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Abstract: This study validates the hourly satellite based and reanalysis based global horizontal
irradiance (GHI) for sites in South Africa. Hourly GHI satellite based namely: SOLCAST, Copernicus
Atmosphere Monitoring Service (CAMS), and Satellite Application Facility on Climate Monitoring
(CMSAF SARAH) and two reanalysis based, namely, Fifth generation European Center for Medium-
Range Weather Forecasts atmospheric reanalysis (ERA5) and Modern-Era Retrospective Analysis
for Research and Applications (MERRA2) were assessed by comparing in situ measured data from
13 South African Weather Service radiometric stations, located in the country’s six macro climatologi-
cal regions, for the period 2013–2019. The in situ data were first quality controlled using the Baseline
Surface Radiation Network methodology. Data visualization and statistical metrics relative mean
bias error (rMBE), relative root mean square error (rRMSE), relative mean absolute error (rMAE), and
the coefficient of determination (R2) were used to evaluate the performance of the datasets. There
was very good correlation against in situ GHI for the satellite based GHI, all with R2 above 0.95.
The R2 correlations for the reanalysis based GHI were less than 0.95 (0.931 for ERA5 and 0.888 for
MERRA2). The satellite and reanalysis based GHI showed a positive rMBE (SOLCAST 0.81%, CAMS
2.14%, CMSAF 2.13%, ERA5 1.7%, and MERRA2 11%), suggesting consistent overestimation over the
country. SOLCAST satellite based GHI showed the best rRMSE (14%) and rMAE (9%) combinations.
MERRA2 reanalysis based GHI showed the weakest rRMSE (37%) and rMAE (22%) combinations.
SOLCAST satellite based GHI showed the best overall performance. When considering only the
freely available datasets, CAMS and CMSAF performed better with the same overall rMBE (2%),
however, CAMS showed slightly better rRMSE (16%), rMAE (10%), and R2 (0.98) combinations than
CMSAF rRMSE (17%), rMAE (11%), and R2 (0.97). CAMS and CMSAF are viable freely available
data sources for South African locations.

Keywords: satellite; reanalysis; global horizontal irradiance; SOLCAST; Copernicus Atmosphere
Monitoring Service (CAMS); Satellite Application Facility on Climate Monitoring (CMSAF); fifth
generation European Center for Medium-Range Weather Forecasts atmospheric reanalysis (ERA5);
Modern-Era Retrospective Analysis for Research and Applications (MERRA2)

1. Introduction

Solar radiation is the electromagnetic radiation or energy emitted from the surface
of the Sun because of the fusion of atoms inside the sun [1]. Global horizontal Irradiance
(GHI) is the electromagnetic radiation that reaches the Earth’s horizontal surface after
passing through the atmosphere and is the sum of direct normal irradiance (DNI), which
is the incident radiative flux on the surface without interacting with the atmosphere and
diffuse horizontal irradiance (DIF), which is because of the scattering of radiation by the
atmospheric constituents [2]. Accurate knowledge of GHI is important for the technical
and economic evaluation of solar energy technologies [3–8] and in the development and
validation of empirical models [6]. Amongst the myriad of applications, GHI is important
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in climate change and environmental studies, agricultural sciences, hydrology, atmospheric
research [6,7], and in astronomy [6]. GHI is also important in assessing ultraviolet effects on
health as well as in material science [6], and in the development of a typical meteorological
year of a country. Therefore, obtaining true solar measurements at a location is important.

GHI measurements taken from radiometric stations using at least a good quality
(broadband) operational pyranometer remain the most accurate way to collect GHI data.
However, GHI monitoring stations are sparse and expensive to install and maintain. As a
result, data are only available for a limited number of locations [6,8–14].

Alternative sources of GHI data include models such as the Ångström–Prescott model.
Though the model with calibrated coefficients can be used to accurately estimate GHI
data [13–15], the drawback might be the unavailability of sunshine duration data that are
needed as an input at some areas. Another limitation of the Ångström–Prescott model
is that the highest possible temporal resolution of estimated GHI is the daily average, so
the model is not capable of estimating hourly averages. According to Žák et al. [16], GHI
data can also be generated by interpolation of measured in situ GHI. The drawback of the
interpolation method is the biases that are introduced by interpolation, and the additional
errors introduced by using sparsely distributed in situ stations.

Given that GHI datasets are critical for better understanding of wider coverage of
solar radiation [10], satellite and reanalysis based GHI datasets can be used to provide
reliable alternative GHI data and compensate for the scarcity of monitoring stations by
increasing the density of GHI data. The satellite or reanalysis-based datasets must first be
validated by using GHI data from a good quality pyranometer [9,11,12,16–20] to obtain
proof of their reliability before they are used in different applications.

The satellite based, reanalysis based, and in situ measurements differ in spatial and
temporal resolutions. This creates challenges when using satellite based and reanalysis
based GHI datasets as alternative GHI sources [21]. To address these challenges, there has
been an improvement in the spatio-temporal resolution of satellites and reanalysis-based
datasets in the past few years [21,22]. According to Slater (2016) [22], the improvement
was due to the advances in modeling and data assimilation systems. However, there
are still challenges due to limited spatio-temporal coverage of observation data in some
areas as required by the models, for example, in South Africa, there is only one Baseline
Surface Radiation Network (BSRN) station. Baseline Surface Radiation Network (BSRN)
was established in 1992, and is a centralized database that archives one minute temporal-
resolution in situ radiation measurements from 59 stations worldwide. The archived
data are used for the validation of satellite data and improvement in radiative transfer
calculations in climate models [23].

The algorithms that are used to convert satellite images to estimate GHI data depend
on inputs of meteorological parameters (albedo, cloud thickness, aerosols, water vapor, and
ozone content). When the parameters have not been measured in some areas, estimated or
monthly climatologies are used. Climatological values might not fully represent changes
in atmospheric constituents, and as a result, introduce errors in the estimated GHI data
when used as inputs.

