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Abstract: Accurate and current land cover information is required to develop strategies for sustain-
able development and to improve the quality of life in urban areas. This study presents an approach
that combines multi-seasonal Sentinel-1 (S1) and Sentinel-2 (S2) data, and a random forest (RF)
classifier in order to map land cover in four major urban centers in Zimbabwe. The specific objective
of this study was to assess the potential of multi-seasonal (rainy, post-rainy, and dry season) S1, rainy
season S2, post-rainy season, dry season S2, multi-seasonal S2, and multi-seasonal composite S1
and S2 data for mapping land cover in urban areas. The study results show that the combination of
multi-seasonal S1 and S2 data improve land cover mapping in urban and peri-urban areas relative to
only multi-seasonal S1, mono-seasonal S2, and multi-seasonal S2 data. The overall accuracy scores
for the multi-seasonal S1 and S2 land cover maps are above 85% for all urban centers. Our results
indicate that rainy and post-rainy S2 spectral bands, as well as dry-season S1 VV and VH bands
(ascending orbit) are the most important features for land cover mapping. In particular, S1 data
proved useful in separating built-up areas from cropland, which is usually problematic when only
optical imagery is used in the study area. While there are notable improvements in land cover
mapping, some challenges related to the S1 data analysis still remain. Nonetheless, our land cover
mapping approach shows a potential to map land cover in other urban areas in Zimbabwe or in
Sub-Sahara Africa. This is important given the urgent need for reliable geospatial information, which
is required to implement the United Nations Sustainable Development Goals (UN SDGs) and United
Nations New Urban Agenda (NUA) programmes.

Keywords: earth observation satellite; Sentinel-1; Sentinel-2; random forest; urban; peri-urban; Zimbabwe

1. Introduction

According to the United Nations Human Settlements Programme (UN-Habitat), 55%
of the world’s population now reside in urban areas, while in 2050 the urban population
is expected to reach 68% [1,2]. About 90% of urban growth is expected to occur in less
developed regions such as East Asia, South Asia, and Africa [1]. Recent reports indicate
that Africa had the highest annual urbanization rates of 3.7% between 2010 and 2015, and
3.57% between 2015 and 2020 [1]. The rapid urbanization in Africa is attributed to natural
increase, rural-urban migration, and the reclassification of rural areas as urban areas [1,3,4].
This has resulted in the increase of informal settlements within urban areas, and urban
sprawl through peri-urbanization [4]. In some African countries, the physical extent of
urban areas is growing much faster than their population and administrative boundaries [1].
Consequently, more land is taken for urban development. This has serious implications for
climate change, greenhouse gas emissions, loss of biodiversity, environmental degradation,
and energy consumption [5,6]. Given the rapid growth of urban population in Africa, local
government authorities—responsible for urban planning and management—are failing to
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provide adequate housing, basic services (provision of clean water and sanitation), and
basic infrastructures such as transport and health facilities [1,7]. This is further worsened
by the outbreak of epidemics and global pandemics such as COVID-19, which will impact
more vulnerable citizens living in informal settlements [8].

In 2015, the global community adopted the 2030 United Nations Sustainable De-
velopment Agenda, which includes a specific Sustainable Development Goal (SDG) to
“make cities and human settlements inclusive, safe, resilient and sustainable” [9]. In 2016,
167 countries formally agreed to the United Nations New Urban Agenda (NUA) that
emphasizes the practical implementation of national urban policies and action plans [1].
In light of the 2030 Agenda for Sustainable Development and NUA, accurate and timely
geospatial information and insights are required in order to implement practical sustain-
able urban development action plans. However, geospatial information on the urban
and peri-urban extent is often not available or outdated in most countries in Sub-Sahara
Africa [10]. While local government authorities in these countries recognize the importance
of geospatial information for sustainable urban planning and development, efforts to pro-
duce new or update geospatial information have been constrained by poor funding, as well
as the high cost of conducting conventional land use surveys and aerial photography [11].
It is also noteworthy that most government policy makers do not prioritize investing in
geospatial technology and information despite its contribution to spatial urban planning
in particular and sustainable development in general [12]. This is partly attributed to the
lack of communication among national and local government authorities, urban planners,
politicians, and citizens [3]. Furthermore, “donor fatigue” has resulted in the decline of
official development assistance (ODA) funding for mapping projects. Consequently, local
government authorities or mapping agencies in most Sub-Sahara African countries fail to
produce timely, reliable, and accurate geospatial information.

Remotely-sensed satellite data can be used to produce critical geospatial information
at a regional scale since data can be obtained in a cost-effective manner and within a short
acquisition time [13]. The literature review shows many studies that have used remotely-
sensed satellite data for mapping and monitoring land cover changes [14]. This is due to the
fact that moderate to high spatial resolution remotely-sensed satellite data (10–50 m) such
as the Landsat series, Sentinel-1 and Sentinel-2, have a relatively good global coverage and
are available free of charge. Furthermore, the advancement in machine learning methods
such as support vector machines [15,16], random forests [17], and deep learning [18] has
also increased land cover mapping and monitoring studies. However, most urban land
cover mapping studies have focused on megacities and large urban centers located in
China, the US, and Europe [19,20]. Although megacities and large cities are massive centers
of economic activities, the fastest growing cities are the small and medium cities with less
than 1 million inhabitants [4,21]. According to the United Nations, small and medium
cities account for about 59% of the global urban population. To date, most of these cities
are still poorly quantified, particularly in Sub-Sahara Africa. As a result, urban land cover
information is still sparse in small and medium cities save for a case-study analysis of
individual cities [10,13,22–30].

