figure 8b by an image at a scale of 1:50,000 from
QGIS. The extracted areas displayed in Figure 8b have a surface of about 19,800 ha.

Figure 8. Representation of land parcels extracted from images for BNP, DBR, and WRT AOI: (a) RGB
natural-color image of Google satellite sensor representing the extracted area; (b) view of the extracted
area at scale 1:50,000; (c) image of the VH band representing the whole AOI.
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4.3. Experiments

In this paper, a methodology to collect, preprocess and prepare SITS for use with
DL algorithms is presented. The experiments resulted in three datasets that can be used
for a variety of applications. To test the effectiveness of the proposed methodology and
demonstrate the practicality of the datasets, three LSTM architectures suitable for prediction
problems in SITS [8] are applied to the VH-band images of BNP and WRT areas. The pre-
sented application focuses on SITS prediction problem. In particular, the CNN-LSTM [42],
ConvLSTM [43], and Stack-LSTM [44] models are trained with BNP and WRT SITS in order
to learn how changes occur from one image to the next one, and then predict the next
occurrence of an input sequence. The input size is set to five (timestep = 5) and the models
are designed to forecast only one element ( f eatures = 1).

To simplify the operations, the original images are converted to JPG format with the
Geospatial Data Abstraction Library (GDAL) and resized to the shape (512, 512, 1). All the
preprocessed images from 2015 to 2022 are used as follows: 80% for the training step and
20% for testing.

The description of the layers for the CNN-LSTM, ConvLSTM, and Stack-LSTM models
are summarized, respectively, in Tables 9–11.

Table 9. Description of the CNN-LSTM network layers.

Layer (Type) Output Shape Parameters

Conv2D (None; 1; 510; 510; 8) 80
Maxpooling (None; 1; 170; 170; 8) 0

Flatten (None; 1; 231,200) 0
LSTM (None; 1; 512) 474,548,224
LSTM (None; 512) 2,099,200
Dense (None; 262,144) 134,479,872

Reshape (None; 512; 512) 0
Dense (None; 512; 512) 262,656

Total parameters = 611,390,032
Trainable parameters = 611,390,032
Non-trainable parameters = 0

Table 10. Description of the ConvLSTM network layers.

Layer (Type) Output Shape Parameters

ConvLSTM2D (None; None; 512; 512; 32) 38,144
Batchnormalization (None; None; 512; 512; 32) 128

ConvLSTM2D (None, None; 512; 512; 16) 27,712
Batchnormalization (None; None; 512; 512; 16) 64

ConvLSTM2D (None; 512; 512; 16) 18,496
Batchnormalization (None; 512; 512; 16) 64

Dense (None; 512; 512; 512) 8704
Dense (None; 512; 512; 1) 513

Total parameters = 93,825
Trainable parameters = 93,697
Non-trainable parameters = 128

Table 11. Description of the Stack-LSTM network layers.

Layer (Type) Output Shape Parameters

Flatten (None; 5; 262,144) 0
LSTM (None; 5; 128) 134,283,776
LSTM (None; 5; 128) 131,584
LSTM (None; 5; 128) 131,584
Dense (None; 262,144) 33,816,576

Reshape (None; 512; 512) 0
Dense (None; 512; 512) 262,656

Total parameters = 168,626,176
Trainable parameters = 168,626,176
Non-trainable parameters = 0

The root mean square error (RMSE) loss function defined by (1) and the adaptive
moment optimization function adam [45] are used as parameters for the compilation of
the models.
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RMSE =

√
∑n

i=1(pi − oi)2

n
(1)

where n represents the sample size, pi represents the predicted values and oi the ob-
served ones.

In order to evaluate the predictive capabilities of the models, the following image
quality measures are used:

• The structural similarity (SSIM) index defined by (2);
• The mean squared error (MSE) [46] defined by (3);
• The Pearson correlation coefficient (r) [47] defined by (4).