This study aims to contribute to the reviewed literature by quantifying the errors
between the in situ measured GHI and estimated gridded datasets such as to validate
satellite-based datasets (SOLCAST, CAMS, and CMSAF SARAH) and reanalysis-based
datasets (ERA5 and MERRA2) relative to quality controlled in situ data from 13 reference
stations managed by the South African Weather Services (SAWS). The validation was
conducted on an hourly temporal scale over all six macro climatic zones of South Africa.
This can be applied in studies for overall local accuracy of the datasets to be evaluated.

Validated datasets could be used to estimate GHI in the long-term and over a wide
spatial resolution in South Africa. This will enable climate studies, which is generally not
possible with ground observed data because there are no continuous long-term records
covering decades and covering all areas of the country. The validated datasets could also be
used as an additional quality control parameter of the measured data. The bias information
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from different sources of GHI in different areas of the country can be used as a basis for
bias correction. The bias corrected data sources could also be merged with measured in
situ data by applying interpolation with external drift kriging to produce most accurate
GHI maps than when using an individual data source, as shown by [24,25].

2. Literature Review

GHI varies from point to point in an area and from time to time. Validation studies
have been carried out worldwide to quantify the errors between in situ measured GHI and
gridded data sources and is an ongoing process. This is because the algorithms and inputs
that are used to generate the gridded data sources are continuously evolving. The findings,
the challenges, and recommendations of some of the studies that have been carried out are
summarized in Table 1.

The study by Bright [26] validated hourly SOLCAST GHI data, which is satellite based,
against 48 BSRN stations by considering individual stations and grouping stations into
global climates. There was a good agreement across all climates (Table 1). The author
emphasized that a comparative study against freely available alternative satellite based
and reanalysis GHI datasets is necessary to gauge its performance. Yang and Bright [17]
validated six satellite based and two reanalysis based GHI data sources using hourly data
from 57 BSRN stations spread across all continents. They found that reanalysis products did
not perform well compared to satellite-based products, since they overestimated irradiance
in most sites (Table 1). The authors found that each gridded product had a site where
it performed better, so testing different available gridded datasets at different sites was
emphasized. It was also shown that SOLCAST, which is a commercial satellite-based
product, did not outperform the freely available products at all sites, but overall, it was the
best performing product.

Merchand et al. [27] validated the CAMS satellite-based dataset against hourly GHI
from 16 stations from the Royal Meteorological Institute KNMI in the Netherlands, a
temperature climate without a dry season and warm winter. The reference stations were
located inland and along the coast. They found that CAMS satellite-based datasets could
very well estimate the hourly-to-hourly variation in GHI (Table 1). The biases reported
were suspected to be due to the McClear model, described by Lefèvre et al. in [28], and an
input to the Heliosat-4 method, described by Qu et al. in [29], but failed to identify actual
cloud free conditions in some regions due to errors in aerosols used as inputs to the McClear
model. Negative rMBEs were reported from stations located along the southern coast and
positive rMBE were reported from inland stations (Table 1). The authors concluded that the
data were of low moderate quality and disagreed with some studies, for example, in [9],
which found the data to be of moderate quality. The disagreement was suspected to be due
to the low number of cloud free days in the Netherlands.

Thomas et al. [30] used the CAMS satellite based against hourly GHI data from
42 stations in Brazil to assess the quality of the satellite datasets in Brazil. Prior to their
validation exercise, the datasets were only validated in Europe and North Africa. They
found that the CAMS satellite-based dataset could estimate hourly GHI (Table 1). The
biases increased with the viewing angle of the satellite. Additionally, the biases were
high in tropical climates because of high humidity. CAMS overestimated GHI, but it was
deemed suitable for solar energy applications.

Ameen et al. [20] validated CAMS satellite-based dataset in Northeast Iraq, which has
a complex topography, using hourly observation data from nine stations. It was found
that the CAMS satellite-based dataset captured the spatio-temporal trends of the measured
data in clear sky, cloudy sky, and all sky conditions (combination of clear sky and cloud
conditions). The performance was found to be better for clear sky and all sky conditions,
but worse in cloudy sky conditions. For all sky, the results were as shown in Table 1. The
dataset was recommended for use in solar resource applications. Further validation of the
CAMS satellite-based data in other areas was recommended.
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Table 1. Summary of the validation results from the literature review (the rMBE and rRMSE results were rounded off to the
nearest whole number).

Study Dataset rMBE rRMSE R2

Bright [26] SOLCAST (climates) −0.1% to 1% - -

SOLCAST (individual stations) −18% to 6% 6% to 44% 0.42 to 0.97

Yang and Bright [17] SOLCAST −5% to 3% 9% to 30% -

CAMS −14% to 30% 9% to 45% -

CMSAF 27% to 40% 10% to 80% -

ERA5 15% to 72% 8% to 120% -

MERRA2 20% to 76% 10% to 128% -

Merchand et al. [27] CAMS −4% to 10% 20% to 28% 0.94 to 0.97

CAMS (inland) 1% to 10% 20% to 28% 0.94 to 0.97

CAMS (southern coast) −4% to −3% 23% to 24% 0.96

Thomas et al. [30] CAMS 2% to 16% 17% to 35% 0.89 to 0.97

Ameen et al. [20] CAMS (all sky conditions) −5% to 5.3% 14% to 20% 0.92 to 0.96

Marchand et al. [9] CAMS −4% to 7% 11% and 21% 0.92 to 0.98

Trolliet et al. [31] CMSAF SARAH 2% to 12% - 0.92 to 0.98

CAMS 2% to 8% - 0.93 to 0.97

ERA5 −2% and 5% - 0.88 to 0.93

MERRA2 −10% to 4% - 0.83 to 0.91

Marchand et al. [9] validated the CAMS satellite-based dataset against hourly observed
GHI from five stations located in northern and central parts of Morocco to investigate how
the bias of the stations located in the same climate varied. They found that the dataset was
capable of estimating GHI (Table 1) and CAMS slightly overestimated GHI. Overall, there
was a variation from site to site, but the dataset was recommended as a reliable source of
estimated GHI data.