While remotely-sensed satellite data have been used successfully to map urban land
cover, major challenges still remain [13,31]. This is attributed to the highly heterogeneous
nature of urban areas [19], as well as the spectral similarity between sparse and fragmented
built-up areas and other land cover types in peri-urban areas [32]. Previous studies show
that built-up areas in sparse urban or peri-urban areas appear identical to fallow cropland
and bare areas given that these features exhibit high reflectance in the visible-infrared
wavelengths [6,10]. For example, the spectral similarity between newly-developed peri-
urban areas and non-urban surfaces such as fallow cropland fields and bare areas has been
reported to be problematic, especially with moderate spatial resolution satellite imagery in
Harare, Zimbabwe [25]. In addition, mapping land cover in peri-urban areas is notoriously
difficult since some built-up areas are made of the same materials found in the surrounding
areas [10], which results in low accuracy due to the low object-to-background contrast [33].
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The availability of synthetic aperture radar (SAR) Sentinel-1 (S1) and optical Sentinel-2
(S2) data provide a great opportunity to address some of the key challenges. This is due
to the fact that S1 and S2 data have high spatial and temporal resolutions. Although
previous studies have shown the utility of S2 for urban land cover mapping [34–36], few
studies have combined S1 and S2 for land cover mapping in urban areas [31], particularly
in Sub-Sahara Africa. The primary goal of this study was to map land cover in four major
urban centers in Zimbabwe using multi-seasonal S1 and S2 data and a random forest (RF)
classifier. The specific objective of this study was to assess the potential of multi-seasonal
(rainy, post-rainy, and dry season) S1 data, rainy season S2 data, post-rainy season S2 data,
dry season S2 data, multi-seasonal S2 data, and multi-seasonal S1 and S2 data for mapping
land cover in major urban areas in Zimbabwe. The central premise of our approach is
that spectral-temporal features derived from multi-seasonal S2 data can help discriminate
the built-up areas from cropland and bare areas, while multi-seasonal S1 data can help
detect the built-up areas given the high backscatter of some man-made objects. We used
the RF classifier since previous studies have shown the method to be effective in a similar
landscape [37]. The remaining parts of this paper are organized as follows. Section 2
introduces the study area, while Section 3 provides details on the land cover mapping
methodology. The results are presented in Section 4, while discussions are provided in
Section 5. Finally, conclusions are presented in Section 6.

2. Study Area

According to the Zimbabwe National Statistical Agency [38], “urban” refers to a
designated urban area with a compact settlement pattern with more than 2500 inhabitants,
of which 50% are employed in the non-agricultural sector. Zimbabwe’s urban landscape
encompasses metropolitan areas of Harare and Bulawayo, cities or municipalities, towns,
and as many as 472 small urban centers in the form of “growth points”, district service
and rural service centers [39,40]. The urban population in Zimbabwe grew from 677,270 in
1962 to 3,409,848 inhabitants in 2012. This represents a 20% increase in urban population
in the country. According to ZimStats [38], 33% of the population in Zimbabwe is urban.
Currently, the total population of Harare and Bulawayo accounts for about 62% of the total
urban population in Zimbabwe [38].

Four major urban centers—Harare metropolitan area, Bulawayo, Mutare, and Gweru—
with a population above 100,000 people were selected as case studies (Figure 1). The four
major urban centers are characterized by rapid urban development, differences in physical
and socio-economic geography, and climate. Furthermore, some of the urban centers
are experiencing rapid informal and unplanned developments, particularly in peri-urban
areas. This makes it challenging to accurately map land cover in these urban landscapes.
Therefore, the four major urban centers in Zimbabwe serve as important case studies to test
our land cover mapping approach. In addition, this study is shifting focus from a single to
multiple case study approach in order to understand how mono-seasonal or multi-seasonal
optical and SAR data improve land cover mapping in different urban landscapes.

The Harare metropolitan area comprises the City of Harare—which is the capital
and largest city in Zimbabwe, Chitungwiza municipality, Ruwa, and Epworth Local
Boards. The metropolitan area is characterized by a warm, rainy season from November
to March, a cool, dry season from April to August, and a hot, dry season in October.
Daily temperatures range from about 7 to 20 ◦C in July (coldest month), and from 13 to
28 ◦C in October (hottest month). The metropolitan area receives a mean annual rainfall
ranging from 470 to 1350 mm between November and March. The population in the City
of Harare increased from approximately 310,360 in 1962 to 1,435,784 in 2012, while the
population of Chitungwiza grew from approximately 14,970 in 1969 to 354,472 in 2012 [41].
The population of Epworth increased from 114,067 in 2002 to 161,840 in 2012 [38]. The
Harare metropolitan area represents over 47% of the total urban population in Zimbabwe.
The City of Harare has many major primary and secondary industries, while Chitungwiza
has a small industrial park.
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Bulawayo is the second largest city in Zimbabwe, which is located in the southwestern
part of Zimbabwe. The modern Bulawayo city was founded in 1893 and attained city status
in 1943. Bulawayo is characterized by a dry, cool winter season from May to July, a hot, dry
period from late August to early November, and a warm, rainy period from early November
to March. The hottest month is October, while the coldest is July. The temperatures range
from an average of 21 ◦C in July to 30 ◦C in October, while the annual rainfall ranges
between 588 and 600 mm. The population of the city increased significantly from 210,620
in 1969 to 676,650 in 2002, and then decreased to 655,675 in 2012 [38,41]. Bulawayo is the
manufacturing and industrial center of Zimbabwe with a large presence of heavy industries.
However, much of the industrial infrastructure has deteriorated during the past years due
to the poor economic environment in Zimbabwe.

Mutare is located in the eastern part of Zimbabwe. The city was founded in 1897
as a fort. Mutare has a humid subtropical climate, which is characterized by a dry, cool
winter season from May to July, a hot, dry period from late August to early November,
and a warm, rainy period from early November to March. The coldest month is July
(minimum 6 ◦C and maximum 20 ◦C), while the hottest month is October (minimum
16 ◦C and maximum 32 ◦C). The annual rainfall is about 818 mm, which falls mostly from
November to March. The population increased significantly from 42,540 in 1969 to 188,243
in 2012 [38,41]. The main economic activities in Mutare are citrus farming, mining, and
forestry. Two of the largest food producers in Zimbabwe, Cairns Foods and Tanganda
Tea, are located in Mutare. Mining activities include gold and diamonds, as well as gravel
quarries around the city. Forestry companies such as The Wattle Company, Allied Timbers,
and Border Timbers are also located in Mutare. More importantly, Mutare is an important
gateway to the sea since it is located 290 km from the port of Beira in Mozambique.
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Gweru is located about 285 km south of the Harare metropolitan area. The city is
characterized by a dry, cool winter season from May to July, a hot, dry period in August
to early November, and a warm, rainy period from early November to April. The hottest
month is October, while the coldest is July. The temperatures range from an average of
21 ◦C in July to 30 ◦C in October, while the annual rainfall is about 684 mm. The pop-
ulation increased significantly from 38,480 in 1969 to 158,233 in 2012 [38,41]. Gweru is
centrally located between Harare and Bulawayo, and therefore is an important transport
hub. The city provides services for mining and commercial agriculture activities in the
surrounding areas. Gweru also produces ferrochromium, textiles, dairy foods, footwear,
and building materials.

3. Methods

The methodology used in this study comprises data preparation and land cover
mapping. The following subsections describe satellite imagery, reference datasets, and land
cover mapping procedures.