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(2)

where x, y are the compared images, µx µy represent the means of x and y, σxy is
the cross-covariance for the images, σ2

x and σ2
y represent the variances, and c1, c2 are

constants used to stabilize the division when the denominator is very low [48].

MSE =
1

r× c

r−1

∑
i=0

c−1

∑
j=0

(x(i, j)− y(i, j))2 (3)

where x is the actual image, y is the predicted image, and r× c is the size of images.

r = ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i (yi − ȳ)2
(4)

where xi and yi represent the intensity of the ith pixel for the first and the second
images, respectively. x̄ and ȳ are the mean intensity of the first and the second images,
respectively, and n is the sample size.

Table 12 summarizes the image quality metrics used to evaluate the DL models. One
can notice that the three LSTM architectures produce satisfactory results in both AOI when
the whole datasets are used. When only 50% of the dataset is used to train the models, one
can notice that the predictions are less good than with more data. These results highlight
the importance of having a long dataset to expect good predictive results.

Table 12. Evaluation metrics for CNN-LTSM, ConvLSTM, and Stack-LSTM models.

100% of Dataset 50% of Dataset
AOI Architecture MSE SSIM r MSE SSIM r

BNP
CNN-LSTM 0.67 0.92 0.98 0.92 0.89 0.97
ConvLSTM 0.58 0.95 0.93 0.76 0.90 0.87
Stack-LSTM 0.62 0.90 0.94 0.68 0.88 0.91

WRT
CNN-LSTM 0.80 0.87 0.95 0.92 0.78 0.92
ConvLSTM 0.93 0.92 0.90 0.76 0.90 0.91
Stack-LSTM 0.78 0.83 0.92 0.90 0.78 0.89

The results of prediction with all the BNP and WRT datasets are shown in Figures 9 and 10.

4.4. Other Uses

The preprocessed SITS can be used for multiple applications including land use and
land cover change prediction, crop monitoring, and agricultural and forestry resources
analysis, to name a few. Moreover, SITS are also useful to improve the quality of the data
or to analyze and understand specific features (multi-temporal filtering, temporal profile
analysis, statistical operations, and so on).
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Figure 9. Prediction results obtained for BNP with: (a) CNN-LSTM model; (b) ConvLSTM model;
(c) Stack-LSTM model. timestep = 5.

Figure 10. Prediction results obtained for WRT with: (a) CNN-LSTM model; (b) ConvLSTM model;
(c) Stack-LSTM model. timestep = 5.

4.4.1. Multi-Temporal Filtering

The image time series can be used to improve the quality of S1 data by reducing the
speckles (filtering operation). As shown in Figure 11, when representing filtered images
one can observe that the quality of the obtained image with a multi-temporal filter is better
than that obtained with filtering performed on a single product. Multi-temporal filtering
not only reduces significantly the speckle (“salt and pepper” effect) but also preserves the
features very well. A multi-temporal speckle filtering is only possible when a stack of time
series images is available. The more images in the time series, the better the quality of the
speckle filtering. Figure 11 shows the difference between the image processed with a single
filter, and the image processed with a multi-temporal filter.

4.4.2. Temporal Profile Analysis

The analysis of the temporal profile can be important in the context of studying
a particular type of crop. It allows us to understand for example the behavior of the
backscatter coefficients and can be very relevant to identify the crop patterns.
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Figure 11. Comparison of filtering approaches on VH bands of BNP images: (a) filtering with a
multi-temporal filter; (b) filtering with a single filter.

The QGIS Value tool plugin was used to identify the temporal profile of pixels over
the BNP time series. For example, Figure 12 shows the variation of the value of two pixels
on the time series of VH band images. The first pixel is extracted from a water surface
(Figure 12a) and the second corresponds to an agricultural area.