Trolliet et al. [31] validated satellite-based datasets (CMSAF SARAH and CAMS) and
reanalysis based (ERA5 and MERRA2) against hourly observed GHI data in the tropical
Atlantic Ocean collected by five buoys of the Prediction and Research Moored Array in
the Tropical Atlantic (PIRATA) network. The PIRATA network was established in the mid-
1990s to study ocean–atmosphere interactions in the tropical Atlantic that affect regional
weather and climate variability [32]. It was found that satellite-based datasets performed
well (Table 1). Reanalysis datasets were found to report clear sky conditions while the
actual conditions were cloudy and vice-versa. The reanalysis cloud parameterization
scheme was suspected to be weak and contributed to large biases reported. ERA5 and
MERRA2 were not recommended to estimate hourly temporal variability of GHI in the
tropical Atlantic Ocean, but that they could be used in annual variability studies. The
limitations of the study were that some buoys gathered African dust and the pyranometers
may have been affected by the motion of the buoys; these factors might have contributed
to the biases reported.

Since the satellite and reanalysis gridded datasets considered were generated by
applying different algorithms, a variation in performance was expected in different stations,
hence the need for quantifying errors in different locations.

3. Materials and Methods
3.1. Observation or Reference GHI Data

The South African Weather Service (SAWS) manages a radiometric network of 13 stations
that are distributed in all six macro-climate regions in South Africa (with location and



Geomatics 2021, 1 433

climate as shown in Figure 1 and given in Table 2). The color shaded climate zones shown
in Figure 1 are based on SAWS macro classification and the climate codes, which are
indicated in square brackets, are the “micro” zones based on the Council for Scientific
and Industrial Research (CSIR) Köppen–Geiger climate classification (KGCC), as given by
Conradie in [33].

Figure 1. A map showing the location of the South African Weather Service’s radiometric station,
SAWS macro climate zones, and with CSIR Köppen–Geiger “micro” climate in square brackets
(Adapted from [15,34,35]).

Table 2. South African Weather Services radiometric stations with Köppen–Geiger climate classification (KGCC), altitude,
latitude, climatic zones, average number of clear sky days per year (percentage of clear sky days per year), annual aggregated
diffuse fraction, humidity, and the percentage of data outliers removed per station (colors are described in Table 3).

Station KGCC
Altitude

(m)
Latitude

(◦)
GHI Observation Period

Clear Sky
Days

Diffuse
Fraction

Humidity
Outliers

(%)

Upington BWh 848 −28.48 1 February 2014 to 30 November 2019 97 (27) 0.18 35.4 4.47

Prieska BWh 989 −29.68 1 September 2013 to 31 August 2019 78 (21) 0.18 38 3.88

De Aar BWk 1284 −30.67 1 May 2014 to 31 December 2019 58 (16) 0.2 44.5 4.23

Bethlehem Cwb 1688 −28.25 1 January 2015 to 31 December 2019 43 (12) 0.31 59.1 6.57

Irene Cwb 1524 −25.91 1 March 2014 to 31 December 2019 62 (17) 0.3 54.9 2.99

Mahikeng BSh 1289 −25.81 1 January 2016 to 31 December 2019 77 (21) 0.24 43.9 6.4

Polokwane BSk 1233 −23.86 1 March 2015 to 31 December 2019 49 (13) 0.31 58.2 5.12

Nelspruit Cwa 870 −25.39 1 February 2014 to 31 December 2019 39 (11) 0.4 62 5.85

Thohoyandou BSh 619 −23.08 1 March 2015 to 31 October 2017 50 (14) 0.34 60.8 4.06

Mthatha Cfb 744 −31.55 1 July 2014 to 31 December 2019 19 (5) 0.33 68.1 4.98

Durban Cfa 91 −29.61 1 March 2015 to 31 December 2019 20 (5) 0.39 72.8 5.34

Cape Point Csb 86 −34.35 1 February 2015 to 31 December 2019 12 (3) 0.34 77.2 4.96

George Cfb 192 −34.01 1 January 2015 to 31 December 2019 11 (3) 0.36 79.2 2.75
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Table 3. The coding representing the different levels of clear sky days, diffuse fraction, and humidity.

Parameter/Colour Humidity (H) Clear Sky Days (CL) Diffuse Fraction (DF)

Green H < 50% CL > 20% DF < 0.2

Yellow 50% < H < 60% 15% < CL < 20% 0.2 < DF < 0.25

Blue 60% < H < 70% 10% < CL < 15% 0.25 < DF < 0.32

Orange H > 70% CL < 5% DF > 0.32

Information on each of the stations (including site parameters, instrumentation,
datalogging, and quality control) is given in [15,34,35]. The area of study included all
13 South African Weather Service radiometric sites.

In Table 2, the cells for clear sky days, diffuse fraction, and humidity are color coded.
The coding represents different levels of clear sky days, diffuse fraction, and humidity.
The meteorological information is used to explain the reason behind the performance of
satellite-based and reanalysis datasets in different stations. The color-coding limits and
distributions are summarized in Table 3.

ERA5 hourly cloud data from 2013–2019 were used to calculate the average clear sky
days per year for each station, and this information was used to evaluate the performance
of datasets based on the frequency of cloud occurrences. Diffuse fraction and relative
humidity information for the study site were from Mabasa et al. (2018) [35].

3.2. Reanalysis Data

The choice of reanalysis datasets was based on the general free availability. The
spatial and temporal characteristics as well as the level of accessibility and applicable
regions of the reanalysis datasets are given in Table 4. Reanalysis datasets are generated
by assimilating historical observation data from various platforms (ground observation,
satellites, ships, and aircrafts) and numerical weather prediction models using a consistent
algorithm. Reanalysis datasets have an advantage of global spatial coverage and long-time
series [36].