3.1. Data Preparation
3.1.1. Satellite Imagery

We derived seasonal Sentinel-1 (S1) and Sentinel-2 (S2) data for 2020 from the Google
Earth Engine [42] to map land cover in four major urban areas in Zimbabwe (Table 1).
The seasonal S1 data consist of mean and median rainy season S1, mean and median
post-rainy season S1, and mean and median dry season S1 composites. We used mean
and median seasonal S1 data since the imagery shows a lower speckle than the single-date
imagery. As a result, we did not perform speckle reduction, which generally reduces spatial
resolution. The seasonal S2 data comprise median rainy season S2, median post-rainy
season S2, and median dry season S2 composites (Table 1). The rainy season is between
January and March, the post-rainy is between April and June, and the dry season is
between July and October in the study area. We used multi-seasonal S2 data since previous
studies revealed that multi-seasonal optical data are useful for identifying phenological
changes [43] (Figures S1–S5).

Table 1. Summary of Sentinel-1 (S1) and Sentinel-2 (S2) data used in the study.

Compiled
Imagery Date Range Season Number of

Images/Bands Remarks

Mean and
median S1

1 January–30
March 2020 Rainy 4

IW swath mode 250 km,
VV and VH polarization,

pixel spacing 10 m,
Ascending orbit

1 April–30
June 2020 Post-rainy 4

1 July–30
October 2020 Dry 4

Median S2

1 January–30
March 2020 Rainy 9

Bands 2, 3, 4, 8, at 10 m
spatial resolution;

Bands 5, 6, 7, 8a, 11, and
12 resampled to 10 m

1 April–30
June 2020 Post-rainy 9

1 July–30
October 2020 Dry 9
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S1 and S2 data are derived from a constellation of satellites developed by the Euro-
pean Space Agency (ESA) under the Copernicus program [44]. The S1 mission comprises a
constellation of Sentinel-1A and Sentinel-1B satellites, which provides a 12-day (ground
track) repeat cycle for one satellite, and a 6-day (ground track) repeat cycle for two satel-
lites [45]. The Sentinel-1 constellation provides C-band (5.6 cm) synthetic aperture radar
(SAR) acquired in different modes [44]. In this paper, we used the VV and VH interfer-
ometric wide swath (IW) and ground range detected (GRD) S1 data, which have been
processed and terrain corrected. Co-polarization VV refers to the vertical transmit and
vertical receive, while cross-polarization VH refers to the vertical transmit and horizontal
receive [46]. Sentinel-2 is a wide-swath, high-resolution, multispectral imaging mission
with a global 5-day revisit frequency [44]. The Sentinel-2 multispectral instrument (MSI)
provides 13 spectral bands [44]. In this study, we selected nine spectral bands from S2
level-2A orthorectified atmospherically corrected surface reflectance imagery, which are
commonly used for land cover mapping applications. The selected bands are band 2
(Blue), band 3 (Green), band 4 (Red), band 5 (Vegetation red edge) (VRE1), band 6 (VRE2),
band 7 (VRE3), band 8 (Near infrared) (NIR), band 11 (Short-wave infrared) (SWIR1), and
band 12 (SWIR2).

Figure 2 shows the multi-seasonal S1 false color composite (ascending orbit) and S2
false color composite imagery for Harare. Note that the S1 imagery is displayed in false
color VV (red), VH (green), and VV (blue) for visualization purposes only, while the S2
imagery is displayed in false color band 8 (red), band 4 (green), and band 3 (blue). The black
square inset in Figure 2 shows a newly-developing peri-urban area in the south-western
part of Harare, which is used to extract subset images for better visualization. Figure 3
shows S1 rainy season (S1RS), S1 post-rainy season (S1PS), S1 dry season (S2DS), rainy
season (S2RS), S2 post-rainy season (S2PS), S2 dry season (S2DS) image subsets, as well
as Google Satellite image subsets. The visual analysis of both S1 and S2 reveals that the
vegetation cover decreases from the rainy to dry season, while open or bare areas increase
during the same period. Figure 2a–c shows that the S1 composite imagery is generally
characterized by a combination of surface, volume, and double-bounce scattering. For
example, surface scattering is mainly comprised of low-vegetated cropland and bare soils,
as well as roads and other paved surfaces which are shown in blue. However, volume
scattering (which is shown in green) is dominated by vegetation canopy, as well as some
built-up surfaces. Finally, double-bounce scattering (in pink) is mainly from buildings and
other man-made structures oriented towards the SAR look direction (Figure 3). Figure 4
also shows seasonal differences in both the S1 and S2 imagery for Bulawayo.
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3.1.2. Reference Data for Land Cover Classification

Reference data for training and testing were generated from a variety of sources.
For the Harare metropolitan area, reference polygons were digitized from a very high
resolution imagery available in Google Earth™, and digital orthophotos which were
obtained from the Department of the Surveyor-General (DSG). The digital orthophotos
were processed from digital aerial photographs which were acquired by DSG and the
Japan International Cooperation Agency (JICA) in 2015 during the “The Development
of Geospatial Information Database Project” in Zimbabwe. The reference datasets were
originally compiled for a pilot urban land use project in 2012–2013 [25], which focused on
the classification of built-up and non-built up areas. Therefore, there is more reference data
on built-up areas than other land cover classes. The reference data for Bulawayo, Mutare,
and Gweru were digitized from the very high resolution imagery available from Google
Earth™. While a lot of effort was made to prepare reliable and accurate reference data, it
should be noted that reference data were compiled from different sources. Therefore, it is
inevitable that some errors are found within the reference data. Nonetheless, the reference
data are very useful since some locations, especially in the peri-urban areas were carefully
interpreted on digital orthophotos and checked during the fieldwork in Harare in 2019
and 2020.

Land cover is the observed biophysical cover on the earth’s surface, while land use
refers to the human-environment interaction and is characterized by human activities. For
example, built-up is a land cover, while the high density residential area is a land use. In
this study, the focus is on mapping land cover. Table 2 shows the target land cover classes,
which are based on the “Forestry Commission (Zimbabwe) and DSG national woody cover
classes” classification schemes and the author’s a priori knowledge of the study areas.
The original land cover classes were modified with the aid of orthophotos and fieldwork.
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In total, six land cover classes were considered in this study: (1) Built-up; (2) bare areas;
(3) cropland; (4) woodland; (5) grass/open areas; and (6) water.

Table 2. Land cover classification scheme and distribution of training polygons.

Land Cover Description
Training Sites Per Class

Harare Bulawayo Mutare Gweru

Built-up (BU)

Residential, commercial,
services, industrial,
transportation, communication,
and utilities and
construction sites.

2113 806 419 464

Bare areas
(BA)

Bare sparsely vegetated area
with >60% soil background.
Includes sand and gravel
mining pits, rock outcrops.