Figure 12. Temporal profile of pixels belonging to two soil types in the BNP image time series. The
pixel values of the VH-band images are in dB and vary with the dates in the time series: (a) profile of
the pixel with coordinates (444981, 956504) in a water surface; (b) profile of the pixel with coordinates
(448858, 972155) in an agricultural area.

The pixel from the agricultural area has coordinates (448858, 972155) and has a partic-
ular behavior over time as shown in Figure 12b. This variation is possibly due to seasonal
changes. The values increase and then decrease in a fairly regular cycle (stationary series).
However, if we consider the second pixel with coordinates (444981, 956504) from another
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area of the same series (water surface), the behavior presented on the curve is different, as
shown in Figure 12a. In the latter case, the fluctuations in value are less important. This
means that over time there is no significant change for the pixels belonging to this class.

4.4.3. Statistics on Time Series

In some analyses, it may be necessary to perform some calculations on the image
series. In fact, it may happen that objects are not visible in some images. With the time
series, it is possible to create an image consisting only of the minimum values of each pixel
in the series to highlight some features. Other similar operations are also possible including
mean, maximum, mode, sum, variance, and so on. Figure 13 gives an overview of a part
of the BNP image consisting of the minimum values of the series. One can observe that
some elements appear better compared to an image on a single date. Moreover, as with
multi-temporal filtering, there is less speckle on the resulting image.

Figure 13. Comparison between two BNP VH-band images: (a) image on a single date; (b) image
with minimumm values of pixels in the time series.

5. Conclusions

In this study, the researchers propose processes for automatic downloading and batch
processing of S1 images. The presented processing workflow was designed based on the
GPF of SNAP software. The study resulted in three time series made of preprocessed
Sentinel-1A (Level-1 GRD) images in VV and VH polarizations. The researchers considered
three study areas: the BNP, the DBR, and the WRT. A seven-year long-term series (1256 pro-
cessed images), along with the source codes used, were made available to the public. The
resulting datasets which are diverse can be used for multiple purposes, including time
series prediction problems with DL algorithms such as deforestation forecasting. More-
over, the time series can help other applications such as multi-temporal speckle filtering,
classification, and time series analysis for the considered areas. To validate the proposed
workflow, the CNN-LSTM, ConvLSTM, and Stack-LSTM architectures were used for the
next occurrence prediction in Sentinel-1 image sequences. For each of the series, missing
data were found, likely due to sensor failures. Yet, having a complete series is an essential
element that influences the quality of the predictions. It would, therefore, be relevant to
propose algorithms to reconstruct the missing data in the Sentinel-1 image time series to
have complete sequences in future works.
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Abbreviations
The following abbreviations are used in this manuscript:

AOF Apply Orbit File
AOI Area of Interest
ASF Alaska Satellite Facility
BNP Bouba Ndjida National Park
BNR Border Noise Removal
BSB Binational Sena Oura–Bouba Ndjida
CNES National Center of Space Studies
CNN Convolutional Neural Network
dB Decibel
DBR Dja Biosphere Reserve
DEM Digital Elevation Model
DL Deep Learning
EO Earth Observation
ESA European Space Agency
EW Extra Wide Swath
GB Gigabyte
GDAL Geospatial Data Abstraction Library
GPF Graph Processing Framework
GPU Graphical Processor Unit
GPT Graph Processing Tool
GRD Ground Range Detected
h Hours
ha Hectares
IW Interferometric Wide Swath
JAI Java Advanced Imaging
LSTM Long Short-Term Memory
MB Megabyte
MSE Mean Square Error
RMSE Root Mean Square Error
S1 Sentinel-1
S1A Sentinel-1A
S1B Sentinel-1B
S2 Seninel-2
SITS Satellite Image Time Series
SM Stripmap
SNAP Sentinel Application Platform
SSIM Structural Dimilarity

http://w-abdou.fr/sits/ 
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WKT Well-Known Text
WRT Wildfire Reserve of Togodo
WV Wave
XML eXtensible Markup Language
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