ERA5, as described by Hersbach et al. (2020) [37], is the fifth generation European
Centre for Medium-Range Weather Forecasts (ECMWF, Reading, United Kingdom) atmo-
spheric reanalysis of the global climate. ERA5 has a spatial resolution of 0.25◦ × 0.25◦

and has an hourly time resolution. It uses a new advanced model cycle for Integrated
Forecasting System (IFS Cycle 41r2) for data assimilation, which increased the computa-
tional efficiency and forecast accuracy. ERA5 uses climatological aerosol information, and
the Global Ozone Chemistry Aerosol Radiation and Transport (GEOCART) stratospheric
sulfate aerosol from volcanic eruptions is also included [37]. The dataset covers a period
from 1979 to the present, hourly data are available in Joule per square meter (J/m2), so to
obtain the hourly values in watt per square meter (W/m2), values should be divided by
3600 (number of seconds in one hour).

The Modern-Era Retrospective Analysis for Research and Applications, version 2
(MERRA2), which was introduced by Gelaro et al. (2017) in [38], assimilates space-based
observations of aerosols and represents their interactions with other physical processes in
the climate system. MERRA2 products are generated using the GEOS 5.12.4 model, which
uses real time aerosols as inputs. MERRA2 data are available from 1980 to the present with
two months delay, has a spatial resolution of 0.5◦ × 0.625◦, and has an hourly resolution
for surface irradiance variables [38].

3.3. Satellite-Based Datasets

The choice of satellite-based datasets was based on the general free availability and
availability for research purposes. Information on the satellite datasets for this study is
given in Table 4. The relationship between the satellite images and the actual ground
GHI was established with an algorithm that combines cloud information, which is gener-
ated from a clear sky model and cloud index. Aerosol, water vapor, linke turbidity, and
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ozone information were also added as inputs to an algorithm, which will then generate
estimated GHI at the surface. The technique is also described in the literature including
Ameen et al. (2018) [20].

The Surface Solar Radiation Data Record—Heliosat Edition 2 (SARAH) dataset, as
described by Pfeifroth et al. (2019) [39] is provided by the EUMETSAT Satellite Application
Facility on Climate Monitoring (CMSAF) and covers the time period from 1983 to present,
with the temporal resolution ranging from 30 min instantaneous values. Amongst the
other products, the dataset provides GHI. CMSAF SARAH datasets are derived from the
geostationary METEOSAT satellite service of the first and second generation, which are
geostationary over Europe, Africa, and a small part of South America. In this case, the
data were retrieved by using the Heliosat method to estimate the cloud index, clear sky
radiative transfer model, and several climatological parameters (precipitable water vapor,
monthly AOD climatology, monthly ozone climatology, and ground albedo). CMSAF
SARAH data have a higher stability in early years due to the removal of erroneous satellite
images during the transition from the first to the second generation METEOSAT satellite.
CMSAF, as also given in Table 4, has a spatial resolution of 0.05◦ × 0.05◦ [39].

Table 4. Summary of the satellite-based and reanalysis based datasets.

Data Data Derived
from Time Period Spatial

Resolution
Temporal

Resolution
Data

Availability Region Available

SOLCAST [40] satellite 2007 to present 1–2 km 1 h Not free Almost Global (except
Polar regions and oceans)

CMSAF
SARAH [37] satellite 1983 to present 0.05◦ × 0.05◦

(5 km)
1/2 h, 1 day Free Europe, Africa, and a small

part of South America

CAMS [39] satellite 2004 to (current
day—2 days)

* Interpolated
to a point of

interest

1 min,
15 min,

1 h,
1 day,

1 month

Free
Europe, Africa, Middle East,

Eastern part of South
America and Atlantic Ocean

ERA5 [35] reanalysis 1979 to present 0.25◦ × 0.25◦

(31 km) 1 h Free Global

MERRA2 [36] reanalysis 1980 to (present—
2 months)

0.625◦ × 0.5◦

(50 km) 1 h Free Global

* (3–5 km in Southern Africa).

CMSAF SARAH was validated using twelve BSRN stations from three continents,
eight stations from Europe, one station from South America, and three from Africa (South
Africa, Algeria, and Namibia). The validating irradiance datasets were first quality con-
trolled using BSRN methodology and outliers were discarded [40].

The Copernicus Atmosphere Monitoring Service (CAMS) radiation service is part
of the Copernicus Program, an Earth observation program coordinated and managed by
the European Commission in partnership with the European Space Agency. The CAMS
radiation service is available for free via the CAMS [41] and solar radiation data (SoDa) [42].
It makes use of the Heliosat-4 method [29], which models the radiative transfer in the
atmosphere to compute the solar radiation parameters. The McClear model [28] is used
to estimate clear sky irradiance. The AVHRR Processing scheme Over cLouds, Land
and Ocean (APPOLLO) method is used to process the satellite images from the German
Aerospace Center database to yield information (cloud coverage, cloud level, and cloud
type) for each pixel (3 km at nadir) every 15 min [29]. Ground albedo from Moderate
Resolution Imaging Spectroradiometer (MODIS) is used, as given in Qu et al. (2017) [29].
The CAMS radiation service provides a time series of GHI with a spatial coverage of −66◦

to 66◦ in both latitudes and longitudes (i.e., North to South and East to West directions).
The data are interpolated to the point of the user’s interest. The time coverage of data
was from 1 February 2004 to date with a two day delay and with a temporal resolution
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that ranged from 1-min average, 15-min averages, hourly averages, daily averages, and
monthly averages [29,41,42].

The CAMS satellite dataset is regularly validated using global BSRN and non BSRN
stations. The validating in situ irradiation datasets were first quality controlled using the
BSRN methodology and outliers were discarded. The recent validation process in 2020
used 32 in situ stations and only one station from Southern Africa, Namibia (Gobabeb),
was used in the recent validation process [43].