1091 139 152 111

Cropland
(Cr)

Cultivated land or cropland
under preparation, fallow
cropland, and cropland
under irrigation.

1008 147 145 130

Woodland
(Wd)

Woodlands, riverine vegetation,
shrub and bush. 331 328 59 52

Grass/open
areas (Gr)

Grass cover, open grass areas,
golf courses, and parks. 1095 434 205 277

Water (Wt) Rivers, reservoirs, and lakes. 73 18 7 23

3.1.3. Land Cover Mapping Approach

We used the random forest (RF) classifier which is wrapped in the RStoolbox package
in R [47,48] to classify multi-seasonal S1 (SS1), S2 rainy season (S2RS), S2 post-rainy season
(S2PS), S2 dry season (S2DS), multi-seasonal S2 (SS2), and multi-seasonal composite S1
and S2 (SC) data. The SS1 data composite comprises S1 rainy season (S1RS), S1 post-rainy
season (S1PS), S1 dry season (S1DS) data, while the SS2 data composite comprises S2RS,
S2PS, and S2DS data (Table 1). The SC combines all the rainy, post-rainy, and dry season S1
and S2 data.

The RF classifier uses bootstrap sampling to build many single decision tree mod-
els [17,49,50]. In general, a random subset of predictor variables or bands is used to split
an observation data into homogeneous subsets. The subsets are used to build each de-
cision tree model and a prediction [50,51]. Then, single decision tree model predictions
are averaged in order to produce the final labeling [52]. The out-of-bag (OOB) sample
data are used to evaluate performance, while importance measures are computed based
on the proportion between misclassifications and the OOB sample [53]. This provides an
unbiased estimation of the generalization error which is used for feature selection [17].
The advantages of the RF classifier are: (i) they can handle both numerical and categorical
variables, (ii) are free from normal distribution assumptions, and (iii) are relatively robust
to outliers and noise [17,50,53].

In this study, 70% of the reference dataset were used for training, while 30% were used
for testing. A training model was set up to find the optimal model parameters, as well
as to check the initial model performance based on repeated cross-validation. A total of
500 decision trees were used in the RF model. We used a tune length of 3 (which defines the
number of levels for each tuning parameter) and a cross-validation of 5 (which represents
the number of cross-validation resamples during model tuning). The performance of
held-out samples was calculated and then the model with the optimal resampling statistic
was selected. We also defined a test model in order to evaluate the performance of the
RF classifier. After evaluating the test model, we applied a majority filter based on a
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3 × 3 window filter in order to remove the small pixels that cause a salt and pepper effect
on all land cover maps. We also computed feature importance scores using the mean
decrease accuracy.

4. Results
4.1. Land Cover Mapping and Analysis for Harare
4.1.1. Evaluation of the Training and Test Models

First, we evaluated the training and test models for Harare since the study area has
a comprehensive reference data. To assess the RF model, the out-of-bag (OOB) estimate
of the error rate, overall accuracy, and class errors were estimated using a five-fold cross-
validation. Table 3a shows a summary of multi-seasonal S1 (SS1), S2 rainy season (S2RS),
S2 post-rainy season (S2PS), S2 dry season (S2DS), multi-seasonal S2 (SS2), and multi-
seasonal composite S1 and S2 (SC) training models. The SS1 training model has the worst
performance as shown by the highest OOB error rate and relatively moderate training
accuracy. In general, marginal differences are observed for the S2RS, S2PS, and S2DS
training models in terms of the OOB error rate and training accuracy. Note that the
OOB error rate slightly increases from rainy season to dry season, while training accuracy
slightly increases from dry season to rainy season. This indicates that training models based
on mono-seasonal (single season) S2 data have a relatively similar model performance,
and thus will produce a less than optimum classification accuracy. However, there is a
significant decrease in the OOB error rate and a subsequent increase in the training accuracy
for the SS2 and SC training models. This indicates an improved model performance and
hence, a likelihood of better classification accuracy.

Table 3. (a) Summary of SS1; S2RS; S2PS; S2DS; SS2; and multi-seasonal composite S1 and S2 (SC) training model results.
(b) Summary of accuracy results (%) for SS1; S2RS; S2PS; S2DS; SS2; and SC test models.

(a)

Component SS1 S2RS S2PS S2DS SS2 SC

No. of variables (bands) used 12 9 9 9 27 39

No. of variables tried at each split 2 2 5 2 14 2

OOB estimate of error rate 29.3% 14.4% 15.4% 15.8% 8.3% 7.6%

Training accuracy 70.5% 84.8% 83.9% 83.8% 91% 92.1%

(b)