SOLCAST is a commercial company [17,26,44]. The SOLCAST method estimates
solar irradiance from satellites by detecting cloud cover and characterizing cloud cover
in terms of its impact on solar radiance, modeling the available solar irradiance under
clear skies and then combining the estimate of the amount of solar irradiance reaching
the Earth’s surface after it passes through the clouds. In Africa, the EUMETSAT Meteosat
satellite and REST2v5 clear sky model [45] with MERRA2 reanalysis inputs (for metadata)
were used in SOLCAST GHI data estimation. The temporal resolution ranged from basic
time series (hourly averages) and alternative time series (5 min, 10 min, 15 min, and
30 min). One-minute data are also available on request. The data are available from
January 2007 to date with a seven day delay, through the SOLCAST website [44]. SOLCAST
provides global coverage of the data, except for ocean and polar regions, with a spatial
resolution of 1–2 km [17,26,44]. According to the website on SOLCAST validation and
accuracy [46], SOLCAST has considered 46 of the BSRN sites for validation of GHI and
reports a maximum bias deviation of 2.01%. The BSRN sites for steep mountain areas,
oceanic, and polar sites were excluded in the SOLCAST validation.

3.4. Methodology

The methodology used in this study is summarized in the flow chart in Figure 2. The
methodology consists of the following steps: (1) Preprocessing and quality control of in-situ
GHI data; (2) Averaging one minute to 15 min; (3) Averaging four slots of 15 min to obtain
hourly averages; (4) Gathering and preprocessing of satellite-based and reanalysis datasets;
(5) Matching common time steps of in situ GHI and satellite/reanalysis-based datasets;
(6) Calculation of hourly zenith angles and removing datasets that fall on points where the
zenith angle is greater than 90 degrees; and (7) Calculation of statistical metrics.

3.5. Pre-Processing of Observation Data and Validation Process

One-minute average GHI data recorded from each of the 13 stations using a CMP11
pyranometer from Kipp and Zonen were pre-processed, subjected to “physical possible”
limit check, which is aimed at detecting extremely large errors in the radiation data and
“extremely rare” values checks of the BSRN QC test [23,47,48], and the outliers were
removed. The minute data that passed the BSRN QC test were converted to 15 min
averages; then hourly averages were calculated from four slots of 15-min averages. This
methodology was used in [5,15,30,34,35,48,49]. All the datasets were synchronized to South
African standard time (SAST) to avoid the misalignment of time series datasets.

Hourly average GHI observation data were also further processed by removing all the
data points recorded on hours when the solar zenith angle was greater than 90◦. Hourly
averages were then averaged to daily average values. Daily averages were then subjected
to HelioClim model QC, described by Geiger et al. in [50]. Hourly data on days that
failed the HelioClim QC test were removed before any further analysis. The percentage of
outliers removed from each station is given in the last column in Table 2.

Solar zenith angles were calculated using the solar position algorithm (SPA) on Python
PV_LIB [51,52]. Hourly average values were then compared to corresponding hourly
average CAMS, CMSAF SARAH, SOLCAST, ERA5, and MERRA2.

SOLCAST, ERA5, MERRA2, and CAMS were sourced as hourly averages while
CMSAF SARAH was sourced as instantaneous 30 min averages and then 2-time steps were
averaged to obtain hourly averages.
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Figure 2. The flowchart summarizes the approach used from data prepossessing to data validation.

3.6. Statistical Metrics

The statistical metrics that were used to quantify the difference between hourly esti-
mated and hourly measured GHI are relative mean bias error (rMBE), relative root mean
square error (rRMSE), relative mean absolute error (rMAE), and the coefficient of determi-
nation (R2). These statistical metrics are given in the literature [53,54] and have also been
described and applied in the authors’ previous studies [15,34].

3.7. Most Feasible Gridded Dataset

The most feasible option from the satellite-based and reanalysis datasets at each of the
13 stations is determined by first considering the best performing model for each metric.
The most feasible option at a station is then the model with the maximum count across all
the metrics. A numerical relative rating of the optimal metric is calculated as the maximum
count relative to the four metrics (rMBE, rRMSE, rMAE, and R2).
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4. Results

The threshold or the range of the statistical metrics that are used to benchmark the
optimal and/or the best applicable hourly gridded products based on their performance
when compared to measured hourly data in the study area are summarized in (Table 5).
The interval metrics were based on the distribution of the results.

Table 5. Range of the statistical metrics used to benchmark the applicability of the gridded datasets. Green represents
excellent performance, blue good performance, and orange poor performance).

Skill rMBE rRMSE rMAE R2

Poor rMBE > |±10|% rRMSE > 20% rMAE > 15% R2 < 90

Good |±5|% < rMBE ≤ |±10|% 10% < rRMSE ≤ 20% 10% < rMAE ≤ 15% 90 < R2 < 95

Excellent rMBE ≤ |±5|% rRMSE ≤ 10% rMAE ≤ 10% R2 > 95

4.1. CAMS

From Figure 3, CAMS underestimated GHI in Upington (−3%), Prieska (−0.1%), De
Aar (−2%), and Cape Point (−0.1%); and overestimated GHI at the remaining nine stations,
rMBE ranged from 2%–6%. From Figure 4, hourly rRMSE was less than and slightly above
20% for all stations. When considering the correlation R2 results in Table 6, CAMS had
R2 > 0.96 in all stations, suggesting that measured and estimated data correlate well.
Good correlation was also demonstrated by scatterplots in Figures S1–S13, given in the
Supplementary Materials.

From Figures 3–5 and Table 6, the hourly metrics for CAMS varied as given below:

• −3% ≤ hourly rMBE ≤ 6%;
• 10% ≤ hourly rRMSE ≤ 21%;
• 6% ≤ hourly rMAE ≤ 13%; and
• 0.962 ≤ hourly R2 ≤ 0.995.

Figure 3. Hourly relative mean bias error of gridded datasets against measured in situ GHI.
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Figure 4. Hourly relative root mean square error of gridded datasets against measured in situ GHI.

Table 6. Hourly mean measured GHI (W/m2) and correlation (R2) of gridded datasets against mea-
sured in situ GHI. Green color represents the best (R2 > 95), blue color represents the intermediate
(90 < R2 < 95), and orange color represents the poor correlation (R2 < 90).

Station Mean GHI
(W/m2) CAMS CMSAF SOLCAST ERA5 MERRA2

Upington 522.86 0.995 0.995 0.996 0.987 0.985

Prieska 490.95 0.986 0.983 0.991 0.962 0.955

DeAar 497.67 0.984 0.981 0.992 0.958 0.833

Bethlehem 459.50 0.976 0.976 0.983 0.932 0.914

Irene 458.15 0.973 0.969 0.979 0.932 0.907

Mahikeng 492.13 0.972 0.978 0.977 0.923 0.826

Polokwane 466.63 0.978 0.977 0.985 0.932 0.910

Nelspruit 404.24 0.962 0.908 0.970 0.868 0.823

Thohoyandou 408.46 0.972 0.970 0.983 0.922 0.856

Mthatha 382.77 0.975 0.976 0.975 0.915 0.873

Durban 364.64 0.972 0.977 0.979 0.919 0.871

Cape Point 415.41 0.970 0.972 0.969 0.938 0.920

George 387.46 0.968 0.974 0.977 0.909 0.875

4.2. CMSAF

From Figure 3, CMSAF underestimated GHI in Upington (−2%) and De Aar (−1%)
and overestimated GHI at the remaining 11 stations; rMBE ranged from 0–7%. In Figure 4,
when considering rRMSE, CMSAF showed a very good performance at Upington (10%),
the worst performance at Nelspruit (33%), and the rest of the stations had a rRMSE between
10% and 20%.
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Figure 5. Hourly relative mean absolute error of gridded datasets against measured in situ GHI.

From Table 6, when considering the hourly correlation R2 results, CMSAF had
R2 > 0.96 at all stations except in Nelspruit (0.908), which shows a very good correlation
between the in situ observed and estimated data. This is also demonstrated by scatterplots
in Figures S1–S13, given in the Supplementary Materials.

From Figures 3–5 and Table 6, the hourly metrics for CMSAF varied as given below:

• −2% ≤ hourly rMBE ≤ 7%;
• 10% ≤ hourly rRMSE ≤ 33%;
• 7% ≤ hourly rMAE ≤ 19%; and
• 0.908 ≤ hourly R2 ≤ 0.995.

4.3. SOLCAST

From Table 7, which gives the most feasible hourly dataset per station by combining all
the hourly metrices, SOLCAST was most prominent in 10 out of 13 stations for the hourly
aggregates. From Figure 3, the SOLCAST dataset slightly underestimated hourly GHI at
De Aar (−0.1%), Mthatha (−2%), George (−3%), and Durban (−2%) and it overestimated
hourly GHI at the rest of the stations; rMBE ranged from 1% to 4%. From Table 6, SOLCAST
had the correlation R2 > 0.96 in all 13 stations, showing a very good agreement between
the measured and estimated data. This was also demonstrated by the scatterplots in
Figures S1–S13, given in the Supplementary Materials.

SOLCAST hourly rRMSE was less than 15% at eight stations and more than 15% in
five stations George (17%), Cape Point (19%), Durban (17%), Mthatha (17%), and Nel-
spruit (19%).

From Figures 3–5 and Table 6, the hourly metrics for SOLCAST varied as given below:

• −3% ≤ hourly rMBE ≤ 4%;
• 8% ≤ hourly rRMSE ≤ 19%;
• 5% ≤ hourly rMAE ≤ 12%;
• 0.969 ≤ hourly R2 ≤ 0.996;



Geomatics 2021, 1 441

Table 7. Best performing gridded dataset per hourly metric, most feasible model, and level of
performance (rating). The colors were used to show the best performing gridded dataset based on
the hourly statical metric per station and the most feasible dataset per station based level of rating
out of 4 (the number of statistical metrics used). Green represents SOLCAST, yellow CAMS, blue
CMSAF, orange ERA5, and red MERRA2.

Hourly Minimum
rMBE

Minimum
rRMSE

Minimum
rMAE

Maximum
R2

Most
Feasible Rating

Upington SOLCAST SOLCAST SOLCAST SOLCAST SOLCAST 4/4

Prieska CAMS CMSAF SOLCAST SOLCAST SOLCAST 2/4

De Aar ERA5 SOLCAST SOLCAST SOLCAST SOLCAST 3/4

Bethlehem CMSAF SOLCAST SOLCAST SOLCAST SOLCAST 3/4

Irene ERA5 SOLCAST CAMS SOLCAST SOLCAST 2/4

Mahikeng MERRA2 CMSAF CMSAF CMSAF CMSAF 3/4

Polokwane ERA5 SOLCAST SOLCAST SOLCAST SOLCAST 3/4

Nelspruit ERA5 SOLCAST SOLCAST SOLCAST SOLCAST 3/4

Thohoyandou SOLCAST SOLCAST SOLCAST SOLCAST SOLCAST 4/4

Mthatha SOLCAST SOLCAST CAMS CMSAF SOLCAST 2/4

Durban SOLCAST SOLCAST SOLCAST SOLCAST SOLCAST 4/4

Cape Point CAMS CMSAF SOLCAST CMSAF CMSAF 2/4

George SOLCAST SOLCAST SOLCAST SOLCAST SOLCAST 4/4

4.4. ERA5

From Figure 4, two stations Upington (15%) and De Aar (19%) had a rRMSE less
than 20%. Seven stations had rRMSE between 20% and 30%, and four stations, namely
Mthatha (31%), Durban (32%), George (34%), and Nelspruit (38%) had rRMSEs greater
than 30%. When considering hourly R2 results, three stations namely Upington (0.987),
Prieska (0.962), and De Aar (0.958) had R2 > 0.95, and nine stations had 0.9 < R2 < 0.95.
Nelspruit (0.868) was the only station with hourly R2 < 0.9. The poor correlation of ERA5
reanalysis hourly data was also demonstrated by scatterplots in Figures S1–S13, given
in the Supplementary Materials, with data points not elongated along the 1:1 line. From
Figure 3, ERA5 reanalysis data underestimated hourly GHI in Upington (−1%), Mahikeng
(−1%), and Mthatha (−4%) and overestimated in 10 stations with rMBE ranging from 0%
to 11%.