Class
SS1 S2RS S2PS S2DS SS2 SS1&2

PA UA PA UA PA UA PA UA PA UA PA UA

Built-up 58.3 58.9 83.9 76.7 84.4 72.5 80.9 64.9 88.9 77.1 93.7 79.4

Bare areas 54.1 70.8 64.4 74.7 64.2 75.9 57.9 70.6 66.4 79.3 66.1 83.9

Cropland 72.4 72.1 79.7 73 73.5 57.3 75.8 63.1 86.1 71.6 89.3 75.9

Woodlands 70.8 61.8 95.7 94.1 91.7 93.7 94.9 88.2 97 98.3 98.8 98.7

Grass/open areas 59.1 54.4 72 77.5 37.8 57.1 40.8 62.1 64.7 82.9 70.8 84.9

Water 98.8 99 99.6 99.7 100 95.9 98.1 99.5 100 98 100 99

Overall accuracy 68.7 82.1 74.7 74.3 83.6 86.2

95% CI 67.5–69.8 81.2–83.1 73.7–75.8 73.2–75.3 82.7–84.5 85.4–87.1

Note: PA: Producer’s accuracy; UA: User’s accuracy; CI: Confidence interval.
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In general, SS2 and SC training models have the lowest class errors, while the SS1
model has the highest class errors (Figure 5). However, all training models exhibit relatively
high errors for the bare areas and grass/open classes. The cross-validation results reveal
three important insights regarding the model training performance. First, both SS2 and
SC training models outperformed the other training models as shown by the OOB errors,
overall accuracy, and class errors. Second, S2RS, S2PS, and S2DS training models have
relatively high errors for the bare areas, grass/open areas, cropland, and built-up classes.
This suggests that mono-seasonal S2 data are not optimal for land cover mapping in the
study area. Third, the SS1 training model has the worst performance, indicating serious
classification problems. Therefore, multi-seasonal S1 data are not suitable for land cover
mapping in the study area.
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Table 3b shows the overall accuracy and individual class accuracy results for all test
models. The SS1 test model has the lowest overall accuracy, while the S2PS and S2DS test
models have a moderate overall accuracy. Generally, the SC test model has the highest
overall accuracy followed by S2RS and SS2 test models. Individual land cover accuracies
exhibited a high variability across different test models. With regard to the built-up class,
the producer’s accuracy score is consistently higher than the user’s accuracy score for
all test models with the exception of the SS1 test model. The S2RS, S2PS, S2DS, SS2, and
SC test models have high errors of commission, which suggest an overestimation of the
built-up class. However, the relatively low producer’s and user’s accuracy for the SS1 test
model indicates a severe underestimation and overestimation of the built-up class. For the
bare areas class, the user’s accuracy is higher than the producer’s accuracy for all models
indicating high errors of omission. In contrast, the cropland class has the high producer’s
accuracy and hence, low errors of omission. With respect to the woodland class, the SS1
model has the lowest user’s accuracy, which indicates high errors of commission and thus,
an overestimation of this class. Both the S2PS and S2DS models have the low producer’s
accuracy for the grass/open areas, which indicates a gross underestimation of this class.
This suggests that the use of individual post-rainy and dry season S2 data is insufficient to
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extract grass/open areas in the study area. The water class has relatively high individual
accuracy scores indicating a good model performance for this class.

4.1.2. Evaluation of Land Cover Maps

In general, severe classification problems are observed in the SS1 land cover map
(Figure 6a). An overestimation of built-up areas is observed, particularly in the far northern
part of the study area, while in some cases built-up areas are completely omitted or
misclassified as woodland areas. The analysis of the SS1 land cover reveals four important
insights with regards to the land cover classification based on multi-seasonal S1 data. First,
built-up areas are underestimated or completely omitted in developing peri-urban areas,
which are mainly new housing development areas (see location A in Figure 6b). This is
due to the fact that built-up areas which are not oriented orthogonal to the S1 sensor look
direction are not captured in the S1 imagery since the incident SAR beam is reflected away
from the sensor. Second, some built-up areas in core developed urban settlements which
are not oriented orthogonal to the S1 sensor look direction are misclassified as woodland
areas (see location B in Figure 6b). However, woodlands on hills or mountain slopes which
are oriented in the north-east to south-west direction are misclassified as built-up areas.
Location C (Figure 6b) shows that woodland areas which are located on slopes or hills
appear similar to the built-up areas in developed urban areas. This is the main cause of
confusion between built-up and woodland areas [54]. Third, built-up areas in developing
peri-urban and developed core urban areas which are oriented from the north-west to
south-east direction are correctly classified (see location D in Figure 6b). This is due to
the double bounce and “cardinal” effects, which occur when man-made structures are
orthogonal to the SAR illumination direction [33,55–57]. As a result, the built-up areas
appear brighter due to a strong SAR backscatter (Figure 6b). Fourth, it is important to note
that cropland areas are not confused with built-up areas. This is very significant since the
spectral confusion between the cropland and built-up areas in optical imagery is usually
one of the main causes of a poor classification accuracy. Figure 6c shows box plots of
backscatter (dB) derived from the training data. The overlap between most of the classes
is clearly observed from the distributions, which vary significantly. While there is a high
backscattering response in the VV polarization for the built-up class, many outliers are
present in this class (Figure 6c). This indicates that there is a significant confusion between
the built-up and woodland areas.
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The rainy season (S2RS) land cover map shows many classification errors due to an
overestimation of built-up areas (Table 3b) and spectral confusion between the built-up
and cropland or bare areas (Figure 7a). In the S2 rainy season (S2RS) imagery fields planted
with crops such as maize or other crop covers are distinguishable from the built-up areas or
bare rock outcrops. However, it is difficult to separate cropland areas where land is being
prepared for cultivation (bare cropland areas) from built-up areas in the S2RS imagery,
especially in developing peri-urban areas (Figure 3d). Locations A to D, in Figure 7b,
illustrate the misclassification of cropland as built-up areas. It is also noteworthy to point
out that built-up areas in densely-vegetated low density residential areas (located to the
north and north-east of the study area) are underestimated. This is due to the fact that most
of the houses in these locations are partially or totally obscured by trees, which are leaf-on
during the rainy season. In addition, grass/open areas are underestimated since these
areas appear spectrally similar to the cropland areas during the rainy season (Figure 7c). In
the study area, most grass/open areas have an irregular pattern, while the cropland areas
are composed of regular and homogeneous patches which are relatively easy to detect.
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The post-rainy season (S2PS) land cover map also shows classification errors (Figure 8a).
For example, built-up patches are observed in the south-western part of the study area,
which is mainly cropland. In the post-rainy season S2 (S2PS) imagery, cropland areas which
are being prepared for an irrigation respond as bare soil and hence, it is difficult to separate
them from built-up areas (location C in Figure 8b). The post-rainy season spectral profile
indicates a narrow separability in the blue, green, and red bands for built-up and cropland
areas, and a close spectral similarity in the other bands (Figure 8c). As was observed in
the RSS2 land cover map (Figure 7a), built-up areas are also underestimated due to the
fact that most of the houses in the low density residential areas are partially obscured
by trees. Furthermore, grass/open areas are not correctly classified since these classes
appear spectrally similar to cropland areas during the post-rainy season (Figure 8c). Indeed,
grass/open areas have a low producer’s accuracy of 37.8% (Table 3b), which show that
the RF classifier missed most of the grass/open areas. This due to the fact that most crops
are harvested during the post-rainy season. As a result, cropland areas are left with a crop
residue or are covered by grass, which have the same spectral reflectance as grass/open
areas (Figure 8c).



Geomatics 2021, 1 130Geomatics 2021, 1, FOR PEER REVIEW 17 
 

 

 
(a) 

 
(b) 

Figure 8. Cont.



Geomatics 2021, 1 131Geomatics 2021, 1, FOR PEER REVIEW 18 
 

 

 
(c) 

Figure 8. (a) S2PS land cover map: (A) Developing peri-urban; (B) developed urban area; (C) cropland area; and (D) de-
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Figure 8. (a) S2PS land cover map: (A) Developing peri-urban; (B) developed urban area; (C) cropland area; and (D) de-
veloping peri-urban area. (b) Post-rainy season S2 (S2PS) imagery in false color (left), and S2PS land cover map (right).
(c) Post-rainy season spectral plot for Harare.

The dry season (S2DS) land cover map also shows serious classification errors (Figure 9a).
There is also an increased overestimation of built-up areas and spectral confusion between
built-up and cropland areas (Figure 9b). This is due to the fact that most cropland are bare
during the dry season. Figure 9c shows that the spectral reflectance between the built-up
and cropland areas is quite close and therefore, it is difficult to separate these classes.
However, there is an improvement in the classification of built-up class in low density
residential areas since trees are leaf-off and hence, more built-up areas can be detected.
As was observed in the S2RS and S2PS land cover maps, grass/open areas are also not
correctly classified since these classes appear spectrally similar to cropland during the dry
seasons (Figure 9c).
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Figure 9. (a) S2DS land cover map: (A) Developing peri-urban; (B) developed urban area; (C) cropland area; and (D) de-
veloping peri-urban area. (b) Dry season S2 (S2DS) imagery in false color (left), and S2DS land cover map (right). (c) Dry 
season spectral plot for Harare. 
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are still misclassified as built-up areas (Figure 10b). This is problematic particularly in 
newly developing peri-urban areas, and in areas where land is being prepared for culti-
vation (Figure 10b). Therefore, the SS2 land cover map results imply that the utility of 
multi-seasonal spectral information is limited, especially in peri-urban areas where 
cropland or grass/open areas are bare during the year. Note that bare cropland areas 
have a high soil to vegetation cover ratio, which appear spectrally similar to built-up ar-
eas, especially in newly developed peri-urban areas (Figure 3d–f). 

Figure 9. (a) S2DS land cover map: (A) Developing peri-urban; (B) developed urban area; (C) cropland area; and
(D) developing peri-urban area. (b) Dry season S2 (S2DS) imagery in false color (left), and S2DS land cover map (right).
(c) Dry season spectral plot for Harare.

The visual inspection of the multi-seasonal S2 (SS2) land cover map (Figure 10a) shows
an improved classification compared to the SS1, S2RS, S2PS, and S2DS land cover maps.
The SS2 land cover mapping results confirm the value of multi-seasonal information for
improving land cover mapping. For example, the rainy season and post-rainy season
S2 imagery is needed to separate crop fields from urban areas with significant amounts
of asphalt and other impervious surfaces which are spectrally similar to bare soil in the
dry season S2 imagery. However, there are cases where cropland or bare areas are still
misclassified as built-up areas (Figure 10b). This is problematic particularly in newly
developing peri-urban areas, and in areas where land is being prepared for cultivation
(Figure 10b). Therefore, the SS2 land cover map results imply that the utility of multi-
seasonal spectral information is limited, especially in peri-urban areas where cropland or
grass/open areas are bare during the year. Note that bare cropland areas have a high soil
to vegetation cover ratio, which appear spectrally similar to built-up areas, especially in
newly developed peri-urban areas (Figure 3d–f).
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Figure 10. (a) SS2 land cover map: (A) Developing peri-urban; (B) developed urban area; (C) cropland area; and (D) de-
veloping peri-urban area. (b) Google Earth satellite (left), and (ii) SS2 land cover map (right). 
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contribution of S1 imagery. The analysis of the feature importance results show that the 
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areas respond as bare soil as shown by the blue color in Figure 2c. These cropland areas 
are distinguishable from built-up areas in peri-urban areas. It is noteworthy that while 
cropland areas have varying backscatter (Figure 6c), depending on soil moisture, rough-
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Figure 10. (a) SS2 land cover map: (A) Developing peri-urban; (B) developed urban area; (C) cropland area; and (D) devel-
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Substantial improvement in land cover mapping is observed in the SC land cover
map (Figure 11a). For example, the confusion between built-up areas, and cropland and
bare/open areas is significantly reduced (Figure 11b). This is largely attributed to the
contribution of S1 imagery. The analysis of the feature importance results show that
the dry season S1 VH imagery is one of the most important features that contributes
significantly to land cover mapping (Figure 11c). In the dry season S1 imagery, fallow
cropland areas respond as bare soil as shown by the blue color in Figure 2c. These cropland
areas are distinguishable from built-up areas in peri-urban areas. It is noteworthy that
while cropland areas have varying backscatter (Figure 6c), depending on soil moisture,
roughness, and crop canopy, they are recognizable from their parcel structure. Therefore,
dry season S1 VH polarization, and rainy and post-rainy season S2 imagery are effective in
separating cropland from built-up areas (Figure 11c).

4.1.3. Classification Accuracy Assessment

We conducted a rigorous (unbiased) accuracy assessment [58,59] for the Harare SC
land cover map since there is more reference data for the study area. Note that the
rigorous (unbiased) accuracy assessment is based on accuracy, which is calculated using
area proportions not sample counts [58,59]. This means that absolute counts of the sample
are converted into estimated area proportions using the equation provided by Olofsson
et al. [59]. Therefore, the rigorous (unbiased) accuracy assessment results are reported in
actual area units (km2 or hectares) and area proportions, which are more meaningful than
mere pixel counts. In this study, independent reference data were used for the accuracy
assessment. The pixel was used as the spatial assessment unit since the SC land cover map
was produced using a pixel-based RF approach. Originally, we determined a sample size of
676 points based on a stratified random sampling method [60]. However, land cover classes
such as water and bare areas had less than 50 samples, while built-up and woodland classes
had less than 100 samples. Therefore, we increased the built-up sample points to 200 (since
it is one of the most important land cover classes), and bare areas and water to 50 sample
points. In total, 876 sample points were used for the accuracy assessment. These sample
points were interpreted from aerial photographs and very high resolution imagery from
Google Earth™. We derived the area proportions and their confidence intervals, user’s
accuracy, and the producer’s accuracy from the error matrix [59]. Note that the error matrix
incorporates the standard error based on the total area of each land cover class. Therefore,
the land cover class area estimates are not biased.

Table 4 shows the mapped land cover class area estimates, ±95% confidence interval
(CI), the user’s accuracy, and the producer’s accuracy. The accuracy assessment results
show that the overall accuracy is 72.5%, while the individual class accuracies vary sig-
nificantly (Table 4). The user’s accuracy of estimated area proportion is higher than the
producer´s accuracy of estimated area proportion for the built-up class. Therefore, there
are more errors of omission given that some of the built-up areas were missed, especially
in vegetated low density areas. The bare areas class has low individual accuracies, which
indicates severe classification problems. This is attributed to the high class error for the bare
areas class (Figure 5). Generally, there are small or no marginal differences in individual
accuracies for cropland, woodland, and grass/open areas classes. However, there are more
errors of commission for the cropland class, which suggests an overestimation of this class.
For the water class, there are more errors of omission, which means that the RF classifier
missed most of the water areas.
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Table 4. Summary of the rigorous (unbiased) accuracy assessment.