From Figures 3–5 and Table 6, the hourly metrics for ERA5 varied as given below:

• −4% ≤ hourly rMBE ≤ 11
• 15% ≤ hourly rRMSE ≤ 38%;
• 9% ≤ hourly rMAE ≤ 25%;
• 0.868 ≤ hourly R2 ≤ 0.987;

4.5. MERRA2

From Figure 3, the MERRA2 reanalysis hourly dataset overestimated GHI in 12 stations,
rMBE ranged from 1% to 23%, and slightly underestimated GHI in Mahikeng (−0.54%).
From the rRMSEs given in Figure 4, Upington (16%), Cape Point (29.86%), and Polokwane
(29.89%) were the only stations with an hourly rRMSE less than 30%. Ten other stations
had hourly rRMSE ranging from 30% to 50%. When considering hourly R2 results, two
stations, namely Upington (0.985) and Prieska (0.955) had R2 > 0.95, three stations had
0.9 < R2 < 0.95. Seven stations had R2 < 0.9. The poor correlation of hourly MERRA2
reanalysis data was also demonstrated by scatterplots in Figures S1–S13, given in the
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Supplementary Materials, where the data points were not elongated along the 1:1 line and
were mostly above the 1:1 line, indicating overestimation.

From Figures 3–5 and Table 6, the hourly metrics for MERRA2 varied as given below:

• −1% ≤ hourly rMBE ≤ 23%;
• 16% ≤ hourly rRMSE ≤ 50%;
• 9% ≤ hourly rMAE ≤ 32%; and
• 0.823 ≤ hourly R2 ≤ 0.985.

Figures 6–9, which shows the aggregated hourly averages, demonstrates that all the
gridded datasets could capture the temporal variability of GHI in different sites nonetheless,
with varying accuracy. The MERRA2 reanalysis dataset overestimated GHI and it did not
perform well as its line diverged from the reference measured dataset as well as the other
datasets, in almost all the stations. ERA5 reanalysis also overestimated, and it diverged
from observation and satellite datasets lines in most stations. SOLCAST, CMSAF, and
CAMS satellite-based datasets lines were adjacent to the observation in most stations,
which showed good performance.

Figure 6. Aggregated measured and estimated hourly GHI values in De Aar (a), Bethlehem (b), Prieska (c), and Upington
(d). The aggregated GHI Observation period for each station is given in Table 2.
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Figure 7. Aggregated measured and estimated hourly GHI values in Polokwane (a), Irene (b), Mahikeng (c), and Thohoyan-
dou (d). The aggregated GHI Observation period for each station is given in Table 2.

Figure 8. Aggregated measured and estimated hourly GHI values in values in Cape Point (a), George (b), Durban (c), and
Mthatha (d). The aggregated GHI Observation period for each station is given in Table 2.
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Figure 9. Aggregated measured and estimated hourly GHI values in values in Nelspruit. The
aggregated GHI Observation period for each station is given in Table 2.

5. Discussion
5.1. CAMS

The above statistical metrics suggest that the CAMS dataset has good performance
in South Africa. The findings are similar to the studies by Marchand et al. (2018) [9] in
Morocco; Ameen et al. (2018) [20] in Iraq; Yang and Bright [17] for 57 BSRN stations;
Thomas et al. [30] in Brazil; and Trolliet et al. [31] in the tropical Atlantic Ocean, which
found that CAMS could accurately estimate the hourly GHI and can therefore be used
with quantitative confidence as a reliable alternative source of estimated GHI data. The
relatively high rRMSE observed for Nelspruit, Thohoyandou, Mthatha, Durban, Cape
Point, and George may be due to the characteristic high annual humidity (greater than 60%
in Tables 2 and 3). The same tendency was also observed by Thomas et al. [30]. George
and Nelspruit stations also had a high diffuse fraction (DF > 0.32). This implies that the
performance of CAMS is affected by high aerosols, high humidity, and hence, many days
with diffuse skies. When considering areas where there is infrequent cloud occurrence,
there was no significance difference in bias, meaning that McClear can accurately estimate
clear sky conditions in the study area. The previous study by Mabasa et al. [32] showed
that the McClear clear sky model had a good performance in South Africa. For CAMS,
cloud properties were derived from Meteosat satellites with 15-min temporal resolution.

For CAMS, the main inputs to Heliosat-4 are aerosol properties, total column water
vapor, and ozone content, as provided by the CAMS global services every three hours. The
lower temporal resolution in aerosol, total column vapor, and ozone content may account
for the observed biases between ground truth and CAMS estimated GHI. The overall good
performance of CAMS datasets might be attributed to having a high spatial resolution
3–5 km in Southern Africa.

5.2. CMSAF

The overall results show that there is relatively good performance by the CMSAF
satellite-based dataset, which suggests that CMSAF is a viable tool to estimate GHI for sites
such as the 13 stations in this study. CMSAF satellite-based dataset showed a relatively
poor performance at Nelspruit Station. Nelspruit is a station with the highest diffuse
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fraction (Tables 2 and 3). CMSAF satellite-based dataset uses aerosol climatology as input
to satellite retrieval algorithms as given by Riihelä et al. [49], however, aerosol climatology
might not capture the aerosol climate variability. Mueller et al. [55] showed that aerosol
climatologies used in CMSAF satellite retrievals algorithms were underestimated when
compared to real aerosol measurements. The poorer metrics for Nelspruit might be due to
the use of aerosol climatology information in the CMSAF satellite retrieval algorithm. No
significant bias has been observed for the stations with high humidity and more frequent
cloud occurrence compared to areas with low humidity and less frequent cloud occurrence.
This means that the CMSAF cloud and water vapor parameterization scheme is effective in
South Africa.