Class Area (km2) ±95% CI (km2) User’s Accuracy (%) Producer’s
Accuracy (%)

Built-up 399.2 20.8 91.5 72.8

Bare areas 23.4 8.3 12 39.1

Cropland 929.5 38.3 74.3 77.8

Woodlands 314.4 45.1 68.6 68.9

Grass/open areas 1,149.8 25.8 70.2 70.2

Water 37.1 7.3 98 65.8

Total 2853.8
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4.2. Land Cover Mapping in Other Major Urban Centers in Zimbabwe
4.2.1. Comparison of Model Overall Accuracy

We also evaluated the performance of the RF classifier for the other major urban
centers in Zimbabwe. In terms of the overall accuracy, the test models results vary for
all urban centers (Figure 12). For Bulawayo, the SC test model has the highest overall
accuracy followed by the SS2 test model. The S2PS and S2DS test models have a relatively
higher overall accuracy than the SS1 and S2RS test models for Bulawayo. This suggests
that SS1 and S2RS data have severe limitations for land cover mapping in the study area.
Figure 13a shows classification problems, which are conspicuous in the land cover maps.
For example, some bare areas in the far western part of the city (which is generally rugged
terrain) are misclassified as built-up areas, while built-up areas in core urban settlements
are completely omitted or misclassified as woodland areas in the SS1 land cover map
(Figure 13ai). The visual analysis also reveals significant classification problems in the S2RS,
S2PS, S2DS, and SS2 land cover maps (Figure 13aii–v). The S2RS land cover map shows
that bare areas are overestimated in the north-western part of the city (Figure 13bii), while
some grass/open areas are misclassified as water areas. In contrast, the S2PS, S2DS, and
SS2 land cover maps show that grass/open areas are misclassified as built-up areas in the
north-western part of the study area (Figure 13biii–v). The classification problems are likely
attributed to the spectral similarity between the grass/open areas (which are bare during
the post-rainy and dry season) and built-up areas. However, a substantial improvement in
the classification accuracy is observed in the SC land cover map (Figure 13avi,bvi). The
overall accuracy for the SC land cover map is 7.3% higher than the SS2 land cover map.
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For Mutare, the SC and SS2 test models have the highest overall accuracy, while
the SS1 test model has the lowest overall accuracy (Figure 12). The S2RS, S2PS, and
S2DS test models achieve relatively moderate overall accuracies (Figure 12). The visual
analysis shows a substantial underestimation of the built-up areas in the S1 land cover
map (Figure 14a), which clearly indicates the limitations of using only S1 data in Mutare.
Interestingly, the built-up areas with a high backscatter, which are oriented orthogonal to
the S1 sensor look direction, are misclassified as bare areas. In addition, the built-up areas
in developed urban areas which are not oriented towards the S1 sensor look direction are
misclassified as woodland areas, especially in high density areas located in the southern
part of the city (Figure 14a). In contrast, a substantial overestimation of built-up areas is
observed in the S2RS, S2PRS, and S2DS land cover maps (Figure 14b–d). This suggests
that mono-seasonal S2 data (which are S2RS, S2PS, and S2DS data) are not optimal for
land cover mapping in the study area. Although a high classification accuracy is observed
in both SS2 and SC land cover maps, the visual analysis shows an improved mapping of
built-up areas in the latter (Figure 14e,f).

Similarly, the SC and SS2 test models have the highest overall accuracy for Gweru
(Figure 12). However, there are marginal differences between the SS1 and S2RS test models,
and between the S2PS and S2DS test models. This also suggests that mono-seasonal data
are not adequate for land cover mapping for Gweru. Figure 15 shows an underestimation
of the built-up areas in the S1 land cover map and a substantial overestimation of built-up
areas for the S2RS, S2PRS, and S2DS land cover maps. In particular, severe classification
problems are observed in the S2RS land cover map (Figure 15b). For example, some
grass/open areas in the south and south-western part of the city are misclassified as built-
up areas. This is likely attributed to the low rainfall received in that study area during
this period. As a result, grass/open and cropland areas respond as bare soil and hence, it
is difficult to separate them from built-up areas. It is important to note that the SS2 land
cover map has a slightly higher overall accuracy than the SC land cover map for Gweru.
However, the visual analysis shows that the SC land cover map is better than the SS2 land
cover map since the latter has some misclassified built-up areas in the southern part of the
study area.
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4.2.2. Random Forest Feature Importance

We also evaluated the performance of the SC test model based on feature importance.
Figure 16 shows the relative importance of the contribution of the top 10 features out of
the 39 multi-seasonal S1 and S2 bands used for land cover mapping. The results show that
rainy and post-rainy season S2 bands, and dry and rainy season S1 VV and VH features
are important for land cover mapping in all major urban areas. In general, band 2 (Blue),
band 3 (Green), band 4 (Red), and band 5 (Vegetation red edge) from the rainy and post-
rainy seasons are the most important features for Harare, Bulawayo, and Mutare. This is
probably due to the fact that during the rainy and post-rainy seasons, the vegetation and
built-up areas show the greatest difference (Figures 7c and 8c). In addition, the importance
of dry season VV and VH polarization features shows that the complementary information
derived from S1 data improves land cover mapping. This is due to the fact that the SAR
sensor is effective at capturing the structure and dielectric properties of the Earth surface
materials [61]. Note that the dry season VV and VH, and rainy season VH polarization are
selected as important features for Bulawayo (Figure 16b). This is mainly attributed to the
semi-arid landscape and dominant land cover type in the study area. Generally, Bulawayo
receives a low rainfall and is primarily dominated by grass/open areas.
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5. Discussion

The recent drive to provide current and accurate geospatial information for the UN
SDGs and UN New Urban Agenda (NUA) require reliable approaches that improve land
cover mapping in urban and peri-urban areas in Sub-Sahara Africa. The availability of
free and high-quality optical and SAR data from the Copernicus programme under the
European Space Agency offer opportunities to improve land cover mapping. We evaluated
the utility of multi-seasonal S1 (SS1), mono-seasonal S2 (S2RS, S2PS, and S2DS), multi-
seasonal S2 (SS2), and multi-seasonal composite S1 and S2 (SC) data for mapping land
cover in four major urban centers in Zimbabwe. Our results indicate that the SC data
produced superior discrimination of built-up areas and other land cover classes relative
to SS1, mono-seasonal S2, and SS2 data in the study area. The overall accuracy scores for
the SC land cover maps are above 85% for all urban centers. In particular, the SC data
improved the overall accuracy to 2.6%, 9.3%, and 0.8% for Harare, Bulawayo, and Mutare,
respectively compared to only the SS2 data. Although the overall accuracy is slightly
higher for the SS2 data for Gweru, the visual analysis reveals that the SC data significantly
improves land cover mapping for all urban centers.

It is noteworthy that the observed variability in S2RS, S2PS, S2DS, and SS1 training and
testing models (Figure 5) highlight limitations of using only mono-seasonal S2 and SS1 data
for mapping land cover in the study area. For example, an increase in the overall accuracy
of 4%, 17.3%, 8.7%, and 16.2% is achieved for Harare, Bulawayo, Mutare, and Gweru
when using SC data relative to only the rainy season S2 data. Our results indicate that SS1
data is not suitable for land cover mapping in the study area. An increase in the overall
accuracy that varies between 17% and 26% is achieved when SC data are used for land
cover mapping instead of only SS1 data for all urban centers. We observed that settlement
areas which are not oriented towards the SAR sensor look direction have a significant cross-
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polarized component. This leads to a severe confusion between built-up and woodland
areas [62] and hence, poor accuracy in the SS1 land cover map (Figure 6a). Previous studies
have observed this scattering ambiguity and confusion since the urban environments
are comprised of various natural and man-made targets, different orientations, various
shapes and sizes [54,63,64]. Furthermore, the scattering behavior also depends on the
geometry of terrain elements and their electromagnetic characteristics [65]. Therefore,
interpreters of S1 data must be aware of these scattering effects which tend to complicate
the backscatter analysis in urban and peri-urban areas [66]. Although leaf-on S2 data
from the rainy and post-rainy season are assumed to improve the separation of built-up
areas from cropland and bare areas, land cover mapping results generally varied in this
study areas. For example, rainy season S2 data produced relatively higher levels of overall
accuracy for Harare and Mutare compared to Bulawayo and Gweru. This suggests that
local climatic variability significantly impacts land cover mapping accuracy.

This study revealed the importance of seasonality and the combination of S1 and S2
data, especially when attempting to map land cover in fast developing peri-urban areas.
Clearly, SS1 and mono-seasonal S2 data are not effective for mapping land cover in all
urban centers given the inter- and intra-annual variability in land cover types (Figure 3).
Furthermore, our results also indicate the limitations of using only multi-seasonal S2 data.
Although previous studies [43] demonstrated the use of multi-seasonal optical imagery for
separating different land cover classes, the spectral confusion between built-up areas and
cropland and bare areas still occur, especially in peri-urban areas. For example, fallow or
post-harvest cropland, bare areas, and newly developing peri-urban areas are confused
with one another during the year (Figure 3d–f). In addition, grass/open areas are also easily
confused with cropland if assessed during one season. However, the use of combined SC
data brings significant benefits. The feature importance analysis results indicate that rainy
and post-rainy season S2 bands, and dry season S1 VV and VH polarization improve land
cover mapping in urban and peri-urban areas. Although we observed different scattering
effects and confusion between built-up areas and woodland areas in SS1 data, the cropland
areas were not confused with built-up areas in all urban centers. This is likely attributed to
the effectiveness of VV and VH polarization in separating cropland from built-up areas in
the study area. In general, backscatter from cropland areas is usually composed of surface
scattering from the soil, volume scattering from the plants, and a soil-vegetation interaction
component. In the study area, surface scattering from the soil is dominant in the early
rainy (growing) season, while volume scattering dominates during the peak growth period
(mid-rainy season and early post-rainy season) (Figure 2a–c). During the harvesting and
post-harvesting periods, a mixture of surface and volume scattering is dominant. While this
makes information extraction difficult between bare areas and cropland in the study area,
the scattering effects make it easier to separate built-up areas from cropland. This is very
important since the spectral confusion between cropland and built-up areas causes severe
misclassifications when only optical data are used for land cover mapping, especially in
newly developing peri-urban areas [10]. Therefore, the combination of backscatter derived
from S1 data [61], and spectral and seasonal information derived from S2 data substantially
improved land cover mapping in the study area.

While the study demonstrated the capability of SC data for improving land cover
mapping in the study area, some challenges still need to be addressed. First, the scattering
ambiguity and confusion observed in S1 (VV and VH, ascending orbit) data still pose
problems for SAR data interpretation and analysis. Therefore, there is a need to explore
alternative SAR data analysis techniques in order to further improve land cover mapping
accuracy. Second, the unavailability of HH and HV polarization in descending orbit during
the study period limits the full analysis of S1 data, and understanding its impact on land
cover mapping. It is important to consider a 2- or 3-year study period since there are
higher chances of getting descending orbit HH and HV polarization data in the study area.
Third, the lack of anniversary or near-anniversary very high resolution imagery or ground
reference data for the other major urban centers (Bulawayo, Mutare, and Gweru) limits
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the ability to conduct a rigorous accuracy assessment as was done for Harare. Although
the use of very high resolution satellite imagery from Google Earth is a widely adopted
method for accuracy assessment, the on-site field data collection and very high resolution
imagery would contribute to more reliable reference data. In this regard, there is a need to
collaborate with local city and government authorities, as well as universities in order to
collect reference data using field surveys and low-cost unmanned aerial vehicles (UAV).
Nevertheless, our land cover mapping approach shows a potential to map land cover in
other medium or small urban centers, which are characterized by fragmented built-up
developments in peri-urban areas.

6. Conclusions

In summary, several conclusions can be drawn from this study. First, this study
has revealed that the use of S1 data is not effective for mapping land cover in urban
and peri-urban areas in the study area. Second, this study also illustrated limitations of
using mono-seasonal S2 and multi-seasonal S2 data for land cover mapping, especially
in complex different urban landscapes in Zimbabwe. Third and more importantly, this
study demonstrated that using multi-seasonal composite S1 and S2 (SC) data as input for
classification results in accurate land cover maps. This is attributed to the sensitivity of S1
data to detect different target surfaces and the ability to separate cropland from built-up
areas, as well as the capacity of multi-seasonal S2 data to identify phenological changes.
Given the availability of high volumes of medium to high resolution satellite data (Landsat,
S1, S2, etc.), there is an increased need for cost-effective approaches that can be used to
improve land cover mapping, especially in fast-developing urban and peri-urban areas in
Sub-Sahara Africa. Thus, the assessment of multi-seasonal S1 and S2 data and different
random forest models to improve the land cover mapping is of critical importance. This
study revealed that SC random forest training and test models performed more effectively
in different urban landscapes. The combination of multi-seasonal S1 and S2 data improved
the overall classification significantly, mostly improving the mapping of built-up areas in
peri-urban and low density residential areas. Therefore, our land cover mapping approach
contributes to land cover studies, which can be applied to other urban areas in Zimbabwe
and in Sub-Sahara Africa.
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