The CMSAF satellite-based dataset outperformed CAMS, ERA5, and MERRA2 at
all 13 stations under this study (Table 7). CMSAF was outperformed by SOLCAST in
11 stations, this might be due to the use of hourly average from only two intervals (half
hour and hour) instead of four intervals (15 min, 30 min, 45 min, and hour). The good perfor-
mance of CMSAF datasets might also be attributed to having a high spatial resolution 5 km.

5.3. SOLCAST

These results show an overall very good performance of SOLCAST satellite-based
dataset in all 13 stations in this study. The results agreed with the study by Yang and
Bright [17] and Bright [26], who found that the SOLCAST satellite-based dataset performed
well. Overall SOLCAST was outperformed by CMSAF (from Table 7) at Mahikeng and
Cape Point Stations; this was similar to the findings by Yang and Bright [17], where
SOLCAST did not outperform some freely available products at all sites. The stations
where rRMSE was greater than 15% when referencing from Tables 2 and 3. They all had a
low number of clear sky days (less than 5%), high humidity (greater than 60%), and high
diffuse fraction (greater than 0.33), except Nelspruit Station with (more than 10%) number
of clear sky days. This implies that frequent cloud occurrence, higher humidity, and higher
diffuse fraction slightly affected the performance of the SOLCAST satellite-based dataset.

The excellent performance of the SOLCAST dataset might be due to the use of the
REST2v5 [45] clear sky model to calculate the clear sky index when converting the satellite
image to GHI. Sun X et al. [56] found that the REST2v5 clear sky model had an excellent
worldwide performance. The use of very high spatial resolution satellite images 1–2 km
enabled almost all features (e.g., terrain difference) in an area of interest or a grid to be
properly identified and properly interpolated.

5.4. ERA5

Overall, the ERA5 reanalysis dataset showed a poor performance in estimating GHI
in South Africa. The results were similar to Yang and Bright [17] and Trolliet et al. [31],
who found that ERA5 datasets had poor performance, overestimated GHI for most sites,
and were outperformed by the satellite-based dataset; rMBE was 72% (Table 1). ERA5
reanalysis data showed a very poor performance in areas with frequent cloud occurrences,
high humidity, and high diffuse fraction. From Supplementary Materials Figures S1–S13,
ERA5 estimates tended to estimate cloud conditions while observations showing actual
conditions as clear conditions was shown by irradiance values, this might be contributing
to the higher biases. Basically, ERA5 cloud models struggle to differentiate non cloud and
cloud conditions. ERA5 uses climatological aerosol information [37] instead of measured
aerosols which captures changes in atmospheric constituents. This might also be one
of the reasons for poor performance. The low spatial resolution (0.25◦ × 0.25◦) of the
ERA5 reanalysis data might also be a contributing factor to poor performance of the ERA5
datasets in South Africa.

5.5. MERRA2

Overall, MERRA2 reanalysis showed a very poor performance and it overestimated
hourly GHI in all 13 sites under study. The performance of MERRA2 in South Africa was
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similar to the findings by Yang and Bright [17] for 57 BSRN stations and Trolliet et al. [31]
in the tropical Atlantic Ocean (i.e., poor performance, overestimating GHI, and being
outperformed by satellite-based datasets; rMBE was 76%) (Table 1). MERRA2 data showed
a very poor performance in areas with frequent cloud occurrences, high humidity, and high
diffuse fraction. The very low spatial resolution (0.625◦ × 0.5◦) of MERRA2 reanalysis data
might also be a contributing factor to poor performance of MERRA2, as it was the overall
worst performing dataset in the study.

6. Conclusions

The study validated hourly global horizontal irradiance (GHI) from three satellite-
based GHI datasets (namely SOLCAST, CAMS, and CMSAF SARAH) and two reanalysis
based GHI datasets (namely ERA5 and MERRA2) against quality-controlled hourly in situ
GHI recorded at 13 radiometric stations in South Africa. The study demonstrated that GHI
from the satellite-based datasets had better performance than reanalysis-based datasets in
South Africa. The overall statistical metrics used to gauge the performance of the datasets
varied, as tabulated below (Table 8).

Table 8. Summary of the overall validation results. Colors are used to show the overall performance
ranking of the five datasets with green (1/5), yellow (2/5), blue (3/5), orange (4/5), and red (5/5).

Dataset rMBE rRMSE rMAE R2

SOLCAST −3% to 4% 8% to 19% 5% to 12% 0.969 to 0.996

CAMS −3% to 6% 10% to 21% 6% to 13% 0.962 to 0.995

CMSAF −2% to 7% 10% to 33% 7% to 19% 0.908 to 0.995

ERA5 −4% to 11% 15% to 38% 9% to 25% 0.868 to 0.987

MERRA2 −1% to 23% 16% to 50% 9% to 32% 0.823 to 0.985

SOLCAST was the best performing overall, while MERRA2 was the overall worst
performing dataset. Freely available satellite-based datasets (CAMS and CMSAF) are
recommended for use with quantitative confidence in diverse solar energy applications
that require GHI data. Reanalysis based GHI datasets (ERA5 and MERRA2) are not good
enough to be used in South Africa. Low spatial resolution, weak cloud parameterization
schemes, and the use of climatological inputs instead of real in situ measurement in reanal-
ysis GHI deriving algorithms might be some of the reasons behind the poor performance
of reanalysis based GHI estimates in the study.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/geomatics1040025/s1. Figures S1–S13: Hourly measured and estimated GHI correla-
tion graphs.
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